Examples of parents endowed with multiple realizations

class sage.categories.examples.with_realizations.SubsetAlgebra(R, S)

Bases: sage.structure.unique_representation.UniqueRepresentation, sage.structure.parent.Parent

An example of parent endowed with several realizations

We consider an algebra \(A(S)\) whose bases are indexed by the subsets \(s\) of a given set \(S\). We consider three natural basis of this algebra: F, In, and Out. In the first basis, the product is given by the union of the indexing sets. That is, for any \(s, t\subset S\)

\[F_s F_t = F_{s\cup t}\]

The In basis and Out basis are defined respectively by:

\[In_s = \sum_{t\subset s} F_t \qquad\text{and}\qquad F_s = \sum_{t\supset s} Out_t\]

Each such basis gives a realization of \(A\), where the elements are represented by their expansion in this basis.

This parent, and its code, demonstrate how to implement this algebra and its three realizations, with coercions and mixed arithmetic between them.

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.base_ring()
Rational Field

The three bases of A:

sage: F   = A.F()  ; F
The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis
sage: In  = A.In() ; In
The subset algebra of {1, 2, 3} over Rational Field in the In basis
sage: Out = A.Out(); Out
The subset algebra of {1, 2, 3} over Rational Field in the Out basis

One can quickly define all the bases using the following shortcut:

sage: A.inject_shorthands()
Injecting F as shorthand for The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis
...
Injecting In as shorthand for The subset algebra of {1, 2, 3} over Rational Field in the In basis
...

Accessing the basis elements is done with basis() method:

sage: F.basis().list()
[F[{}], F[{1}], F[{2}], F[{3}], F[{1, 2}], F[{1, 3}], F[{2, 3}], F[{1, 2, 3}]]

To access a particular basis element, you can use the from_set() method:

sage: F.from_set(2,3)
F[{2, 3}]
sage: In.from_set(1,3)
In[{1, 3}]

or as a convenient shorthand, one can use the following notation:

sage: F[2,3]
F[{2, 3}]
sage: In[1,3]
In[{1, 3}]

Some conversions:

sage: F(In[2,3])
F[{}] + F[{2}] + F[{3}] + F[{2, 3}]
sage: In(F[2,3])
In[{}] - In[{2}] - In[{3}] + In[{2, 3}]

sage: Out(F[3])
Out[{3}] + Out[{1, 3}] + Out[{2, 3}] + Out[{1, 2, 3}]
sage: F(Out[3])
F[{3}] - F[{1, 3}] - F[{2, 3}] + F[{1, 2, 3}]

sage: Out(In[2,3])
Out[{}] + Out[{1}] + 2*Out[{2}] + 2*Out[{3}] + 2*Out[{1, 2}] + 2*Out[{1, 3}] + 4*Out[{2, 3}] + 4*Out[{1, 2, 3}]

We can now mix expressions:

sage: (1 + Out[1]) * In[2,3]
Out[{}] + 2*Out[{1}] + 2*Out[{2}] + 2*Out[{3}] + 2*Out[{1, 2}] + 2*Out[{1, 3}] + 4*Out[{2, 3}] + 4*Out[{1, 2, 3}]
class Bases(parent_with_realization)

Bases: sage.categories.realizations.Category_realization_of_parent

The category of the realizations of the subset algebra

ParentMethods

alias of Bases.ParentMethods

super_categories()

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: C = A.Bases(); C
Category of bases of The subset algebra of {1, 2, 3} over Rational Field
sage: C.super_categories()
[Join of Category of algebras over Rational Field and Category of realizations of magmas,
 Category of realizations of The subset algebra of {1, 2, 3} over Rational Field,
 Category of algebras with basis over Rational Field]
class SubsetAlgebra.Fundamental(A)

Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.BindableClass

The Subset algebra, in the fundamental basis

INPUT:

EXAMPLES:

sage: A = Sets().WithRealizations().example()
sage: A.F()
The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis
sage: A.Fundamental()
The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis
one()

EXAMPLES:

sage: A = AlgebrasWithBasis(QQ).example()
sage: A.one_basis()
word:
sage: A.one()
B[word: ]
one_basis()

Returns the index of the basis element which is equal to ‘1’.

