This module implements the base class for graphs and digraphs, and methods that can be applied on both. Here is what it can do:
Basic Graph operations:
networkx_graph() | Creates a new NetworkX graph from the Sage graph |
to_dictionary() | Creates a dictionary encoding the graph. |
copy() | Return a copy of the graph. |
adjacency_matrix() | Returns the adjacency matrix of the (di)graph. |
incidence_matrix() | Returns an incidence matrix of the (di)graph |
distance_matrix() | Returns the distance matrix of the (strongly) connected (di)graph |
weighted_adjacency_matrix() | Returns the weighted adjacency matrix of the graph |
kirchhoff_matrix() | Returns the Kirchhoff matrix (a.k.a. the Laplacian) of the graph. |
get_boundary() | Returns the boundary of the (di)graph. |
set_boundary() | Sets the boundary of the (di)graph. |
has_loops() | Returns whether there are loops in the (di)graph. |
allows_loops() | Returns whether loops are permitted in the (di)graph. |
allow_loops() | Changes whether loops are permitted in the (di)graph. |
loops() | Returns any loops in the (di)graph. |
has_multiple_edges() | Returns whether there are multiple edges in the (di)graph. |
allows_multiple_edges() | Returns whether multiple edges are permitted in the (di)graph. |
allow_multiple_edges() | Changes whether multiple edges are permitted in the (di)graph. |
multiple_edges() | Returns any multiple edges in the (di)graph. |
name() | Returns or sets the graph’s name. |
weighted() | Whether the (di)graph is to be considered as a weighted (di)graph. |
antisymmetric() | Tests whether the graph is antisymmetric |
density() | Returns the density |
order() | Returns the number of vertices. |
size() | Returns the number of edges. |
add_vertex() | Creates an isolated vertex. |
add_vertices() | Add vertices to the (di)graph from an iterable container |
delete_vertex() | Deletes a vertex, removing all incident edges. |
delete_vertices() | Remove vertices from the (di)graph taken from an iterable container of vertices. |
has_vertex() | Return True if vertex is one of the vertices of this graph. |
random_vertex() | Returns a random vertex of self. |
random_edge() | Returns a random edge of self. |
vertex_boundary() | Returns a list of all vertices in the external boundary of vertices1, intersected with vertices2. |
set_vertices() | Associate arbitrary objects with each vertex |
set_vertex() | Associate an arbitrary object with a vertex. |
get_vertex() | Retrieve the object associated with a given vertex. |
get_vertices() | Return a dictionary of the objects associated to each vertex. |
loop_vertices() | Returns a list of vertices with loops. |
vertex_iterator() | Returns an iterator over the vertices. |
neighbor_iterator() | Return an iterator over neighbors of vertex. |
vertices() | Return a list of the vertices. |
neighbors() | Return a list of neighbors (in and out if directed) of vertex. |
merge_vertices() | Merge vertices. |
add_edge() | Adds an edge from u and v. |
add_edges() | Add edges from an iterable container. |
subdivide_edge() | Subdivides an edge \(k\) times. |
subdivide_edges() | Subdivides k times edges from an iterable container. |
delete_edge() | Delete the edge from u to v |
delete_edges() | Delete edges from an iterable container. |
delete_multiedge() | Deletes all edges from u and v. |
set_edge_label() | Set the edge label of a given edge. |
has_edge() | Returns True if (u, v) is an edge, False otherwise. |
edges() | Return a list of edges. |
edge_boundary() | Returns a list of edges \((u,v,l)\) with \(u\) in vertices1 |
edge_iterator() | Returns an iterator over edges. |
edges_incident() | Returns incident edges to some vertices. |
edge_label() | Returns the label of an edge. |
edge_labels() | Returns a list of edge labels. |
remove_multiple_edges() | Removes all multiple edges, retaining one edge for each. |
remove_loops() | Removes loops on vertices in vertices. If vertices is None, removes all loops. |
loop_edges() | Returns a list of all loops in the graph. |
number_of_loops() | Returns the number of edges that are loops. |
clear() | Empties the graph of vertices and edges and removes name, boundary, associated objects, and position information. |
degree() | Gives the degree (in + out for digraphs) of a vertex or of vertices. |
average_degree() | Returns the average degree of the graph. |
degree_histogram() | Returns a list, whose ith entry is the frequency of degree i. |
degree_iterator() | Returns an iterator over the degrees of the (di)graph. |
degree_sequence() | Return the degree sequence of this (di)graph. |
random_subgraph() | Return a random subgraph that contains each vertex with prob. p. |
add_cycle() | Adds a cycle to the graph with the given vertices. |
add_path() | Adds a cycle to the graph with the given vertices. |
complement() | Returns the complement of the (di)graph. |
line_graph() | Returns the line graph of the (di)graph. |
to_simple() | Returns a simple version of itself (i.e., undirected and loops and multiple edges are removed). |
disjoint_union() | Returns the disjoint union of self and other. |
union() | Returns the union of self and other. |
relabel() | Relabels the vertices of self |
degree_to_cell() | Returns the number of edges from vertex to an edge in cell. |
subgraph() | Returns the subgraph containing the given vertices and edges. |
is_subgraph() | Tests whether self is a subgraph of other. |
Graph products:
cartesian_product() | Returns the Cartesian product of self and other. |
tensor_product() | Returns the tensor product, also called the categorical product, of self and other. |
lexicographic_product() | Returns the lexicographic product of self and other. |
strong_product() | Returns the strong product of self and other. |
disjunctive_product() | Returns the disjunctive product of self and other. |
Paths and cycles:
eulerian_orientation() | Returns a DiGraph which is an Eulerian orientation of the current graph. |
eulerian_circuit() | Return a list of edges forming an eulerian circuit if one exists. |
cycle_basis() | Returns a list of cycles which form a basis of the cycle space of self. |
interior_paths() | Returns an exhaustive list of paths (also lists) through only interior vertices from vertex start to vertex end in the (di)graph. |
all_paths() | Returns a list of all paths (also lists) between a pair of vertices in the (di)graph. |
triangles_count() | Returns the number of triangles in the (di)graph. |
Linear algebra:
spectrum() | Returns a list of the eigenvalues of the adjacency matrix. |
eigenvectors() | Returns the right eigenvectors of the adjacency matrix of the graph. |
eigenspaces() | Returns the right eigenspaces of the adjacency matrix of the graph. |
Some metrics:
cluster_triangles() | Returns the number of triangles for nbunch of vertices as a dictionary keyed by vertex. |
clustering_average() | Returns the average clustering coefficient. |
clustering_coeff() | Returns the clustering coefficient for each vertex in nbunch |
cluster_transitivity() | Returns the transitivity (fraction of transitive triangles) of the graph. |
szeged_index() | Returns the Szeged index of the graph. |
Automorphism group:
coarsest_equitable_refinement() | Returns the coarsest partition which is finer than the input partition, and equitable with respect to self. |
automorphism_group() | Returns the largest subgroup of the automorphism group of the (di)graph whose orbit partition is finer than the partition given. |
is_vertex_transitive() | Returns whether the automorphism group of self is transitive within the partition provided |
is_isomorphic() | Tests for isomorphism between self and other. |
canonical_label() | Returns the unique graph on \(\{0,1,...,n-1\}\) ( n = self.order() ) which 1) is isomorphic to self 2) is invariant in the isomorphism class. |
Graph properties:
is_eulerian() | Return true if the graph has a (closed) tour that visits each edge exactly once. |
is_planar() | Tests whether the graph is planar. |
is_circular_planar() | Tests whether the graph is circular planar (outerplanar) |
is_regular() | Return True if this graph is (\(k\)-)regular. |
is_chordal() | Tests whether the given graph is chordal. |
is_circulant() | Tests whether the graph is a circulant graph. |
is_interval() | Check whether self is an interval graph |
is_gallai_tree() | Returns whether the current graph is a Gallai tree. |
is_clique() | Tests whether a set of vertices is a clique |
is_independent_set() | Tests whether a set of vertices is an independent set |
is_transitively_reduced() | Tests whether the digraph is transitively reduced. |
is_equitable() | Checks whether the given partition is equitable with respect to self. |
Traversals:
breadth_first_search() | Returns an iterator over the vertices in a breadth-first ordering. |
depth_first_search() | Returns an iterator over the vertices in a depth-first ordering. |
lex_BFS() | Performs a Lex BFS on the graph. |
Distances:
distance() | Returns the (directed) distance from u to v in the (di)graph |
distance_all_pairs() | Returns the distances between all pairs of vertices. |
distances_distribution() | Returns the distances distribution of the (di)graph in a dictionary. |
eccentricity() | Return the eccentricity of vertex (or vertices) v. |
radius() | Returns the radius of the (di)graph. |
center() | Returns the set of vertices in the center of the graph |
diameter() | Returns the largest distance between any two vertices. |
distance_graph() | Returns the graph on the same vertex set as the original graph but vertices are adjacent in the returned graph if and only if they are at specified distances in the original graph. |
girth() | Computes the girth of the graph. |
periphery() | Returns the set of vertices in the periphery |
shortest_path() | Returns a list of vertices representing some shortest path from \(u\) to \(v\) |
shortest_path_length() | Returns the minimal length of paths from u to v |
shortest_paths() | Returns a dictionary associating to each vertex v a shortest path from u to v, if it exists. |
shortest_path_lengths() | Returns a dictionary of shortest path lengths keyed by targets that are connected by a path from u. |
shortest_path_all_pairs() | Computes a shortest path between each pair of vertices. |
wiener_index() | Returns the Wiener index of the graph. |
average_distance() | Returns the average distance between vertices of the graph. |
Flows, connectivity, trees:
is_connected() | Tests whether the (di)graph is connected. |
connected_components() | Returns the list of connected components |
connected_components_number() | Returns the number of connected components. |
connected_components_subgraphs() | Returns a list of connected components as graph objects. |
connected_component_containing_vertex() | Returns a list of the vertices connected to vertex. |
connected_components_sizes() | Return the sizes of the connected components as a list. |
blocks_and_cut_vertices() | Computes the blocks and cut vertices of the graph. |
blocks_and_cuts_tree() | Computes the blocks-and-cuts tree of the graph. |
is_cut_edge() | Returns True if the input edge is a cut-edge or a bridge. |
is_cut_vertex() | Returns True if the input vertex is a cut-vertex. |
edge_cut() | Returns a minimum edge cut between vertices \(s\) and \(t\) |
vertex_cut() | Returns a minimum vertex cut between non-adjacent vertices \(s\) and \(t\) |
flow() | Returns a maximum flow in the graph from x to y |
edge_disjoint_paths() | Returns a list of edge-disjoint paths between two vertices |
vertex_disjoint_paths() | Returns a list of vertex-disjoint paths between two vertices as given by Menger’s theorem. |
edge_connectivity() | Returns the edge connectivity of the graph. |
vertex_connectivity() | Returns the vertex connectivity of the graph. |
transitive_closure() | Computes the transitive closure of a graph and returns it. |
transitive_reduction() | Returns a transitive reduction of a graph. |
min_spanning_tree() | Returns the edges of a minimum spanning tree. |
spanning_trees_count() | Returns the number of spanning trees in a graph. |
Plot/embedding-related methods:
set_embedding() | Sets a combinatorial embedding dictionary to _embedding attribute. |
get_embedding() | Returns the attribute _embedding if it exists. |
faces() | Returns the faces of an embedded graph. |
get_pos() | Returns the position dictionary |
set_pos() | Sets the position dictionary. |
set_planar_positions() | Compute a planar layout for self using Schnyder’s algorithm |
layout_planar() | Uses Schnyder’s algorithm to compute a planar layout for self. |
is_drawn_free_of_edge_crossings() | Tests whether the position dictionary gives a planar embedding. |
latex_options() | Returns an instance of GraphLatex for the graph. |
set_latex_options() | Sets multiple options for rendering a graph with LaTeX. |
layout() | Returns a layout for the vertices of this graph. |
layout_spring() | Computes a spring layout for this graph |
layout_ranked() | Computes a ranked layout for this graph |
layout_extend_randomly() | Extends randomly a partial layout |
layout_circular() | Computes a circular layout for this graph |
layout_tree() | Computes an ordered tree layout for this graph, which should be a tree (no non-oriented cycles). |
layout_graphviz() | Calls graphviz to compute a layout of the vertices of this graph. |
graphplot() | Returns a GraphPlot object. |
plot() | Returns a graphics object representing the (di)graph. |
show() | Shows the (di)graph. |
plot3d() | Plot a graph in three dimensions. |
show3d() | Plots the graph using Tachyon, and shows the resulting plot. |
graphviz_string() | Returns a representation in the dot language. |
graphviz_to_file_named() | Write a representation in the dot in a file. |
Algorithmically hard stuff:
steiner_tree() | Returns a tree of minimum weight connecting the given set of vertices. |
edge_disjoint_spanning_trees() | Returns the desired number of edge-disjoint spanning trees/arborescences. |
feedback_vertex_set() | Computes the minimum feedback vertex set of a (di)graph. |
multiway_cut() | Returns a minimum edge multiway cut |
max_cut() | Returns a maximum edge cut of the graph. |
longest_path() | Returns a longest path of self. |
traveling_salesman_problem() | Solves the traveling salesman problem (TSP) |
is_hamiltonian() | Tests whether the current graph is Hamiltonian. |
hamiltonian_cycle() | Returns a Hamiltonian cycle/circuit of the current graph/digraph |
multicommodity_flow() | Solves a multicommodity flow problem. |
disjoint_routed_paths() | Returns a set of disjoint routed paths. |
dominating_set() | Returns a minimum dominating set of the graph |
subgraph_search() | Returns a copy of G in self. |
subgraph_search_count() | Returns the number of labelled occurences of G in self. |
subgraph_search_iterator() | Returns an iterator over the labelled copies of G in self. |
characteristic_polynomial() | Returns the characteristic polynomial of the adjacency matrix of the (di)graph. |
genus() | Returns the minimal genus of the graph. |
Bases: sage.graphs.generic_graph_pyx.GenericGraph_pyx
Base class for graphs and digraphs.
Compare self and other for equality.
Do not call this method directly. That is, for G.__eq__(H) write G == H.
Note that this is not an isomorphism test.
