Graded Hopf algebras with basis

class sage.categories.graded_hopf_algebras_with_basis.GradedHopfAlgebrasWithBasis(base_category)

Bases: sage.categories.graded_modules.GradedModulesCategory

The category of graded Hopf algebras with a distinguished basis.

EXAMPLES:

sage: C = GradedHopfAlgebrasWithBasis(ZZ); C
Category of graded hopf algebras with basis over Integer Ring
sage: C.super_categories()
[Category of hopf algebras with basis over Integer Ring,
 Category of graded algebras with basis over Integer Ring]

sage: C is HopfAlgebras(ZZ).WithBasis().Graded()
True
sage: C is HopfAlgebras(ZZ).Graded().WithBasis()
False

TESTS:

sage: TestSuite(C).run()
class ElementMethods
class GradedHopfAlgebrasWithBasis.ParentMethods
class GradedHopfAlgebrasWithBasis.WithRealizations(category, *args)

Bases: sage.categories.with_realizations.WithRealizationsCategory

TESTS:

sage: from sage.categories.covariant_functorial_construction import CovariantConstructionCategory
sage: class FooBars(CovariantConstructionCategory):
...       _functor_category = "FooBars"
sage: Category.FooBars = lambda self: FooBars.category_of(self)
sage: C = FooBars(ModulesWithBasis(ZZ))
sage: C
Category of foo bars of modules with basis over Integer Ring
sage: C.base_category()
Category of modules with basis over Integer Ring
sage: latex(C)
\mathbf{FooBars}(\mathbf{ModulesWithBasis}_{\Bold{Z}})
sage: import __main__; __main__.FooBars = FooBars # Fake FooBars being defined in a python module
sage: TestSuite(C).run()
super_categories()

EXAMPLES:

sage: GradedHopfAlgebrasWithBasis(QQ).WithRealizations().super_categories()
[Join of Category of hopf algebras over Rational Field
     and Category of graded algebras over Rational Field]

TESTS:

sage: TestSuite(GradedHopfAlgebrasWithBasis(QQ).WithRealizations()).run()

Previous topic

Graded Hopf algebras

Next topic

Graded modules

This Page