EXAMPLES:

sage: F = Sets().WithRealizations().example().F(); F
The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis
sage: F.one_basis()
{}
sage: F.one()
F[{}]
product_on_basis(left, right)

Product of basis elements, as per AlgebrasWithBasis.ParentMethods.product_on_basis().

INPUT:

  • left, right – sets indexing basis elements

EXAMPLES:

sage: F = Sets().WithRealizations().example().F(); F
The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis
sage: S = F.basis().keys(); S
Subsets of {1, 2, 3}
sage: F.product_on_basis(S([]), S([]))
F[{}]
sage: F.product_on_basis(S({1}), S({3}))
F[{1, 3}]
sage: F.product_on_basis(S({1,2}), S({2,3}))
F[{1, 2, 3}]
class SubsetAlgebra.In(A)

Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.BindableClass

The Subset Algebra, in the In basis

INPUT:

EXAMPLES:

sage: A = Sets().WithRealizations().example()
sage: A.In()
The subset algebra of {1, 2, 3} over Rational Field in the In basis

TESTS:

The product in this basis is computed by converting to the fundamental basis, computing the product there, and then converting back:

sage: In = Sets().WithRealizations().example().In(); In
The subset algebra of {1, 2, 3} over Rational Field in the In basis
sage: x = In.an_element()
sage: y = In.an_element()
sage: In.product
<bound method ....product_by_coercion ...>
sage: In.product.__module__
'sage.categories.magmas'
sage: In.product(x, y)
-21*In[{}] - 2*In[{1}] + 19*In[{2}] + 53*In[{1, 2}]
class SubsetAlgebra.Out(A)

Bases: sage.combinat.free_module.CombinatorialFreeModule, sage.misc.bindable_class.BindableClass

The Subset Algebra, in the \(Out\) basis

INPUT:

EXAMPLES:

sage: A = Sets().WithRealizations().example()
sage: A.Out()
The subset algebra of {1, 2, 3} over Rational Field in the Out basis

TESTS:

The product in this basis is computed by converting to the fundamental basis, computing the product there, and then converting back:

sage: Out = Sets().WithRealizations().example().Out(); Out
The subset algebra of {1, 2, 3} over Rational Field in the Out basis
sage: x = Out.an_element()
sage: y = Out.an_element()
sage: Out.product
<bound method ....product_by_coercion ...>
sage: Out.product.__module__
'sage.categories.magmas'
sage: Out.product(x, y)
Out[{}] + 4*Out[{1}] + 9*Out[{2}] + Out[{1, 2}]
SubsetAlgebra.a_realization()

Returns the default realization of self

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.a_realization()
The subset algebra of {1, 2, 3} over Rational Field in the Fundamental basis
SubsetAlgebra.base_set()

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.base_set()
{1, 2, 3}
SubsetAlgebra.indices()

The objects that index the basis elements of this algebra.

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.indices()
Subsets of {1, 2, 3}
SubsetAlgebra.indices_cmp(x, y)

A comparison function on sets which gives a linear extension of the inclusion order.

INPUT:

  • x, y – sets

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: sorted(A.indices(), A.indices_cmp)
[{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}]
SubsetAlgebra.supsets(set)

Returns all the subsets of \(S\) containing set

INPUT:

  • set – a subset of the base set \(S\) of self

EXAMPLES:

sage: A = Sets().WithRealizations().example(); A
The subset algebra of {1, 2, 3} over Rational Field
sage: A.supsets(Set((2,)))
[{1, 2, 3}, {2, 3}, {1, 2}, {2}]

Previous topic

Examples of sets

Next topic

Example of a set with grading

This Page