EXAMPLES:
sage: G = graphs.EmptyGraph()
sage: H = Graph()
sage: G == H
True
sage: G.to_directed() == H.to_directed()
True
sage: G = graphs.RandomGNP(8,.9999)
sage: H = graphs.CompleteGraph(8)
sage: G == H # most often true
True
sage: G = Graph( {0:[1,2,3,4,5,6,7]} )
sage: H = Graph( {1:[0], 2:[0], 3:[0], 4:[0], 5:[0], 6:[0], 7:[0]} )
sage: G == H
True
sage: G.allow_loops(True)
sage: G == H
False
sage: G = graphs.RandomGNP(9,.3).to_directed()
sage: H = graphs.RandomGNP(9,.3).to_directed()
sage: G == H # most often false
False
sage: G = Graph(multiedges=True, sparse=True)
sage: G.add_edge(0,1)
sage: H = copy(G)
sage: H.add_edge(0,1)
sage: G == H
False
Note that graphs must be considered weighted, or Sage will not pay attention to edge label data in equality testing:
sage: foo = Graph(sparse=True)
sage: foo.add_edges([(0, 1, 1), (0, 2, 2)])
sage: bar = Graph(sparse=True)
sage: bar.add_edges([(0, 1, 2), (0, 2, 1)])
sage: foo == bar
True
sage: foo.weighted(True)
sage: foo == bar
False
sage: bar.weighted(True)
sage: foo == bar
False
Adds a cycle to the graph with the given vertices. If the vertices are already present, only the edges are added.
For digraphs, adds the directed cycle, whose orientation is determined by the list. Adds edges (vertices[u], vertices[u+1]) and (vertices[-1], vertices[0]).
INPUT:
EXAMPLES:
sage: G = Graph()
sage: G.add_vertices(range(10)); G
Graph on 10 vertices
sage: show(G)
sage: G.add_cycle(range(20)[10:20])
sage: show(G)
sage: G.add_cycle(range(10))
sage: show(G)
sage: D = DiGraph()
sage: D.add_cycle(range(4))
sage: D.edges()
[(0, 1, None), (1, 2, None), (2, 3, None), (3, 0, None)]
Adds an edge from u and v.
INPUT: The following forms are all accepted:
WARNING: The following intuitive input results in nonintuitive output:
sage: G = Graph()
sage: G.add_edge((1,2), 'label')
sage: G.networkx_graph().adj # random output order
{'label': {(1, 2): None}, (1, 2): {'label': None}}
Use one of these instead:
sage: G = Graph()
sage: G.add_edge((1,2), label="label")
sage: G.networkx_graph().adj # random output order
{1: {2: 'label'}, 2: {1: 'label'}}
sage: G = Graph()
sage: G.add_edge(1,2,'label')
sage: G.networkx_graph().adj # random output order
{1: {2: 'label'}, 2: {1: 'label'}}
The following syntax is supported, but note that you must use the label keyword:
sage: G = Graph()
sage: G.add_edge((1,2), label='label')
sage: G.edges()
[(1, 2, 'label')]
sage: G = Graph()
sage: G.add_edge((1,2), 'label')
sage: G.edges()
[('label', (1, 2), None)]
Vertex name cannot be None, so:
sage: G = Graph()
sage: G.add_edge(None, 4)
sage: G.vertices()
[0, 4]
Add edges from an iterable container.
All elements of edges must follow the same format, i.e. have the same length.
EXAMPLES:
sage: G = graphs.DodecahedralGraph()
sage: H = Graph()
sage: H.add_edges( G.edge_iterator() ); H
Graph on 20 vertices
sage: G = graphs.DodecahedralGraph().to_directed()
sage: H = DiGraph()
sage: H.add_edges( G.edge_iterator() ); H
Digraph on 20 vertices
sage: H.add_edges(iter([]))
sage: H = Graph()
sage: H.add_edges([(0,1),(0,2)])
sage: H.edges()
[(0, 1, None), (0, 2, None)]
Adds a cycle to the graph with the given vertices. If the vertices are already present, only the edges are added.
For digraphs, adds the directed path vertices[0], ..., vertices[-1].
INPUT:
EXAMPLES:
sage: G = Graph()
sage: G.add_vertices(range(10)); G
Graph on 10 vertices
sage: show(G)
sage: G.add_path(range(20)[10:20])
sage: show(G)
sage: G.add_path(range(10))
sage: show(G)
sage: D = DiGraph()
sage: D.add_path(range(4))
sage: D.edges()
[(0, 1, None), (1, 2, None), (2, 3, None)]
Creates an isolated vertex. If the vertex already exists, then nothing is done.
INPUT:
As it is implemented now, if a graph \(G\) has a large number of vertices with numeric labels, then G.add_vertex() could potentially be slow, if name is None.
OUTPUT:
If name``=``None, the new vertex name is returned. None otherwise.
EXAMPLES:
sage: G = Graph(); G.add_vertex(); G
0
Graph on 1 vertex
sage: D = DiGraph(); D.add_vertex(); D
0
Digraph on 1 vertex
Add vertices to the (di)graph from an iterable container of vertices. Vertices that already exist in the graph will not be added again.
INPUT:
OUTPUT:
Generated names of new vertices if there is at least one None value present in vertices. None otherwise.
EXAMPLES:
sage: d = {0: [1,4,5], 1: [2,6], 2: [3,7], 3: [4,8], 4: [9], 5: [7,8], 6: [8,9], 7: [9]}
sage: G = Graph(d)
sage: G.add_vertices([10,11,12])
sage: G.vertices()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
sage: G.add_vertices(graphs.CycleGraph(25).vertices())
sage: G.vertices()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]
sage: G = Graph()
sage: G.add_vertices([1,2,3])
sage: G.add_vertices([4,None,None,5])
[0, 6]
Returns the adjacency matrix of the (di)graph.
The matrix returned is over the integers. If a different ring is desired, use either the change_ring function or the matrix function.
INPUT:
sparse - whether to represent with a sparse matrix
upper left block. Cannot be used in conjunction with vertices.
vertices (list) – the ordering of the vertices defining how they should appear in the matrix. By default, the ordering given by GenericGraph.vertices() is used.
EXAMPLES:
sage: G = graphs.CubeGraph(4)
sage: G.adjacency_matrix()
[0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0]
[1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0]
[1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0]
[0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0]
[1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0]
[0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0]
[0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0]
[0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1]
[1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0]
[0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0]
[0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0]
[0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1]
[0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0]
[0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1]
[0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1]
[0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0]
sage: matrix(GF(2),G) # matrix over GF(2)
[0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0]
[1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0]
[1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0]
[0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0]
[1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0]
[0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0]
[0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0]
[0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1]
[1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0]
[0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0]
[0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0]
[0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1]
[0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0]
[0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1]
[0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1]
[0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0]
sage: D = DiGraph( { 0: [1,2,3], 1: [0,2], 2: [3], 3: [4], 4: [0,5], 5: [1] } )
sage: D.adjacency_matrix()
[0 1 1 1 0 0]
[1 0 1 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 0]
[1 0 0 0 0 1]
[0 1 0 0 0 0]
A different ordering of the vertices:
sage: graphs.PathGraph(5).adjacency_matrix(vertices=[2,4,1,3,0])
[0 0 1 1 0]
[0 0 0 1 0]
[1 0 0 0 1]
[1 1 0 0 0]
[0 0 1 0 0]
TESTS:
sage: graphs.CubeGraph(8).adjacency_matrix().parent()
Full MatrixSpace of 256 by 256 dense matrices over Integer Ring
sage: graphs.CubeGraph(9).adjacency_matrix().parent()
Full MatrixSpace of 512 by 512 sparse matrices over Integer Ring
sage: Graph([(i,i+1) for i in range(500)]+[(0,1),], multiedges=True).adjacency_matrix().parent()
Full MatrixSpace of 501 by 501 dense matrices over Integer Ring
sage: graphs.PathGraph(5).adjacency_matrix(vertices=[0,0,0,0,0])
Traceback (most recent call last):
...
ValueError: ``vertices`` must be a permutation of the vertices
sage: graphs.PathGraph(5).adjacency_matrix(vertices=[1,2,3])
Traceback (most recent call last):
...
ValueError: ``vertices`` must be a permutation of the vertices
Returns a list of all paths (also lists) between a pair of vertices (start, end) in the (di)graph. If start is the same vertex as end, then [[start]] is returned – a list containing the 1-vertex, 0-edge path “start”.
EXAMPLES:
sage: eg1 = Graph({0:[1,2], 1:[4], 2:[3,4], 4:[5], 5:[6]})
sage: eg1.all_paths(0,6)
[[0, 1, 4, 5, 6], [0, 2, 4, 5, 6]]
sage: eg2 = graphs.PetersenGraph()
sage: sorted(eg2.all_paths(1,4))
[[1, 0, 4],
[1, 0, 5, 7, 2, 3, 4],
[1, 0, 5, 7, 2, 3, 8, 6, 9, 4],
[1, 0, 5, 7, 9, 4],
[1, 0, 5, 7, 9, 6, 8, 3, 4],
[1, 0, 5, 8, 3, 2, 7, 9, 4],
[1, 0, 5, 8, 3, 4],
[1, 0, 5, 8, 6, 9, 4],
[1, 0, 5, 8, 6, 9, 7, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 8, 5, 0, 4],
[1, 2, 3, 8, 5, 7, 9, 4],
[1, 2, 3, 8, 6, 9, 4],
[1, 2, 3, 8, 6, 9, 7, 5, 0, 4],
[1, 2, 7, 5, 0, 4],
[1, 2, 7, 5, 8, 3, 4],
[1, 2, 7, 5, 8, 6, 9, 4],
[1, 2, 7, 9, 4],
[1, 2, 7, 9, 6, 8, 3, 4],
[1, 2, 7, 9, 6, 8, 5, 0, 4],
[1, 6, 8, 3, 2, 7, 5, 0, 4],
[1, 6, 8, 3, 2, 7, 9, 4],
[1, 6, 8, 3, 4],
[1, 6, 8, 5, 0, 4],
[1, 6, 8, 5, 7, 2, 3, 4],
[1, 6, 8, 5, 7, 9, 4],
[1, 6, 9, 4],
[1, 6, 9, 7, 2, 3, 4],
[1, 6, 9, 7, 2, 3, 8, 5, 0, 4],
[1, 6, 9, 7, 5, 0, 4],
[1, 6, 9, 7, 5, 8, 3, 4]]
sage: dg = DiGraph({0:[1,3], 1:[3], 2:[0,3]})
sage: sorted(dg.all_paths(0,3))
[[0, 1, 3], [0, 3]]
sage: ug = dg.to_undirected()
sage: sorted(ug.all_paths(0,3))
[[0, 1, 3], [0, 2, 3], [0, 3]]
Starting and ending at the same vertex (see trac ticket #13006):
sage: graphs.CompleteGraph(4).all_paths(2,2)
[[2]]
Changes whether loops are permitted in the (di)graph.
INPUT:
EXAMPLES:
sage: G = Graph(loops=True); G
Looped graph on 0 vertices
sage: G.has_loops()
False
sage: G.allows_loops()
True
sage: G.add_edge((0,0))
sage: G.has_loops()
True
sage: G.loops()
[(0, 0, None)]
sage: G.allow_loops(False); G
Graph on 1 vertex
sage: G.has_loops()
False
sage: G.edges()
[]
sage: D = DiGraph(loops=True); D
Looped digraph on 0 vertices
sage: D.has_loops()
False
sage: D.allows_loops()
True
sage: D.add_edge((0,0))
sage: D.has_loops()
True
sage: D.loops()
[(0, 0, None)]
sage: D.allow_loops(False); D
Digraph on 1 vertex
sage: D.has_loops()
False
sage: D.edges()
[]
Changes whether multiple edges are permitted in the (di)graph.
INPUT:
EXAMPLES:
sage: G = Graph(multiedges=True,sparse=True); G
Multi-graph on 0 vertices
sage: G.has_multiple_edges()
False
sage: G.allows_multiple_edges()
True
sage: G.add_edges([(0,1)]*3)
sage: G.has_multiple_edges()
True
sage: G.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: G.allow_multiple_edges(False); G
Graph on 2 vertices
sage: G.has_multiple_edges()
False
sage: G.edges()
[(0, 1, None)]
sage: D = DiGraph(multiedges=True,sparse=True); D
Multi-digraph on 0 vertices
sage: D.has_multiple_edges()
False
sage: D.allows_multiple_edges()
True
sage: D.add_edges([(0,1)]*3)
sage: D.has_multiple_edges()
True
sage: D.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: D.allow_multiple_edges(False); D
Digraph on 2 vertices
sage: D.has_multiple_edges()
False
sage: D.edges()
[(0, 1, None)]
Returns whether loops are permitted in the (di)graph.
EXAMPLES:
sage: G = Graph(loops=True); G
Looped graph on 0 vertices
sage: G.has_loops()
False
sage: G.allows_loops()
True
sage: G.add_edge((0,0))
sage: G.has_loops()
True
sage: G.loops()
[(0, 0, None)]
sage: G.allow_loops(False); G
Graph on 1 vertex
sage: G.has_loops()
False
sage: G.edges()
[]
sage: D = DiGraph(loops=True); D
Looped digraph on 0 vertices
sage: D.has_loops()
False
sage: D.allows_loops()
True
sage: D.add_edge((0,0))
sage: D.has_loops()
True
sage: D.loops()
[(0, 0, None)]
sage: D.allow_loops(False); D
Digraph on 1 vertex
sage: D.has_loops()
False
sage: D.edges()
[]
Returns whether multiple edges are permitted in the (di)graph.
EXAMPLES:
sage: G = Graph(multiedges=True,sparse=True); G
Multi-graph on 0 vertices
sage: G.has_multiple_edges()
False
sage: G.allows_multiple_edges()
True
sage: G.add_edges([(0,1)]*3)
sage: G.has_multiple_edges()
True
sage: G.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: G.allow_multiple_edges(False); G
Graph on 2 vertices
sage: G.has_multiple_edges()
False
sage: G.edges()
[(0, 1, None)]
sage: D = DiGraph(multiedges=True,sparse=True); D
Multi-digraph on 0 vertices
sage: D.has_multiple_edges()
False
sage: D.allows_multiple_edges()
True
sage: D.add_edges([(0,1)]*3)
sage: D.has_multiple_edges()
True
sage: D.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: D.allow_multiple_edges(False); D
Digraph on 2 vertices
sage: D.has_multiple_edges()
False
sage: D.edges()
[(0, 1, None)]
Returns the adjacency matrix of the (di)graph.
The matrix returned is over the integers. If a different ring is desired, use either the change_ring function or the matrix function.
INPUT:
sparse - whether to represent with a sparse matrix
upper left block. Cannot be used in conjunction with vertices.
vertices (list) – the ordering of the vertices defining how they should appear in the matrix. By default, the ordering given by GenericGraph.vertices() is used.
EXAMPLES:
sage: G = graphs.CubeGraph(4)
sage: G.adjacency_matrix()
[0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0]
[1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0]
[1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0]
[0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0]
[1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0]
[0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0]
[0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0]
[0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1]
[1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0]
[0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0]
[0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0]
[0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1]
[0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0]
[0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1]
[0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1]
[0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0]
sage: matrix(GF(2),G) # matrix over GF(2)
[0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0]
[1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0]
[1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0]
[0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0]
[1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0]
[0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0]
[0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0]
[0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1]
[1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0]
[0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0]
[0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0]
[0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1]
[0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0]
[0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1]
[0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1]
[0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0]
sage: D = DiGraph( { 0: [1,2,3], 1: [0,2], 2: [3], 3: [4], 4: [0,5], 5: [1] } )
sage: D.adjacency_matrix()
[0 1 1 1 0 0]
[1 0 1 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 0]
[1 0 0 0 0 1]
[0 1 0 0 0 0]
A different ordering of the vertices:
sage: graphs.PathGraph(5).adjacency_matrix(vertices=[2,4,1,3,0])
[0 0 1 1 0]
[0 0 0 1 0]
[1 0 0 0 1]
[1 1 0 0 0]
[0 0 1 0 0]
TESTS:
sage: graphs.CubeGraph(8).adjacency_matrix().parent()
Full MatrixSpace of 256 by 256 dense matrices over Integer Ring
sage: graphs.CubeGraph(9).adjacency_matrix().parent()
Full MatrixSpace of 512 by 512 sparse matrices over Integer Ring
sage: Graph([(i,i+1) for i in range(500)]+[(0,1),], multiedges=True).adjacency_matrix().parent()
Full MatrixSpace of 501 by 501 dense matrices over Integer Ring
sage: graphs.PathGraph(5).adjacency_matrix(vertices=[0,0,0,0,0])
Traceback (most recent call last):
...
ValueError: ``vertices`` must be a permutation of the vertices
sage: graphs.PathGraph(5).adjacency_matrix(vertices=[1,2,3])
Traceback (most recent call last):
...
ValueError: ``vertices`` must be a permutation of the vertices
Tests whether the graph is antisymmetric.
A graph represents an antisymmetric relation if there being a path from a vertex x to a vertex y implies that there is not a path from y to x unless x=y.
A directed acyclic graph is antisymmetric. An undirected graph is never antisymmetric unless it is just a union of isolated vertices.
sage: graphs.RandomGNP(20,0.5).antisymmetric()
False
sage: digraphs.RandomDirectedGNR(20,0.5).antisymmetric()
True
Returns the largest subgroup of the automorphism group of the (di)graph whose orbit partition is finer than the partition given. If no partition is given, the unit partition is used and the entire automorphism group is given.
INPUT:
Warning
Since trac ticket #14319 the domain of the automorphism group is equal to the graph’s vertex set, and the translation argument has become useless.
OUTPUT: The order of the output is group, order, orbits. However, there are options to turn each of these on or off.
EXAMPLES:
Graphs:
sage: graphs_query = GraphQuery(display_cols=['graph6'],num_vertices=4)
sage: L = graphs_query.get_graphs_list()
sage: graphs_list.show_graphs(L)
sage: for g in L:
... G = g.automorphism_group()
... G.order(), G.gens()
(24, [(2,3), (1,2), (0,1)])
(4, [(2,3), (0,1)])
(2, [(1,2)])
(6, [(1,2), (0,1)])
(6, [(2,3), (1,2)])
(8, [(1,2), (0,1)(2,3)])
(2, [(0,1)(2,3)])
(2, [(1,2)])
(8, [(2,3), (0,1), (0,2)(1,3)])
(4, [(2,3), (0,1)])
(24, [(2,3), (1,2), (0,1)])
sage: C = graphs.CubeGraph(4)
sage: G = C.automorphism_group()
sage: M = G.character_table() # random order of rows, thus abs() below
sage: QQ(M.determinant()).abs()
712483534798848
sage: G.order()
384
sage: D = graphs.DodecahedralGraph()
sage: G = D.automorphism_group()
sage: A5 = AlternatingGroup(5)
sage: Z2 = CyclicPermutationGroup(2)
sage: H = A5.direct_product(Z2)[0] #see documentation for direct_product to explain the [0]
sage: G.is_isomorphic(H)
True
Multigraphs:
sage: G = Graph(multiedges=True,sparse=True)
sage: G.add_edge(('a', 'b'))
sage: G.add_edge(('a', 'b'))
sage: G.add_edge(('a', 'b'))
sage: G.automorphism_group()
Permutation Group with generators [('a','b')]
Digraphs:
sage: D = DiGraph( { 0:[1], 1:[2], 2:[3], 3:[4], 4:[0] } )
sage: D.automorphism_group()
Permutation Group with generators [(0,1,2,3,4)]
Edge labeled graphs:
sage: G = Graph(sparse=True)
sage: G.add_edges( [(0,1,'a'),(1,2,'b'),(2,3,'c'),(3,4,'b'),(4,0,'a')] )
sage: G.automorphism_group(edge_labels=True)
Permutation Group with generators [(1,4)(2,3)]
sage: G = Graph({0 : {1 : 7}})
sage: G.automorphism_group(edge_labels=True)
Permutation Group with generators [(0,1)]
sage: foo = Graph(sparse=True)
sage: bar = Graph(implementation='c_graph',sparse=True)
sage: foo.add_edges([(0,1,1),(1,2,2), (2,3,3)])
sage: bar.add_edges([(0,1,1),(1,2,2), (2,3,3)])
sage: foo.automorphism_group(edge_labels=True)
Permutation Group with generators [()]
sage: foo.automorphism_group()
Permutation Group with generators [(0,3)(1,2)]
sage: bar.automorphism_group(edge_labels=True)
Permutation Group with generators [()]
You can also ask for just the order of the group:
sage: G = graphs.PetersenGraph()
sage: G.automorphism_group(return_group=False, order=True)
120
Or, just the orbits (note that each graph here is vertex transitive)
sage: G = graphs.PetersenGraph()
sage: G.automorphism_group(return_group=False, orbits=True)
[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]
sage: G.automorphism_group(partition=[[0],range(1,10)], return_group=False, orbits=True)
[[0], [2, 3, 6, 7, 8, 9], [1, 4, 5]]
sage: C = graphs.CubeGraph(3)
sage: C.automorphism_group(orbits=True, return_group=False)
[['000', '001', '010', '011', '100', '101', '110', '111']]
TESTS:
We get a KeyError when given an invalid partition (trac #6087):
sage: g=graphs.CubeGraph(3)
sage: g.relabel()
sage: g.automorphism_group(partition=[[0,1,2],[3,4,5]])
Traceback (most recent call last):
...
KeyError: 6
Labeled automorphism group:
sage: digraphs.DeBruijn(3,2).automorphism_group()
Permutation Group with generators [('01','02')('10','20')('11','22')('12','21'), ('00','11')('01','10')('02','12')('20','21')]
sage: d = digraphs.DeBruijn(3,2)
sage: d.allow_multiple_edges(True)
sage: d.add_edge(d.edges()[0])
sage: d.automorphism_group()
Permutation Group with generators [('01','02')('10','20')('11','22')('12','21')]
The labeling is correct:
sage: g = graphs.PetersenGraph()
sage: ag = g.automorphism_group()
sage: for u,v in g.edges(labels = False):
... if len(ag.orbit((u,v),action="OnPairs")) != 30:
... print "ARggggggggggggg !!!"
Empty group, correct domain:
sage: Graph({'a':['a'], 'b':[]}).automorphism_group()
Permutation Group with generators [()]
sage: Graph({'a':['a'], 'b':[]}).automorphism_group().domain()
{'a', 'b'}
We can check that the subgroups are labelled correctly (trac ticket #15656):
sage: G1 = Graph(':H`ECw@HGXGAGUG`e')
sage: G = G1.automorphism_group()
sage: G.subgroups()
[Subgroup of (Permutation Group with generators [(0,7)(1,4)(2,3)(6,8)]) generated by [()],
Subgroup of (Permutation Group with generators [(0,7)(1,4)(2,3)(6,8)]) generated by [(0,7)(1,4)(2,3)(6,8)]]
Returns the average degree of the graph.
The average degree of a graph \(G=(V,E)\) is equal to \frac {2|E|}{|V|}.
EXAMPLES:
The average degree of a regular graph is equal to the degree of any vertex:
sage: g = graphs.CompleteGraph(5)
sage: g.average_degree() == 4
True
The average degree of a tree is always strictly less than \(2\):
sage: g = graphs.RandomGNP(20,.5)
sage: tree = Graph()
sage: tree.add_edges(g.min_spanning_tree())
sage: tree.average_degree() < 2
True
For any graph, it is equal to \frac {2|E|}{|V|}:
sage: g = graphs.RandomGNP(50,.8)
sage: g.average_degree() == 2*g.size()/g.order()
True
Returns the average distance between vertices of the graph.
Formally, for a graph \(G\) this value is equal to \(\frac 1 {n(n-1)} \sum_{u,v\in G} d(u,v)\) where \(d(u,v)\) denotes the distance between vertices \(u\) and \(v\) and \(n\) is the number of vertices in \(G\).
EXAMPLE:
From [GYLL93]:
sage: g=graphs.PathGraph(10)
sage: w=lambda x: (x*(x*x -1)/6)/(x*(x-1)/2)
sage: g.average_distance()==w(10)
True
REFERENCE:
[GYLL93] | I. Gutman, Y.-N. Yeh, S.-L. Lee, and Y.-L. Luo. Some recent results in the theory of the Wiener number. Indian Journal of Chemistry, 32A:651–661, 1993. |
TEST:
sage: g = Graph()
sage: g.average_distance()
Traceback (most recent call last):
...
ValueError: The graph must have at least two vertices for this value to be defined
Computes the blocks and cut vertices of the graph.
In the case of a digraph, this computation is done on the underlying graph.
A cut vertex is one whose deletion increases the number of connected components. A block is a maximal induced subgraph which itself has no cut vertices. Two distinct blocks cannot overlap in more than a single cut vertex.
OUTPUT: ( B, C ), where B is a list of blocks- each is a list of vertices and the blocks are the corresponding induced subgraphs-and C is a list of cut vertices.
ALGORITHM:
We implement the algorithm proposed by Tarjan in [Tarjan72]. The original version is recursive. We emulate the recursion using a stack.
See also
EXAMPLES:
sage: graphs.PetersenGraph().blocks_and_cut_vertices()
([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]], [])
sage: graphs.PathGraph(6).blocks_and_cut_vertices()
([[4, 5], [3, 4], [2, 3], [1, 2], [0, 1]], [1, 2, 3, 4])
sage: graphs.CycleGraph(7).blocks_and_cut_vertices()
([[0, 1, 2, 3, 4, 5, 6]], [])
sage: graphs.KrackhardtKiteGraph().blocks_and_cut_vertices()
([[8, 9], [7, 8], [0, 1, 2, 3, 4, 5, 6, 7]], [7, 8])
sage: G=Graph() # make a bowtie graph where 0 is a cut vertex
sage: G.add_vertices(range(5))
sage: G.add_edges([(0,1),(0,2),(0,3),(0,4),(1,2),(3,4)])
sage: G.blocks_and_cut_vertices()
([[0, 1, 2], [0, 3, 4]], [0])
sage: graphs.StarGraph(3).blocks_and_cut_vertices()
([[0, 1], [0, 2], [0, 3]], [0])
TESTS:
sage: Graph(0).blocks_and_cut_vertices()
([], [])
sage: Graph(1).blocks_and_cut_vertices()
([[0]], [])
sage: Graph(2).blocks_and_cut_vertices()
Traceback (most recent call last):
...
NotImplementedError: ...
REFERENCE:
[Tarjan72] | R.E. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1(2): 146-160 (1972). |
Returns the blocks-and-cuts tree of self.
This new graph has two different kinds of vertices, some representing the blocks (type B) and some other the cut vertices of the graph self (type C).
There is an edge between a vertex \(u\) of type B and a vertex \(v\) of type C if the cut-vertex corresponding to \(v\) is in the block corresponding to \(u\).
The resulting graph is a tree, with the additional characteristic property that the distance between two leaves is even.
When self is biconnected, the tree is reduced to a single node of type \(B\).
See also
EXAMPLES:
sage: T = graphs.KrackhardtKiteGraph().blocks_and_cuts_tree(); T Graph on 5 vertices sage: T.is_isomorphic(graphs.PathGraph(5)) True
The distance between two leaves is even:
sage: T = graphs.RandomTree(40).blocks_and_cuts_tree()
sage: T.is_tree()
True
sage: leaves = [v for v in T if T.degree(v) == 1]
sage: all(T.distance(u,v) % 2 == 0 for u in leaves for v in leaves)
True
The tree of a biconnected graph has a single vertex, of type \(B\):
sage: T = graphs.PetersenGraph().blocks_and_cuts_tree()
sage: T.vertices()
[('B', (0, 1, 2, 3, 4, 5, 6, 7, 8, 9))]
REFERENCES:
[HarPri] | F. Harary and G. Prins. The block-cutpoint-tree of a graph. Publ. Math. Debrecen 13 1966 103-107. |
[Gallai] | T. Gallai, Elementare Relationen bezueglich der Glieder und trennenden Punkte von Graphen, Magyar Tud. Akad. Mat. Kutato Int. Kozl. 9 (1964) 235-236 |
Return an iterator over the vertices in a breadth-first ordering.
INPUT:
See also
EXAMPLES:
sage: G = Graph( { 0: [1], 1: [2], 2: [3], 3: [4], 4: [0]} )
sage: list(G.breadth_first_search(0))
[0, 1, 4, 2, 3]
By default, the edge direction of a digraph is respected, but this can be overridden by the ignore_direction parameter:
sage: D = DiGraph( { 0: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [7], 6: [7], 7: [0]})
sage: list(D.breadth_first_search(0))
[0, 1, 2, 3, 4, 5, 6, 7]
sage: list(D.breadth_first_search(0, ignore_direction=True))
[0, 1, 2, 3, 7, 4, 5, 6]
You can specify a maximum distance in which to search. A distance of zero returns the start vertices:
sage: D = DiGraph( { 0: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [7], 6: [7], 7: [0]})
sage: list(D.breadth_first_search(0,distance=0))
[0]
sage: list(D.breadth_first_search(0,distance=1))
[0, 1, 2, 3]
Multiple starting vertices can be specified in a list:
sage: D = DiGraph( { 0: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [7], 6: [7], 7: [0]})
sage: list(D.breadth_first_search([0]))
[0, 1, 2, 3, 4, 5, 6, 7]
sage: list(D.breadth_first_search([0,6]))
[0, 6, 1, 2, 3, 7, 4, 5]
sage: list(D.breadth_first_search([0,6],distance=0))
[0, 6]
sage: list(D.breadth_first_search([0,6],distance=1))
[0, 6, 1, 2, 3, 7]
sage: list(D.breadth_first_search(6,ignore_direction=True,distance=2))
[6, 3, 7, 0, 5]
More generally, you can specify a neighbors function. For example, you can traverse the graph backwards by setting neighbors to be the neighbors_in() function of the graph:
sage: D = DiGraph( { 0: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [7], 6: [7], 7: [0]})
sage: list(D.breadth_first_search(5,neighbors=D.neighbors_in, distance=2))
[5, 1, 2, 0]
sage: list(D.breadth_first_search(5,neighbors=D.neighbors_out, distance=2))
[5, 7, 0]
sage: list(D.breadth_first_search(5,neighbors=D.neighbors, distance=2))
[5, 1, 2, 7, 0, 4, 6]
It is possible (trac ticket #16470) using the keyword report_distance to get pairs (vertex, distance) encoding the distance to the starting vertices:
sage: G = graphs.PetersenGraph()
sage: list(G.breadth_first_search(0, report_distance=True))
[(0, 0), (1, 1), (4, 1), (5, 1), (2, 2), (6, 2), (3, 2), (9, 2),
(7, 2), (8, 2)]
sage: list(G.breadth_first_search(0, report_distance=False))
[0, 1, 4, 5, 2, 6, 3, 9, 7, 8]
sage: D = DiGraph({0:[1, 3], 1:[0, 2], 2:[0, 3], 3:[4]})
sage: D.show()
sage: list(D.breadth_first_search(4, neighbors=D.neighbor_in_iterator, report_distance=True))
[(4, 0), (3, 1), (0, 2), (2, 2), (1, 3)]
sage: C = graphs.CycleGraph(4)
sage: list(C.breadth_first_search([0,1], report_distance=True))
[(0, 0), (1, 0), (3, 1), (2, 1)]
TESTS:
sage: D = DiGraph({1:[0], 2:[0]})
sage: list(D.breadth_first_search(0))
[0]
sage: list(D.breadth_first_search(0, ignore_direction=True))
[0, 1, 2]
Returns the unique graph on \(\{0,1,...,n-1\}\) ( n = self.order() ) which
In other words, given two graphs G and H which are isomorphic, suppose G_c and H_c are the graphs returned by canonical_label. Then the following hold:
INPUT:
EXAMPLES:
sage: D = graphs.DodecahedralGraph()
sage: E = D.canonical_label(); E
Dodecahedron: Graph on 20 vertices
sage: D.canonical_label(certify=True)
(Dodecahedron: Graph on 20 vertices, {0: 0, 1: 19, 2: 16, 3: 15, 4: 9, 5: 1, 6: 10, 7: 8, 8: 14, 9: 12, 10: 17, 11: 11, 12: 5, 13: 6, 14: 2, 15: 4, 16: 3, 17: 7, 18: 13, 19: 18})
sage: D.is_isomorphic(E)
True
Multigraphs:
sage: G = Graph(multiedges=True,sparse=True)
sage: G.add_edge((0,1))
sage: G.add_edge((0,1))
sage: G.add_edge((0,1))
sage: G.canonical_label()
Multi-graph on 2 vertices
sage: Graph('A?', implementation='c_graph').canonical_label()
Graph on 2 vertices
Digraphs:
sage: P = graphs.PetersenGraph()
sage: DP = P.to_directed()
sage: DP.canonical_label().adjacency_matrix()
[0 0 0 0 0 0 0 1 1 1]
[0 0 0 0 1 0 1 0 0 1]
[0 0 0 1 0 0 1 0 1 0]
[0 0 1 0 0 1 0 0 0 1]
[0 1 0 0 0 1 0 0 1 0]
[0 0 0 1 1 0 0 1 0 0]
[0 1 1 0 0 0 0 1 0 0]
[1 0 0 0 0 1 1 0 0 0]
[1 0 1 0 1 0 0 0 0 0]
[1 1 0 1 0 0 0 0 0 0]
Edge labeled graphs:
sage: G = Graph(sparse=True)
sage: G.add_edges( [(0,1,'a'),(1,2,'b'),(2,3,'c'),(3,4,'b'),(4,0,'a')] )
sage: G.canonical_label(edge_labels=True)
Graph on 5 vertices
sage: G.canonical_label(edge_labels=True,certify=True)
(Graph on 5 vertices, {0: 4, 1: 3, 2: 0, 3: 1, 4: 2})
Check for immutable graphs (trac ticket #16602):
sage: G = Graph([[1, 2], [2, 3]], immutable=True)
sage: C = G.canonical_label(); C
Graph on 3 vertices
sage: C.vertices()
[0, 1, 2]
Returns the Cartesian product of self and other.
The Cartesian product of \(G\) and \(H\) is the graph \(L\) with vertex set \(V(L)\) equal to the Cartesian product of the vertices \(V(G)\) and \(V(H)\), and \(((u,v), (w,x))\) is an edge iff either - \((u, w)\) is an edge of self and \(v = x\), or - \((v, x)\) is an edge of other and \(u = w\).
See also
TESTS:
Cartesian product of graphs:
sage: G = Graph([(0,1),(1,2)])
sage: H = Graph([('a','b')])
sage: C1 = G.cartesian_product(H)
sage: C1.edges(labels=None)
[((0, 'a'), (0, 'b')), ((0, 'a'), (1, 'a')), ((0, 'b'), (1, 'b')), ((1, 'a'), (1, 'b')), ((1, 'a'), (2, 'a')), ((1, 'b'), (2, 'b')), ((2, 'a'), (2, 'b'))]
sage: C2 = H.cartesian_product(G)
sage: C1.is_isomorphic(C2)
True
Construction of a Toroidal grid:
sage: A = graphs.CycleGraph(3)
sage: B = graphs.CycleGraph(4)
sage: T = A.cartesian_product(B)
sage: T.is_isomorphic( graphs.ToroidalGrid2dGraph(3,4) )
True
Cartesian product of digraphs:
sage: P = DiGraph([(0,1)])
sage: B = digraphs.DeBruijn( ['a','b'], 2 )
sage: Q = P.cartesian_product(B)
sage: Q.edges(labels=None)
[((0, 'aa'), (0, 'aa')), ((0, 'aa'), (0, 'ab')), ((0, 'aa'), (1, 'aa')), ((0, 'ab'), (0, 'ba')), ((0, 'ab'), (0, 'bb')), ((0, 'ab'), (1, 'ab')), ((0, 'ba'), (0, 'aa')), ((0, 'ba'), (0, 'ab')), ((0, 'ba'), (1, 'ba')), ((0, 'bb'), (0, 'ba')), ((0, 'bb'), (0, 'bb')), ((0, 'bb'), (1, 'bb')), ((1, 'aa'), (1, 'aa')), ((1, 'aa'), (1, 'ab')), ((1, 'ab'), (1, 'ba')), ((1, 'ab'), (1, 'bb')), ((1, 'ba'), (1, 'aa')), ((1, 'ba'), (1, 'ab')), ((1, 'bb'), (1, 'ba')), ((1, 'bb'), (1, 'bb'))]
sage: Q.strongly_connected_components_digraph().num_verts()
2
sage: V = Q.strongly_connected_component_containing_vertex( (0, 'aa') )
sage: B.is_isomorphic( Q.subgraph(V) )
True
Returns the tensor product of self and other.
The tensor product of \(G\) and \(H\) is the graph \(L\) with vertex set \(V(L)\) equal to the Cartesian product of the vertices \(V(G)\) and \(V(H)\), and \(((u,v), (w,x))\) is an edge iff - \((u, w)\) is an edge of self, and - \((v, x)\) is an edge of other.
The tensor product is also known as the categorical product and the kronecker product (refering to the kronecker matrix product). See Wikipedia article on the Kronecker product.
EXAMPLES:
sage: Z = graphs.CompleteGraph(2)
sage: C = graphs.CycleGraph(5)
sage: T = C.tensor_product(Z); T
Graph on 10 vertices
sage: T.size()
10
sage: T.plot() # long time
Graphics object consisting of 21 graphics primitives
sage: D = graphs.DodecahedralGraph()
sage: P = graphs.PetersenGraph()
sage: T = D.tensor_product(P); T
Graph on 200 vertices
sage: T.size()
900
sage: T.plot() # long time
Graphics object consisting of 1101 graphics primitives
TESTS:
Tensor product of graphs:
sage: G = Graph([(0,1), (1,2)])
sage: H = Graph([('a','b')])
sage: T = G.tensor_product(H)
sage: T.edges(labels=None)
[((0, 'a'), (1, 'b')), ((0, 'b'), (1, 'a')), ((1, 'a'), (2, 'b')), ((1, 'b'), (2, 'a'))]
sage: T.is_isomorphic( H.tensor_product(G) )
True
Tensor product of digraphs:
sage: I = DiGraph([(0,1), (1,2)])
sage: J = DiGraph([('a','b')])
sage: T = I.tensor_product(J)
sage: T.edges(labels=None)
[((0, 'a'), (1, 'b')), ((1, 'a'), (2, 'b'))]
sage: T.is_isomorphic( J.tensor_product(I) )
True
The tensor product of two DeBruijn digraphs of same diameter is a DeBruijn digraph:
sage: B1 = digraphs.DeBruijn(2, 3)
sage: B2 = digraphs.DeBruijn(3, 3)
sage: T = B1.tensor_product( B2 )
sage: T.is_isomorphic( digraphs.DeBruijn( 2*3, 3) )
True
Returns the set of vertices in the center, i.e. whose eccentricity is equal to the radius of the (di)graph.
In other words, the center is the set of vertices achieving the minimum eccentricity.
EXAMPLES:
sage: G = graphs.DiamondGraph()
sage: G.center()
[1, 2]
sage: P = graphs.PetersenGraph()
sage: P.subgraph(P.center()) == P
True
sage: S = graphs.StarGraph(19)
sage: S.center()
[0]
sage: G = Graph()
sage: G.center()
[]
sage: G.add_vertex()
0
sage: G.center()
[0]
Returns the characteristic polynomial of the adjacency matrix of the (di)graph.
Let \(G\) be a (simple) graph with adjacency matrix \(A\). Let \(I\) be the identity matrix of dimensions the same as \(A\). The characteristic polynomial of \(G\) is defined as the determinant \(\det(xI - A)\).
Note
characteristic_polynomial and charpoly are aliases and thus provide exactly the same method.
INPUT:
See also
EXAMPLES:
sage: P = graphs.PetersenGraph()
sage: P.characteristic_polynomial()
x^10 - 15*x^8 + 75*x^6 - 24*x^5 - 165*x^4 + 120*x^3 + 120*x^2 - 160*x + 48
sage: P.charpoly()
x^10 - 15*x^8 + 75*x^6 - 24*x^5 - 165*x^4 + 120*x^3 + 120*x^2 - 160*x + 48
sage: P.characteristic_polynomial(laplacian=True)
x^10 - 30*x^9 + 390*x^8 - 2880*x^7 + 13305*x^6 -
39882*x^5 + 77640*x^4 - 94800*x^3 + 66000*x^2 - 20000*x
Returns the characteristic polynomial of the adjacency matrix of the (di)graph.
Let \(G\) be a (simple) graph with adjacency matrix \(A\). Let \(I\) be the identity matrix of dimensions the same as \(A\). The characteristic polynomial of \(G\) is defined as the determinant \(\det(xI - A)\).
Note
characteristic_polynomial and charpoly are aliases and thus provide exactly the same method.
INPUT:
See also
EXAMPLES:
sage: P = graphs.PetersenGraph()
sage: P.characteristic_polynomial()
x^10 - 15*x^8 + 75*x^6 - 24*x^5 - 165*x^4 + 120*x^3 + 120*x^2 - 160*x + 48
sage: P.charpoly()
x^10 - 15*x^8 + 75*x^6 - 24*x^5 - 165*x^4 + 120*x^3 + 120*x^2 - 160*x + 48
sage: P.characteristic_polynomial(laplacian=True)
x^10 - 30*x^9 + 390*x^8 - 2880*x^7 + 13305*x^6 -
39882*x^5 + 77640*x^4 - 94800*x^3 + 66000*x^2 - 20000*x
Empties the graph of vertices and edges and removes name, boundary, associated objects, and position information.
EXAMPLES:
sage: G=graphs.CycleGraph(4); G.set_vertices({0:'vertex0'})
sage: G.order(); G.size()
4
4
sage: len(G._pos)
4
sage: G.name()
'Cycle graph'
sage: G.get_vertex(0)
'vertex0'
sage: H = G.copy(implementation='c_graph', sparse=True)
sage: H.clear()
sage: H.order(); H.size()
0
0
sage: len(H._pos)
0
sage: H.name()
''
sage: H.get_vertex(0)
sage: H = G.copy(implementation='c_graph', sparse=False)
sage: H.clear()
sage: H.order(); H.size()
0
0
sage: len(H._pos)
0
sage: H.name()
''
sage: H.get_vertex(0)
sage: H = G.copy(implementation='networkx')
sage: H.clear()
sage: H.order(); H.size()
0
0
sage: len(H._pos)
0
sage: H.name()
''
sage: H.get_vertex(0)
Returns the transitivity (fraction of transitive triangles) of the graph.
Transitivity is the fraction of all existing triangles and all connected triples (triads), \(T = 3\times\text{triangles} / \text{triads}\).
See also section “Clustering” in chapter “Algorithms” of [HSSNX].
EXAMPLES:
sage: (graphs.FruchtGraph()).cluster_transitivity()
0.25
Returns the number of triangles for the set \(nbunch\) of vertices as a dictionary keyed by vertex.
See also section “Clustering” in chapter “Algorithms” of [HSSNX].
INPUT:
REFERENCE:
[HSSNX] | (1, 2, 3, 4) Aric Hagberg, Dan Schult and Pieter Swart. NetworkX documentation. [Online] Available: http://networkx.github.io/documentation/latest/reference/index.html |
EXAMPLES:
sage: (graphs.FruchtGraph()).cluster_triangles().values()
[1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0]
sage: (graphs.FruchtGraph()).cluster_triangles()
{0: 1, 1: 1, 2: 0, 3: 1, 4: 1, 5: 1, 6: 1, 7: 1, 8: 0, 9: 1, 10: 1, 11: 0}
sage: (graphs.FruchtGraph()).cluster_triangles(nbunch=[0,1,2])
{0: 1, 1: 1, 2: 0}
Returns the average clustering coefficient.
The clustering coefficient of a node \(i\) is the fraction of existing triangles containing node \(i\) and all possible triangles containing \(i\): \(c_i = T(i) / \binom {k_i} 2\) where \(T(i)\) is the number of existing triangles through \(i\), and \(k_i\) is the degree of vertex \(i\).
A coefficient for the whole graph is the average of the \(c_i\).
See also section “Clustering” in chapter “Algorithms” of [HSSNX].
EXAMPLES:
sage: (graphs.FruchtGraph()).clustering_average()
0.25
Returns the clustering coefficient for each vertex in nodes as a dictionary keyed by vertex.
For an unweighted graph, the clustering coefficient of a node \(i\) is the fraction of existing triangles containing node \(i\) and all possible triangles containing \(i\): \(c_i = T(i) / \binom {k_i} 2\) where \(T(i)\) is the number of existing triangles through \(i\), and \(k_i\) is the degree of vertex \(i\).
For weighted graphs the clustering is defined as the geometric average of the subgraph edge weights, normalized by the maximum weight in the network.
The value of \(c_i\) is assigned \(0\) if \(k_i < 2\).
See also section “Clustering” in chapter “Algorithms” of [HSSNX].
INPUT:
EXAMPLES:
sage: (graphs.FruchtGraph()).clustering_coeff().values()
[0.3333333333333333, 0.3333333333333333, 0.0, 0.3333333333333333,
0.3333333333333333, 0.3333333333333333, 0.3333333333333333,
0.3333333333333333, 0.0, 0.3333333333333333, 0.3333333333333333,
0.0]
sage: (graphs.FruchtGraph()).clustering_coeff()
{0: 0.3333333333333333, 1: 0.3333333333333333, 2: 0.0,
3: 0.3333333333333333, 4: 0.3333333333333333,
5: 0.3333333333333333, 6: 0.3333333333333333,
7: 0.3333333333333333, 8: 0.0, 9: 0.3333333333333333,
10: 0.3333333333333333, 11: 0.0}
sage: (graphs.FruchtGraph()).clustering_coeff(weight=True)
{0: 0.3333333333333333, 1: 0.3333333333333333, 2: 0.0,
3: 0.3333333333333333, 4: 0.3333333333333333,
5: 0.3333333333333333, 6: 0.3333333333333333,
7: 0.3333333333333333, 8: 0.0, 9: 0.3333333333333333,
10: 0.3333333333333333, 11: 0.0}
sage: (graphs.FruchtGraph()).clustering_coeff(nodes=[0,1,2])
{0: 0.3333333333333333, 1: 0.3333333333333333, 2: 0.0}
sage: (graphs.FruchtGraph()).clustering_coeff(nodes=[0,1,2],
... weight=True)
{0: 0.3333333333333333, 1: 0.3333333333333333, 2: 0.0}
TESTS:
sage: graphs.FruchtGraph().clustering_coeff(nodes=[0,1,2],
... weight=True, return_vertex_weights=False)
doctest:...: DeprecationWarning: The option 'return_vertex_weights'
has been deprecated and is ignored.
See http://trac.sagemath.org/17134 for details.
{0: 0.3333333333333333, 1: 0.3333333333333333, 2: 0.0}
Returns the coarsest partition which is finer than the input partition, and equitable with respect to self.
A partition is equitable with respect to a graph if for every pair of cells C1, C2 of the partition, the number of edges from a vertex of C1 to C2 is the same, over all vertices in C1.
A partition P1 is finer than P2 (P2 is coarser than P1) if every cell of P1 is a subset of a cell of P2.
INPUT:
EXAMPLES:
sage: G = graphs.PetersenGraph()
sage: G.coarsest_equitable_refinement([[0],range(1,10)])
[[0], [2, 3, 6, 7, 8, 9], [1, 4, 5]]
sage: G = graphs.CubeGraph(3)
sage: verts = G.vertices()
sage: Pi = [verts[:1], verts[1:]]
sage: Pi
[['000'], ['001', '010', '011', '100', '101', '110', '111']]
sage: G.coarsest_equitable_refinement(Pi)
[['000'], ['011', '101', '110'], ['111'], ['001', '010', '100']]
Note that given an equitable partition, this function returns that partition:
sage: P = graphs.PetersenGraph()
sage: prt = [[0], [1, 4, 5], [2, 3, 6, 7, 8, 9]]
sage: P.coarsest_equitable_refinement(prt)
[[0], [1, 4, 5], [2, 3, 6, 7, 8, 9]]
sage: ss = (graphs.WheelGraph(6)).line_graph(labels=False)
sage: prt = [[(0, 1)], [(0, 2), (0, 3), (0, 4), (1, 2), (1, 4)], [(2, 3), (3, 4)]]
sage: ss.coarsest_equitable_refinement(prt)
Traceback (most recent call last):
...
TypeError: Partition ([[(0, 1)], [(0, 2), (0, 3), (0, 4), (1, 2), (1, 4)], [(2, 3), (3, 4)]]) is not valid for this graph: vertices are incorrect.
sage: ss = (graphs.WheelGraph(5)).line_graph(labels=False)
sage: ss.coarsest_equitable_refinement(prt)
[[(0, 1)], [(1, 2), (1, 4)], [(0, 3)], [(0, 2), (0, 4)], [(2, 3), (3, 4)]]
ALGORITHM: Brendan D. McKay’s Master’s Thesis, University of Melbourne, 1976.
Returns the complement of the (di)graph.
The complement of a graph has the same vertices, but exactly those edges that are not in the original graph. This is not well defined for graphs with multiple edges.
EXAMPLES:
sage: P = graphs.PetersenGraph()
sage: P.plot() # long time
Graphics object consisting of 26 graphics primitives
sage: PC = P.complement()
sage: PC.plot() # long time
Graphics object consisting of 41 graphics primitives
sage: graphs.TetrahedralGraph().complement().size()
0
sage: graphs.CycleGraph(4).complement().edges()
[(0, 2, None), (1, 3, None)]
sage: graphs.CycleGraph(4).complement()
complement(Cycle graph): Graph on 4 vertices
sage: G = Graph(multiedges=True, sparse=True)
sage: G.add_edges([(0,1)]*3)
sage: G.complement()
Traceback (most recent call last):
...
TypeError: complement not well defined for (di)graphs with multiple edges
TESTS:
We check that trac ticket #15699 is fixed:
sage: G = graphs.PathGraph(5).copy(immutable=True)
sage: G.complement()
complement(Path Graph): Graph on 5 vertices
Returns a list of the vertices connected to vertex.
EXAMPLES:
sage: G = Graph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
sage: G.connected_component_containing_vertex(0)
[0, 1, 2, 3]
sage: D = DiGraph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
sage: D.connected_component_containing_vertex(0)
[0, 1, 2, 3]
Returns the list of connected components.
Returns a list of lists of vertices, each list representing a connected component. The list is ordered from largest to smallest component.
EXAMPLES:
sage: G = Graph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
sage: G.connected_components()
[[0, 1, 2, 3], [4, 5, 6]]
sage: D = DiGraph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
sage: D.connected_components()
[[0, 1, 2, 3], [4, 5, 6]]
Returns the number of connected components.
EXAMPLES:
sage: G = Graph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
sage: G.connected_components_number()
2
sage: D = DiGraph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
sage: D.connected_components_number()
2
Return the sizes of the connected components as a list.
The list is sorted from largest to lower values.
EXAMPLES:
sage: for x in graphs(3): print x.connected_components_sizes()
[1, 1, 1]
[2, 1]
[3]
[3]
Returns a list of connected components as graph objects.
EXAMPLES:
sage: G = Graph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
sage: L = G.connected_components_subgraphs()
sage: graphs_list.show_graphs(L)
sage: D = DiGraph( { 0 : [1, 3], 1 : [2], 2 : [3], 4 : [5, 6], 5 : [6] } )
sage: L = D.connected_components_subgraphs()
sage: graphs_list.show_graphs(L)
Return a copy of the graph.
INPUT:
- weighted boolean (default: None) – weightedness for the copy. Might change the equality class if not None.
- implementation - string (default: ‘c_graph’) the implementation goes here. Current options are only ‘networkx’ or ‘c_graph’.
- sparse (boolean) – sparse=True is an alias for data_structure="sparse", and sparse=False is an alias for data_structure="dense". Only used when implementation='c_graph' and data_structure=None.
- data_structure – one of "sparse", "static_sparse", or "dense". See the documentation of Graph or DiGraph. Only used when implementation='c_graph'.
- immutable (boolean) – whether to create a mutable/immutable copy. Only used when implementation='c_graph' and data_structure=None.
- immutable=None (default) means that the graph and its copy will behave the same way.
- immutable=True is a shortcut for data_structure='static_sparse' and implementation='c_graph'
- immutable=False sets implementation to 'c_graph'. When immutable=False is used to copy an immutable graph, the data structure used is "sparse" unless anything else is specified.
Note
If the graph uses StaticSparseBackend and the _immutable flag, then self is returned rather than a copy (unless one of the optional arguments is used).
OUTPUT:
A Graph object.
Warning
Please use this method only if you need to copy but change the underlying implementation or weightedness. Otherwise simply do copy(g) instead of g.copy().
Warning
If weighted is passed and is not the weightedness of the original, then the copy will not equal the original.
EXAMPLES:
sage: g=Graph({0:[0,1,1,2]},loops=True,multiedges=True,sparse=True)
sage: g==copy(g)
True
sage: g=DiGraph({0:[0,1,1,2],1:[0,1]},loops=True,multiedges=True,sparse=True)
sage: g==copy(g)
True
Note that vertex associations are also kept:
sage: d = {0 : graphs.DodecahedralGraph(), 1 : graphs.FlowerSnark(), 2 : graphs.MoebiusKantorGraph(), 3 : graphs.PetersenGraph() }
sage: T = graphs.TetrahedralGraph()
sage: T.set_vertices(d)
sage: T2 = copy(T)
sage: T2.get_vertex(0)
Dodecahedron: Graph on 20 vertices
Notice that the copy is at least as deep as the objects:
sage: T2.get_vertex(0) is T.get_vertex(0)
False
Examples of the keywords in use:
sage: G = graphs.CompleteGraph(19)
sage: H = G.copy(implementation='c_graph')
sage: H == G; H is G
True
False
sage: G1 = G.copy(sparse=True)
sage: G1==G
True
sage: G1 is G
False
sage: G2 = copy(G)
sage: G2 is G
False
Argument weighted affects the equality class:
sage: G = graphs.CompleteGraph(5)
sage: H1 = G.copy(weighted=False)
sage: H2 = G.copy(weighted=True)
sage: [G.weighted(), H1.weighted(), H2.weighted()]
[False, False, True]
sage: [G == H1, G == H2, H1 == H2]
[True, False, False]
sage: G.weighted(True)
sage: [G == H1, G == H2, H1 == H2]
[False, True, False]
TESTS:
We make copies of the _pos and _boundary attributes:
sage: g = graphs.PathGraph(3)
sage: h = copy(g)
sage: h._pos is g._pos
False
sage: h._boundary is g._boundary
False
We make sure that one can make immutable copies by providing the data_structure optional argument, and that copying an immutable graph returns the graph:
sage: G = graphs.PetersenGraph()
sage: hash(G)
Traceback (most recent call last):
...
TypeError: This graph is mutable, and thus not hashable. Create an
immutable copy by `g.copy(immutable=True)`
sage: g = G.copy(immutable=True)
sage: hash(g) # random
1833517720
sage: g==G
True
sage: g is copy(g) is g.copy()
True
immutable=True is a short-cut for data_structure='static_sparse':
sage: g is g.copy(data_structure='static_sparse') is g.copy(immutable=True)
True
If a graph pretends to be immutable, but does not use the static sparse backend, then the copy is not identic with the graph, even though it is considered to be hashable:
sage: P = Poset(([1,2,3,4], [[1,3],[1,4],[2,3]]), linear_extension=True, facade = False)
sage: H = P.hasse_diagram()
sage: H._immutable = True
sage: hash(H) # random
-1843552882
sage: copy(H) is H
False
TESTS:
Bad input:
sage: G.copy(data_structure="sparse", sparse=False)
Traceback (most recent call last):
...
ValueError: You cannot define 'immutable' or 'sparse' when 'data_structure' has a value.
sage: G.copy(data_structure="sparse", immutable=True)
Traceback (most recent call last):
...
ValueError: You cannot define 'immutable' or 'sparse' when 'data_structure' has a value.
sage: G.copy(immutable=True, sparse=False)
Traceback (most recent call last):
...
ValueError: There is no dense immutable backend at the moment.
Which backend ?:
sage: G.copy(data_structure="sparse")._backend
<class 'sage.graphs.base.sparse_graph.SparseGraphBackend'>
sage: G.copy(data_structure="dense")._backend
<class 'sage.graphs.base.dense_graph.DenseGraphBackend'>
sage: G.copy(data_structure="static_sparse")._backend
<class 'sage.graphs.base.static_sparse_backend.StaticSparseBackend'>
sage: G.copy(immutable=True)._backend
<class 'sage.graphs.base.static_sparse_backend.StaticSparseBackend'>
sage: G.copy(immutable=True, sparse=True)._backend
<class 'sage.graphs.base.static_sparse_backend.StaticSparseBackend'>
sage: G.copy(immutable=False, sparse=True)._backend
<class 'sage.graphs.base.sparse_graph.SparseGraphBackend'>
sage: G.copy(immutable=False, sparse=False)._backend
<class 'sage.graphs.base.sparse_graph.SparseGraphBackend'>
sage: Graph(implementation="networkx").copy(implementation='c_graph')._backend
<class 'sage.graphs.base.sparse_graph.SparseGraphBackend'>
Fake immutable graphs:
sage: G._immutable = True
sage: G.copy()._backend
<class 'sage.graphs.base.sparse_graph.SparseGraphBackend'>
Returns a list of cycles which form a basis of the cycle space of self.
A basis of cycles of a graph is a minimal collection of cycles (considered as sets of edges) such that the edge set of any cycle in the graph can be written as a \(Z/2Z\) sum of the cycles in the basis.
INPUT:
OUTPUT:
A list of lists, each of them representing the vertices (or the edges) of a cycle in a basis.
ALGORITHM:
Uses the NetworkX library for graphs without multiple edges.
Otherwise, by the standard algorithm using a spanning tree.
EXAMPLE:
A cycle basis in Petersen’s Graph
sage: g = graphs.PetersenGraph()
sage: g.cycle_basis()
[[1, 2, 7, 5, 0], [8, 3, 2, 7, 5], [4, 3, 2, 7, 5, 0], [4, 9, 7, 5, 0], [8, 6, 9, 7, 5], [1, 6, 9, 7, 5, 0]]
One can also get the result as a list of lists of edges:
sage: g.cycle_basis(output='edge')
[[(1, 2, None), (2, 7, None), (7, 5, None), (5, 0, None),
(0, 1, None)], [(8, 3, None), (3, 2, None), (2, 7, None),
(7, 5, None), (5, 8, None)], [(4, 3, None), (3, 2, None),
(2, 7, None), (7, 5, None), (5, 0, None), (0, 4, None)],
[(4, 9, None), (9, 7, None), (7, 5, None), (5, 0, None),
(0, 4, None)], [(8, 6, None), (6, 9, None), (9, 7, None),
(7, 5, None), (5, 8, None)], [(1, 6, None), (6, 9, None),
(9, 7, None), (7, 5, None), (5, 0, None), (0, 1, None)]]
Checking the given cycles are algebraically free:
sage: g = graphs.RandomGNP(30,.4)
sage: basis = g.cycle_basis()
Building the space of (directed) edges over \(Z/2Z\). On the way, building a dictionary associating an unique vector to each undirected edge:
sage: m = g.size()
sage: edge_space = VectorSpace(FiniteField(2),m)
sage: edge_vector = dict( zip( g.edges(labels = False), edge_space.basis() ) )
sage: for (u,v),vec in edge_vector.items():
... edge_vector[(v,u)] = vec
Defining a lambda function associating a vector to the vertices of a cycle:
sage: vertices_to_edges = lambda x : zip( x, x[1:] + [x[0]] )
sage: cycle_to_vector = lambda x : sum( edge_vector[e] for e in vertices_to_edges(x) )
Finally checking the cycles are a free set:
sage: basis_as_vectors = map( cycle_to_vector, basis )
sage: edge_space.span(basis_as_vectors).rank() == len(basis)
True
For undirected graphs with multiple edges:
sage: G = Graph([(0,2,'a'),(0,2,'b'),(0,1,'c'),(1,2,'d')], multiedges=True)
sage: G.cycle_basis()
[[0, 2], [2, 1, 0]]
sage: G.cycle_basis(output='edge')
[[(0, 2, 'a'), (2, 0, 'b')], [(2, 1, 'd'), (1, 0, 'c'),
(0, 2, 'a')]]
Disconnected graph:
sage: G.add_cycle(["Hey", "Wuuhuu", "Really ?"])
sage: G.cycle_basis()
[[0, 2], [2, 1, 0], ['Really ?', 'Hey', 'Wuuhuu']]
sage: G.cycle_basis(output='edge')
[[(0, 2, 'a'), (2, 0, 'b')], [(2, 1, 'd'), (1, 0, 'c'), (0, 2, 'a')],
[('Really ?', 'Hey', None), ('Hey', 'Wuuhuu', None), ('Wuuhuu', 'Really ?', None)]]
Graph that allows multiple edges but does not contain any:
sage: G = graphs.CycleGraph(3)
sage: G.allow_multiple_edges(True)
sage: G.cycle_basis()
[[2, 1, 0]]
Not yet implemented for directed graphs with multiple edges:
sage: G = DiGraph([(0,2,'a'),(0,2,'b'),(0,1,'c'),(1,2,'d')], multiedges=True)
sage: G.cycle_basis()
Traceback (most recent call last):
...
NotImplementedError: not implemented for directed graphs
with multiple edges
Gives the degree (in + out for digraphs) of a vertex or of vertices.
INPUT:
OUTPUT: Single vertex- an integer. Multiple vertices- a list of integers. If labels is True, then returns a dictionary mapping each vertex to its degree.
EXAMPLES:
sage: P = graphs.PetersenGraph()
sage: P.degree(5)
3
sage: K = graphs.CompleteGraph(9)
sage: K.degree()
[8, 8, 8, 8, 8, 8, 8, 8, 8]
sage: D = DiGraph( { 0: [1,2,3], 1: [0,2], 2: [3], 3: [4], 4: [0,5], 5: [1] } )
sage: D.degree(vertices = [0,1,2], labels=True)
{0: 5, 1: 4, 2: 3}
sage: D.degree()
[5, 4, 3, 3, 3, 2]
Returns a list, whose ith entry is the frequency of degree i.
EXAMPLES:
sage: G = graphs.Grid2dGraph(9,12)
sage: G.degree_histogram()
[0, 0, 4, 34, 70]
sage: G = graphs.Grid2dGraph(9,12).to_directed()
sage: G.degree_histogram()
[0, 0, 0, 0, 4, 0, 34, 0, 70]
Returns an iterator over the degrees of the (di)graph.
In the case of a digraph, the degree is defined as the sum of the in-degree and the out-degree, i.e. the total number of edges incident to a given vertex.
INPUT:
EXAMPLES:
sage: G = graphs.Grid2dGraph(3,4)
sage: for i in G.degree_iterator():
... print i
3
4
2
...
2
4
sage: for i in G.degree_iterator(labels=True):
... print i
((0, 1), 3)
((1, 2), 4)
((0, 0), 2)
...
((0, 3), 2)
((1, 1), 4)
sage: D = graphs.Grid2dGraph(2,4).to_directed()
sage: for i in D.degree_iterator():
... print i
6
6
...
4
6
sage: for i in D.degree_iterator(labels=True):
... print i
((0, 1), 6)
((1, 2), 6)
...
((0, 3), 4)
((1, 1), 6)
Return the degree sequence of this (di)graph.
EXAMPLES:
The degree sequence of an undirected graph:
sage: g = Graph({1: [2, 5], 2: [1, 5, 3, 4], 3: [2, 5], 4: [3], 5: [2, 3]})
sage: g.degree_sequence()
[4, 3, 3, 2, 2]
The degree sequence of a digraph:
sage: g = DiGraph({1: [2, 5, 6], 2: [3, 6], 3: [4, 6], 4: [6], 5: [4, 6]})
sage: g.degree_sequence()
[5, 3, 3, 3, 3, 3]
Degree sequences of some common graphs:
sage: graphs.PetersenGraph().degree_sequence()
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
sage: graphs.HouseGraph().degree_sequence()
[3, 3, 2, 2, 2]
sage: graphs.FlowerSnark().degree_sequence()
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
Returns the number of edges from vertex to an edge in cell. In the case of a digraph, returns a tuple (in_degree, out_degree).
EXAMPLES:
sage: G = graphs.CubeGraph(3)
sage: cell = G.vertices()[:3]
sage: G.degree_to_cell('011', cell)
2
sage: G.degree_to_cell('111', cell)
0
sage: D = DiGraph({ 0:[1,2,3], 1:[3,4], 3:[4,5]})
sage: cell = [0,1,2]
sage: D.degree_to_cell(5, cell)
(0, 0)
sage: D.degree_to_cell(3, cell)
(2, 0)
sage: D.degree_to_cell(0, cell)
(0, 2)
Delete the edge from u to v, returning silently if vertices or edge does not exist.
INPUT: The following forms are all accepted:
EXAMPLES:
sage: G = graphs.CompleteGraph(19).copy(implementation='c_graph')
sage: G.size()
171
sage: G.delete_edge( 1, 2 )
sage: G.delete_edge( (3, 4) )
sage: G.delete_edges( [ (5, 6), (7, 8) ] )
sage: G.size()
167
Note that NetworkX accidentally deletes these edges, even though the labels do not match up:
sage: N = graphs.CompleteGraph(19).copy(implementation='networkx')
sage: N.size()
171
sage: N.delete_edge( 1, 2 )
sage: N.delete_edge( (3, 4) )
sage: N.delete_edges( [ (5, 6), (7, 8) ] )
sage: N.size()
167
sage: N.delete_edge( 9, 10, 'label' )
sage: N.delete_edge( (11, 12, 'label') )
sage: N.delete_edges( [ (13, 14, 'label') ] )
sage: N.size()
167
sage: N.has_edge( (11, 12) )
True
However, CGraph backends handle things properly:
sage: G.delete_edge( 9, 10, 'label' )
sage: G.delete_edge( (11, 12, 'label') )
sage: G.delete_edges( [ (13, 14, 'label') ] )
sage: G.size()
167
sage: C = graphs.CompleteGraph(19).to_directed(sparse=True)
sage: C.size()
342
sage: C.delete_edge( 1, 2 )
sage: C.delete_edge( (3, 4) )
sage: C.delete_edges( [ (5, 6), (7, 8) ] )
sage: D = graphs.CompleteGraph(19).to_directed(sparse=True, implementation='networkx')
sage: D.size()
342
sage: D.delete_edge( 1, 2 )
sage: D.delete_edge( (3, 4) )
sage: D.delete_edges( [ (5, 6), (7, 8) ] )
sage: D.delete_edge( 9, 10, 'label' )
sage: D.delete_edge( (11, 12, 'label') )
sage: D.delete_edges( [ (13, 14, 'label') ] )
sage: D.size()
338
sage: D.has_edge( (11, 12) )
True
sage: C.delete_edge( 9, 10, 'label' )
sage: C.delete_edge( (11, 12, 'label') )
sage: C.delete_edges( [ (13, 14, 'label') ] )
sage: C.size() # correct!
338
sage: C.has_edge( (11, 12) ) # correct!
True
Delete edges from an iterable container.
EXAMPLES:
sage: K12 = graphs.CompleteGraph(12)
sage: K4 = graphs.CompleteGraph(4)
sage: K12.size()
66
sage: K12.delete_edges(K4.edge_iterator())
sage: K12.size()
60
sage: K12 = graphs.CompleteGraph(12).to_directed()
sage: K4 = graphs.CompleteGraph(4).to_directed()
sage: K12.size()
132
sage: K12.delete_edges(K4.edge_iterator())
sage: K12.size()
120
Deletes all edges from u and v.
EXAMPLES:
sage: G = Graph(multiedges=True,sparse=True)
sage: G.add_edges([(0,1), (0,1), (0,1), (1,2), (2,3)])
sage: G.edges()
[(0, 1, None), (0, 1, None), (0, 1, None), (1, 2, None), (2, 3, None)]
sage: G.delete_multiedge( 0, 1 )
sage: G.edges()
[(1, 2, None), (2, 3, None)]
sage: D = DiGraph(multiedges=True,sparse=True)
sage: D.add_edges([(0,1,1), (0,1,2), (0,1,3), (1,0,None), (1,2,None), (2,3,None)])
sage: D.edges()
[(0, 1, 1), (0, 1, 2), (0, 1, 3), (1, 0, None), (1, 2, None), (2, 3, None)]
sage: D.delete_multiedge( 0, 1 )
sage: D.edges()
[(1, 0, None), (1, 2, None), (2, 3, None)]
Deletes vertex, removing all incident edges. Deleting a non-existent vertex will raise an exception.
INPUT:
EXAMPLES:
sage: G = Graph(graphs.WheelGraph(9))
sage: G.delete_vertex(0); G.show()
sage: D = DiGraph({0:[1,2,3,4,5],1:[2],2:[3],3:[4],4:[5],5:[1]})
sage: D.delete_vertex(0); D
Digraph on 5 vertices
sage: D.vertices()
[1, 2, 3, 4, 5]
sage: D.delete_vertex(0)
Traceback (most recent call last):
...
RuntimeError: Vertex (0) not in the graph.
sage: G = graphs.CompleteGraph(4).line_graph(labels=False)
sage: G.vertices()
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
sage: G.delete_vertex(0, in_order=True)
sage: G.vertices()
[(0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
sage: G = graphs.PathGraph(5)
sage: G.set_vertices({0: 'no delete', 1: 'delete'})
sage: G.set_boundary([1,2])
doctest:...: DeprecationWarning: The boundary parameter is deprecated and will soon disappear.
See http://trac.sagemath.org/15494 for details.
sage: G.delete_vertex(1)
sage: G.get_vertices()
{0: 'no delete', 2: None, 3: None, 4: None}
sage: G.get_boundary()
[2]
sage: G.get_pos()
{0: (0, 0), 2: (2, 0), 3: (3, 0), 4: (4, 0)}
Remove vertices from the (di)graph taken from an iterable container of vertices. Deleting a non-existent vertex will raise an exception.
EXAMPLES:
sage: D = DiGraph({0:[1,2,3,4,5],1:[2],2:[3],3:[4],4:[5],5:[1]})
sage: D.delete_vertices([1,2,3,4,5]); D
Digraph on 1 vertex
sage: D.vertices()
[0]
sage: D.delete_vertices([1])
Traceback (most recent call last):
...
RuntimeError: Vertex (1) not in the graph.
Returns the density (number of edges divided by number of possible edges).
In the case of a multigraph, raises an error, since there is an infinite number of possible edges.
EXAMPLES:
sage: d = {0: [1,4,5], 1: [2,6], 2: [3,7], 3: [4,8], 4: [9], 5: [7, 8], 6: [8,9], 7: [9]}
sage: G = Graph(d); G.density()
1/3
sage: G = Graph({0:[1,2], 1:[0] }); G.density()
2/3
sage: G = DiGraph({0:[1,2], 1:[0] }); G.density()
1/2
Note that there are more possible edges on a looped graph:
sage: G.allow_loops(True)
sage: G.density()
1/3
Returns an iterator over the vertices in a depth-first ordering.
INPUT:
See also
EXAMPLES:
sage: G = Graph( { 0: [1], 1: [2], 2: [3], 3: [4], 4: [0]} )
sage: list(G.depth_first_search(0))
[0, 4, 3, 2, 1]
By default, the edge direction of a digraph is respected, but this can be overridden by the ignore_direction parameter:
sage: D = DiGraph( { 0: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [7], 6: [7], 7: [0]})
sage: list(D.depth_first_search(0))
[0, 3, 6, 7, 2, 5, 1, 4]
sage: list(D.depth_first_search(0, ignore_direction=True))
[0, 7, 6, 3, 5, 2, 1, 4]
You can specify a maximum distance in which to search. A distance of zero returns the start vertices:
sage: D = DiGraph( { 0: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [7], 6: [7], 7: [0]})
sage: list(D.depth_first_search(0,distance=0))
[0]
sage: list(D.depth_first_search(0,distance=1))
[0, 3, 2, 1]
Multiple starting vertices can be specified in a list:
sage: D = DiGraph( { 0: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [7], 6: [7], 7: [0]})
sage: list(D.depth_first_search([0]))
[0, 3, 6, 7, 2, 5, 1, 4]
sage: list(D.depth_first_search([0,6]))
[0, 3, 6, 7, 2, 5, 1, 4]
sage: list(D.depth_first_search([0,6],distance=0))
[0, 6]
sage: list(D.depth_first_search([0,6],distance=1))
[0, 3, 2, 1, 6, 7]
sage: list(D.depth_first_search(6,ignore_direction=True,distance=2))
[6, 7, 5, 0, 3]
More generally, you can specify a neighbors function. For example, you can traverse the graph backwards by setting neighbors to be the neighbors_in() function of the graph:
sage: D = DiGraph( { 0: [1,2,3], 1: [4,5], 2: [5], 3: [6], 5: [7], 6: [7], 7: [0]})
sage: list(D.depth_first_search(5,neighbors=D.neighbors_in, distance=2))
[5, 2, 0, 1]
sage: list(D.depth_first_search(5,neighbors=D.neighbors_out, distance=2))
[5, 7, 0]
sage: list(D.depth_first_search(5,neighbors=D.neighbors, distance=2))
[5, 7, 6, 0, 2, 1, 4]
TESTS:
sage: D = DiGraph({1:[0], 2:[0]})
sage: list(D.depth_first_search(0))
[0]
sage: list(D.depth_first_search(0, ignore_direction=True))
[0, 2, 1]
Returns the diameter of \(G\).
This method returns Infinity if the (di)graph is not connected. It can also quickly return a lower bound on the diameter using the 2sweep and multi-sweep schemes.
INPUTS:
method – (default: ‘iFUB’) specifies the algorithm to use among:
'standard' – Computes the diameter of the input (di)graph as the largest eccentricity of its vertices. This is the classical method with time complexity in \(O(nm)\).
'2sweep' – Computes a lower bound on the diameter of an unweighted undirected graph using 2 BFS, as proposed in [MLH08]. It first selects a vertex \(v\) that is at largest distance from an initial vertex source using BFS. Then it performs a second BFS from \(v\). The largest distance from \(v\) is returned as a lower bound on the diameter of \(G\). The time complexity of this method is linear in the size of \(G\).
'multi-sweep' – Computes a lower bound on the diameter of an unweighted undirected graph using several iterations of the 2sweep algorithms [CGH+13]. Roughly, it first uses 2sweep to identify two vertices \(u\) and \(v\) that are far apart. Then it selects a vertex \(w\) that is at same distance from \(u\) and \(v\). This vertex \(w\) will serve as the new source for another iteration of the 2sweep algorithm that may improve the current lower bound on the diameter. This process is repeated as long as the lower bound on the diameter is improved.
'iFUB' – The iFUB (iterative Fringe Upper Bound) algorithm, proposed in [CGI+10], computes the exact value of the diameter of an unweighted undirected graph. It is based on the following observation:
The diameter of the graph is equal to the maximum eccentricity of a vertex. Let \(v\) be any vertex, and let \(V\) be partitionned into \(A\cup B\) where:
\[\begin{split}d(v,a)<=i, \forall a \in A\\ d(v,b)>=i, \forall b \in B\end{split}\]As all vertices from \(A\) are at distance \(\leq 2i\) from each other, a vertex \(a\in A\) with eccentricity \(ecc(a)>2i\) is at distance \(ecc(a)\) from some vertex \(b\in B\).
Consequently, if we have already computed the maximum eccentricity \(m\) of all vertices in \(B\) and if \(m>2i\), then we do not need to compute the eccentricity of the vertices in \(A\).
Starting from a vertex \(v\) obtained through a multi-sweep computation (which refines the 4sweep algorithm used in [CGH+13]), we compute the diameter by computing the eccentricity of all vertices sorted decreasingly according to their distance to \(v\), and stop as allowed by the remark above. The worst case time complexity of the iFUB algorithm is \(O(nm)\), but it can be very fast in practice.
source – (default: None) vertex from which to start the first BFS. If source==None, an arbitrary vertex of the graph is chosen. Raise an error if the initial vertex is not in \(G\). This parameter is not used when method=='standard'.
EXAMPLES:
sage: G = graphs.PetersenGraph()
sage: G.diameter(method='iFUB')
2
sage: G = Graph( { 0 : [], 1 : [], 2 : [1] } )
sage: G.diameter(method='iFUB')
+Infinity
Although max( ) is usually defined as -Infinity, since the diameter will never be negative, we define it to be zero:
sage: G = graphs.EmptyGraph()
sage: G.diameter(method='iFUB')
0
Comparison of exact methods:
sage: G = graphs.RandomBarabasiAlbert(100, 2)
sage: d1 = G.diameter(method='standard')
sage: d2 = G.diameter(method='iFUB')
sage: d3 = G.diameter(method='iFUB', source=G.random_vertex())
sage: if d1!=d2 or d1!=d3: print "Something goes wrong!"
Comparison of lower bound methods:
sage: lb2 = G.diameter(method='2sweep')
sage: lbm = G.diameter(method='multi-sweep')
sage: if not (lb2<=lbm and lbm<=d3): print "Something goes wrong!"
Returns a set of disjoint routed paths.
Given a set of pairs \((s_i,t_i)\), a set of disjoint routed paths is a set of \(s_i-t_i\) paths which can interset at their endpoints and are vertex-disjoint otherwise.
INPUT:
EXAMPLE:
Given a grid, finding two vertex-disjoint paths, the first one from the top-left corner to the bottom-left corner, and the second from the top-right corner to the bottom-right corner is easy
sage: g = graphs.GridGraph([5,5])
sage: p1,p2 = g.disjoint_routed_paths( [((0,0), (0,4)), ((4,4), (4,0))])
Though there is obviously no solution to the problem in which each corner is sending information to the opposite one:
sage: g = graphs.GridGraph([5,5])
sage: p1,p2 = g.disjoint_routed_paths( [((0,0), (4,4)), ((0,4), (4,0))])
Traceback (most recent call last):
...
EmptySetError: The disjoint routed paths do not exist.
Return the disjoint union of self and other.
INPUT:
EXAMPLES:
sage: G = graphs.CycleGraph(3)
sage: H = graphs.CycleGraph(4)
sage: J = G.disjoint_union(H); J
Cycle graph disjoint_union Cycle graph: Graph on 7 vertices
sage: J.vertices()
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (1, 3)]
sage: J = G.disjoint_union(H, labels='integers'); J
Cycle graph disjoint_union Cycle graph: Graph on 7 vertices
sage: J.vertices()
[0, 1, 2, 3, 4, 5, 6]
sage: G=Graph({'a': ['b']})
sage: G.name("Custom path")
sage: G.name()
'Custom path'
sage: H=graphs.CycleGraph(3)
sage: J=G.disjoint_union(H); J
Custom path disjoint_union Cycle graph: Graph on 5 vertices
sage: J.vertices()
[(0, 'a'), (0, 'b'), (1, 0), (1, 1), (1, 2)]
Returns the disjunctive product of self and other.
The disjunctive product of \(G\) and \(H\) is the graph \(L\) with vertex set \(V(L)=V(G)\times V(H)\), and \(((u,v), (w,x))\) is an edge iff either :
EXAMPLES:
sage: Z = graphs.CompleteGraph(2)
sage: D = Z.disjunctive_product(Z); D
Graph on 4 vertices
sage: D.plot() # long time
Graphics object consisting of 11 graphics primitives
sage: C = graphs.CycleGraph(5)
sage: D = C.disjunctive_product(Z); D
Graph on 10 vertices
sage: D.plot() # long time
Graphics object consisting of 46 graphics primitives
TESTS:
Disjunctive product of graphs:
sage: G = Graph([(0,1), (1,2)])
sage: H = Graph([('a','b')])
sage: T = G.disjunctive_product(H)
sage: T.edges(labels=None)
[((0, 'a'), (0, 'b')), ((0, 'a'), (1, 'a')), ((0, 'a'), (1, 'b')), ((0, 'a'), (2, 'b')), ((0, 'b'), (1, 'a')), ((0, 'b'), (1, 'b')), ((0, 'b'), (2, 'a')), ((1, 'a'), (1, 'b')), ((1, 'a'), (2, 'a')), ((1, 'a'), (2, 'b')), ((1, 'b'), (2, 'a')), ((1, 'b'), (2, 'b')), ((2, 'a'), (2, 'b'))]
sage: T.is_isomorphic( H.disjunctive_product(G) )
True
Disjunctive product of digraphs:
sage: I = DiGraph([(0,1), (1,2)])
sage: J = DiGraph([('a','b')])
sage: T = I.disjunctive_product(J)
sage: T.edges(labels=None)
[((0, 'a'), (0, 'b')), ((0, 'a'), (1, 'a')), ((0, 'a'), (1, 'b')), ((0, 'a'), (2, 'b')), ((0, 'b'), (1, 'a')), ((0, 'b'), (1, 'b')), ((1, 'a'), (0, 'b')), ((1, 'a'), (1, 'b')), ((1, 'a'), (2, 'a')), ((1, 'a'), (2, 'b')), ((1, 'b'), (2, 'a')), ((1, 'b'), (2, 'b')), ((2, 'a'), (0, 'b')), ((2, 'a'), (1, 'b')), ((2, 'a'), (2, 'b'))]
sage: T.is_isomorphic( J.disjunctive_product(I) )
True
Returns the (directed) distance from u to v in the (di)graph, i.e. the length of the shortest path from u to v.
INPUT:
EXAMPLES:
sage: G = graphs.CycleGraph(9)
sage: G.distance(0,1)
1
sage: G.distance(0,4)
4
sage: G.distance(0,5)
4
sage: G = Graph( {0:[], 1:[]} )
sage: G.distance(0,1)
+Infinity
sage: G = Graph( { 0: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2} }, sparse = True)
sage: G.plot(edge_labels=True).show() # long time
sage: G.distance(0, 3)
2
sage: G.distance(0, 3, by_weight=True)
3
Returns the distances between all pairs of vertices.
INPUT:
"algorithm" (string) – two algorithms are available
- algorithm = "BFS" in which case the distances are computed through \(n\) different breadth-first-search.
- algorithm = "Floyd-Warshall", in which case the Floyd-Warshall algorithm is used.
- algorithm = "auto", in which case the Floyd-Warshall algorithm is used for graphs on less than 20 vertices, and BFS otherwise.
The default is algorithm = "BFS".
OUTPUT:
A doubly indexed dictionary
Note
There is a Cython version of this method that is usually much faster for large graphs, as most of the time is actually spent building the final double dictionary. Everything on the subject is to be found in the distances_all_pairs module.
EXAMPLE:
The Petersen Graph:
sage: g = graphs.PetersenGraph()
sage: print g.distance_all_pairs()
{0: {0: 0, 1: 1, 2: 2, 3: 2, 4: 1, 5: 1, 6: 2, 7: 2, 8: 2, 9: 2}, 1: {0: 1, 1: 0, 2: 1, 3: 2, 4: 2, 5: 2, 6: 1, 7: 2, 8: 2, 9: 2}, 2: {0: 2, 1: 1, 2: 0, 3: 1, 4: 2, 5: 2, 6: 2, 7: 1, 8: 2, 9: 2}, 3: {0: 2, 1: 2, 2: 1, 3: 0, 4: 1, 5: 2, 6: 2, 7: 2, 8: 1, 9: 2}, 4: {0: 1, 1: 2, 2: 2, 3: 1, 4: 0, 5: 2, 6: 2, 7: 2, 8: 2, 9: 1}, 5: {0: 1, 1: 2, 2: 2, 3: 2, 4: 2, 5: 0, 6: 2, 7: 1, 8: 1, 9: 2}, 6: {0: 2, 1: 1, 2: 2, 3: 2, 4: 2, 5: 2, 6: 0, 7: 2, 8: 1, 9: 1}, 7: {0: 2, 1: 2, 2: 1, 3: 2, 4: 2, 5: 1, 6: 2, 7: 0, 8: 2, 9: 1}, 8: {0: 2, 1: 2, 2: 2, 3: 1, 4: 2, 5: 1, 6: 1, 7: 2, 8: 0, 9: 2}, 9: {0: 2, 1: 2, 2: 2, 3: 2, 4: 1, 5: 2, 6: 1, 7: 1, 8: 2, 9: 0}}
Testing on Random Graphs:
sage: g = graphs.RandomGNP(20,.3)
sage: distances = g.distance_all_pairs()
sage: all([g.distance(0,v) == distances[0][v] for v in g])
True
See also
Returns the graph on the same vertex set as the original graph but vertices are adjacent in the returned graph if and only if they are at specified distances in the original graph.
INPUT:
OUTPUT:
The returned value is an undirected graph. The vertex set is identical to the calling graph, but edges of the returned graph join vertices whose distance in the calling graph are present in the input dist. Loops will only be present if distance 0 is included. If the original graph has a position dictionary specifying locations of vertices for plotting, then this information is copied over to the distance graph. In some instances this layout may not be the best, and might even be confusing when edges run on top of each other due to symmetries chosen for the layout.
EXAMPLES:
sage: G = graphs.CompleteGraph(3)
sage: H = G.cartesian_product(graphs.CompleteGraph(2))
sage: K = H.distance_graph(2)
sage: K.am()
[0 0 0 1 0 1]
[0 0 1 0 1 0]
[0 1 0 0 0 1]
[1 0 0 0 1 0]
[0 1 0 1 0 0]
[1 0 1 0 0 0]
To obtain the graph where vertices are adjacent if their distance apart is d or less use a range() command to create the input, using d+1 as the input to range. Notice that this will include distance 0 and hence place a loop at each vertex. To avoid this, use range(1,d+1).
sage: G = graphs.OddGraph(4)
sage: d = G.diameter()
sage: n = G.num_verts()
sage: H = G.distance_graph(range(d+1))
sage: H.is_isomorphic(graphs.CompleteGraph(n))
False
sage: H = G.distance_graph(range(1,d+1))
sage: H.is_isomorphic(graphs.CompleteGraph(n))
True
A complete collection of distance graphs will have adjacency matrices that sum to the matrix of all ones.
sage: P = graphs.PathGraph(20)
sage: all_ones = sum([P.distance_graph(i).am() for i in range(20)])
sage: all_ones == matrix(ZZ, 20, 20, [1]*400)
True
Four-bit strings differing in one bit is the same as four-bit strings differing in three bits.
sage: G = graphs.CubeGraph(4)
sage: H = G.distance_graph(3)
sage: G.is_isomorphic(H)
True
The graph of eight-bit strings, adjacent if different in an odd number of bits.
sage: G = graphs.CubeGraph(8) # long time
sage: H = G.distance_graph([1,3,5,7]) # long time
sage: degrees = [0]*sum([binomial(8,j) for j in [1,3,5,7]]) # long time
sage: degrees.append(2^8) # long time
sage: degrees == H.degree_histogram() # long time
True
An example of using Infinity as the distance in a graph that is not connected.
sage: G = graphs.CompleteGraph(3)
sage: H = G.disjoint_union(graphs.CompleteGraph(2))
sage: L = H.distance_graph(Infinity)
sage: L.am()
[0 0 0 1 1]
[0 0 0 1 1]
[0 0 0 1 1]
[1 1 1 0 0]
[1 1 1 0 0]
TESTS:
Empty input, or unachievable distances silently yield empty graphs.
sage: G = graphs.CompleteGraph(5)
sage: G.distance_graph([]).num_edges()
0
sage: G = graphs.CompleteGraph(5)
sage: G.distance_graph(23).num_edges()
0
It is an error to provide a distance that is not an integer type.
sage: G = graphs.CompleteGraph(5)
sage: G.distance_graph('junk')
Traceback (most recent call last):
...
TypeError: unable to convert 'junk' to an integer
It is an error to provide a negative distance.
sage: G = graphs.CompleteGraph(5)
sage: G.distance_graph(-3)
Traceback (most recent call last):
...
ValueError: Distance graph for a negative distance (d=-3) is not defined
AUTHOR:
Rob Beezer, 2009-11-25
Returns the distance matrix of the (strongly) connected (di)graph.
The distance matrix of a (strongly) connected (di)graph is a matrix whose rows and columns are indexed with the vertices of the (di) graph. The intersection of a row and column contains the respective distance between the vertices indexed at these position.
Warning
The ordering of vertices in the matrix has no reason to correspond to the order of vertices in vertices(). In particular, if two integers \(i,j\) are vertices of a graph \(G\) with distance matrix M, then M[i][i] is not necessarily the distance between vertices \(i\) and \(j\).
EXAMPLES:
sage: G = graphs.CubeGraph(3)
sage: G.distance_matrix()
[0 1 1 2 1 2 2 3]
[1 0 2 1 2 1 3 2]
[1 2 0 1 2 3 1 2]
[2 1 1 0 3 2 2 1]
[1 2 2 3 0 1 1 2]
[2 1 3 2 1 0 2 1]
[2 3 1 2 1 2 0 1]
[3 2 2 1 2 1 1 0]
The well known result of Graham and Pollak states that the determinant of the distance matrix of any tree of order n is (-1)^{n-1}(n-1)2^{n-2}
sage: all(T.distance_matrix().det() == (-1)^9*(9)*2^8 for T in graphs.trees(10))
True
See also
Returns the distances distribution of the (di)graph in a dictionary.
This method ignores all edge labels, so that the distance considered is the topological distance.
OUTPUT:
A dictionary d such that the number of pairs of vertices at distance k (if any) is equal to \(d[k] \cdot |V(G)| \cdot (|V(G)|-1)\).
Note
We consider that two vertices that do not belong to the same connected component are at infinite distance, and we do not take the trivial pairs of vertices \((v, v)\) at distance \(0\) into account. Empty (di)graphs and (di)graphs of order 1 have no paths and so we return the empty dictionary {}.
EXAMPLES:
An empty Graph:
sage: g = Graph()
sage: g.distances_distribution()
{}
A Graph of order 1:
sage: g = Graph()
sage: g.add_vertex(1)
sage: g.distances_distribution()
{}
A Graph of order 2 without edge:
sage: g = Graph()
sage: g.add_vertices([1,2])
sage: g.distances_distribution()
{+Infinity: 1}
The Petersen Graph:
sage: g = graphs.PetersenGraph()
sage: g.distances_distribution()
{1: 1/3, 2: 2/3}
A graph with multiple disconnected components:
sage: g = graphs.PetersenGraph()
sage: g.add_edge('good','wine')
sage: g.distances_distribution()
{1: 8/33, 2: 5/11, +Infinity: 10/33}
The de Bruijn digraph dB(2,3):
sage: D = digraphs.DeBruijn(2,3)
sage: D.distances_distribution()
{1: 1/4, 2: 11/28, 3: 5/14}
Returns a minimum dominating set of the graph represented by the list of its vertices. For more information, see the Wikipedia article on dominating sets.
A minimum dominating set \(S\) of a graph \(G\) is a set of its vertices of minimal cardinality such that any vertex of \(G\) is in \(S\) or has one of its neighbors in \(S\).
As an optimization problem, it can be expressed as:
INPUT:
EXAMPLES:
A basic illustration on a PappusGraph:
sage: g=graphs.PappusGraph()
sage: g.dominating_set(value_only=True)
5
If we build a graph from two disjoint stars, then link their centers we will find a difference between the cardinality of an independent set and a stable independent set:
sage: g = 2 * graphs.StarGraph(5)
sage: g.add_edge(0,6)
sage: len(g.dominating_set())
2
sage: len(g.dominating_set(independent=True))
6
The total dominating set of the Petersen graph has cardinality 4:
sage: G = graphs.PetersenGraph()
sage: G.dominating_set(total=True,value_only=True)
4
Return the eccentricity of vertex (or vertices) v.
The eccentricity of a vertex is the maximum distance to any other vertex.
INPUT:
EXAMPLES:
sage: G = graphs.KrackhardtKiteGraph()
sage: G.eccentricity()
[4, 4, 4, 4, 4, 3, 3, 2, 3, 4]
sage: G.vertices()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
sage: G.eccentricity(7)
2
sage: G.eccentricity([7,8,9])
[3, 4, 2]
sage: G.eccentricity([7,8,9], with_labels=True) == {8: 3, 9: 4, 7: 2}
True
sage: G = Graph( { 0 : [], 1 : [], 2 : [1] } )
sage: G.eccentricity()
[+Infinity, +Infinity, +Infinity]
sage: G = Graph({0:[]})
sage: G.eccentricity(with_labels=True)
{0: 0}
sage: G = Graph({0:[], 1:[]})
sage: G.eccentricity(with_labels=True)
{0: +Infinity, 1: +Infinity}
Returns a list of edges \((u,v,l)\) with \(u\) in vertices1 and \(v\) in vertices2. If vertices2 is None, then it is set to the complement of vertices1.
In a digraph, the external boundary of a vertex \(v\) are those vertices \(u\) with an arc \((v, u)\).
INPUT:
EXAMPLES:
sage: K = graphs.CompleteBipartiteGraph(9,3)
sage: len(K.edge_boundary( [0,1,2,3,4,5,6,7,8], [9,10,11] ))
27
sage: K.size()
27
Note that the edge boundary preserves direction:
sage: K = graphs.CompleteBipartiteGraph(9,3).to_directed()
sage: len(K.edge_boundary( [0,1,2,3,4,5,6,7,8], [9,10,11] ))
27
sage: K.size()
54
sage: D = DiGraph({0:[1,2], 3:[0]})
sage: D.edge_boundary([0])
[(0, 1, None), (0, 2, None)]
sage: D.edge_boundary([0], labels=False)
[(0, 1), (0, 2)]
TESTS:
sage: G = graphs.DiamondGraph()
sage: G.edge_boundary([0,1])
[(0, 2, None), (1, 2, None), (1, 3, None)]
sage: G.edge_boundary([0], [0])
[]
sage: G.edge_boundary([2], [0])
[(0, 2, None)]
Returns the edge connectivity of the graph. For more information, see the Wikipedia article on connectivity.
Note
When the graph is a directed graph, this method actually computes the strong connectivity, (i.e. a directed graph is strongly \(k\)-connected if there are \(k\) disjoint paths between any two vertices \(u, v\)). If you do not want to consider strong connectivity, the best is probably to convert your DiGraph object to a Graph object, and compute the connectivity of this other graph.
INPUT:
EXAMPLES:
A basic application on the PappusGraph:
sage: g = graphs.PappusGraph()
sage: g.edge_connectivity()
3
The edge connectivity of a complete graph ( and of a random graph ) is its minimum degree, and one of the two parts of the bipartition is reduced to only one vertex. The cutedges isomorphic to a Star graph:
sage: g = graphs.CompleteGraph(5)
sage: [ value, edges, [ setA, setB ]] = g.edge_connectivity(vertices=True)
sage: print value
4
sage: len(setA) == 1 or len(setB) == 1
True
sage: cut = Graph()
sage: cut.add_edges(edges)
sage: cut.is_isomorphic(graphs.StarGraph(4))
True
Even if obviously in any graph we know that the edge connectivity is less than the minimum degree of the graph:
sage: g = graphs.RandomGNP(10,.3)
sage: min(g.degree()) >= g.edge_connectivity()
True
If we build a tree then assign to its edges a random value, the minimum cut will be the edge with minimum value:
sage: g = graphs.RandomGNP(15,.5)
sage: tree = Graph()
sage: tree.add_edges(g.min_spanning_tree())
sage: for u,v in tree.edge_iterator(labels=None):
... tree.set_edge_label(u,v,random())
sage: minimum = min([l for u,v,l in tree.edge_iterator()])
sage: [value, [(u,v,l)]] = tree.edge_connectivity(value_only=False, use_edge_labels=True)
sage: l == minimum
True
When value_only = True, this function is optimized for small connectivity values and does not need to build a linear program.
It is the case for connected graphs which are not connected
sage: g = 2 * graphs.PetersenGraph()
sage: g.edge_connectivity()
0.0
Or if they are just 1-connected
sage: g = graphs.PathGraph(10)
sage: g.edge_connectivity()
1.0
For directed graphs, the strong connectivity is tested through the dedicated function
sage: g = digraphs.ButterflyGraph(3)
sage: g.edge_connectivity()
0.0
Returns a minimum edge cut between vertices \(s\) and \(t\) represented by a list of edges.
A minimum edge cut between two vertices \(s\) and \(t\) of self is a set \(A\) of edges of minimum weight such that the graph obtained by removing \(A\) from self is disconnected. For more information, see the Wikipedia article on cuts.
INPUT:
s – source vertex
t – sink vertex
value_only – boolean (default: True). When set to True, only the weight of a minimum cut is returned. Otherwise, a list of edges of a minimum cut is also returned.
use_edge_labels – boolean (default: False). When set to True, computes a weighted minimum cut where each edge has a weight defined by its label (if an edge has no label, \(1\) is assumed). Otherwise, each edge has weight \(1\).
vertices – boolean (default: False). When set to True, returns a list of edges in the edge cut and the two sets of vertices that are disconnected by the cut.
Note: vertices=True implies value_only=False.
method – There are currently two different implementations of this method :
- If method = "FF" (default), a Python implementation of the Ford-Fulkerson algorithm is used.
- If method = "LP", the flow problem is solved using Linear Programming.
solver – (default: None) Specify a Linear Program (LP) solver to be used. If set to None, the default one is used. For more information on LP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
verbose – integer (default: 0). Sets the level of verbosity. Set to 0 by default, which means quiet.
Note
The use of Linear Programming for non-integer problems may possibly mean the presence of a (slight) numerical noise.
OUTPUT:
Real number or tuple, depending on the given arguments (examples are given below).
EXAMPLES:
A basic application in the Pappus graph:
sage: g = graphs.PappusGraph()
sage: g.edge_cut(1, 2, value_only=True)
3
Or on Petersen’s graph, with the corresponding bipartition of the vertex set:
sage: g = graphs.PetersenGraph()
sage: g.edge_cut(0, 3, vertices=True)
[3, [(0, 1, None), (0, 4, None), (0, 5, None)], [[0], [1, 2, 3, 4, 5, 6, 7, 8, 9]]]
If the graph is a path with randomly weighted edges:
sage: g = graphs.PathGraph(15)
sage: for (u,v) in g.edge_iterator(labels=None):
... g.set_edge_label(u,v,random())
The edge cut between the two ends is the edge of minimum weight:
sage: minimum = min([l for u,v,l in g.edge_iterator()])
sage: minimum == g.edge_cut(0, 14, use_edge_labels=True)
True
sage: [value,[e]] = g.edge_cut(0, 14, use_edge_labels=True, value_only=False)
sage: g.edge_label(e[0],e[1]) == minimum
True
The two sides of the edge cut are obviously shorter paths:
sage: value,edges,[set1,set2] = g.edge_cut(0, 14, use_edge_labels=True, vertices=True)
sage: g.subgraph(set1).is_isomorphic(graphs.PathGraph(len(set1)))
True
sage: g.subgraph(set2).is_isomorphic(graphs.PathGraph(len(set2)))
True
sage: len(set1) + len(set2) == g.order()
True
TESTS:
If method is set to an exotic value:
sage: g = graphs.PetersenGraph()
sage: g.edge_cut(0,1, method="Divination")
Traceback (most recent call last):
...
ValueError: The method argument has to be equal to either "FF" or "LP"
Same result for both methods:
sage: g = graphs.RandomGNP(20,.3)
sage: for u,v in g.edges(labels=False):
... g.set_edge_label(u,v,round(random(),5))
sage: g.edge_cut(0,1, method="FF") == g.edge_cut(0,1,method="LP")
True
Rounded return value when using the LP method:
sage: g = graphs.PappusGraph()
sage: g.edge_cut(1, 2, value_only=True, method = "LP")
3
sage: G = Graph([(0, 3, 1), (0, 4, 1), (1, 2, 1), (2, 3, 1), (2, 4, 1)])
sage: G.edge_cut(0,1,value_only=False,use_edge_labels=True)
[1, [(1, 2, 1)]]
sage: G = DiGraph([(0, 3, 1), (0, 4, 1), (2, 1, 1), (3, 2, 1), (4, 2, 1)])
sage: G.edge_cut(0,1,value_only=False,use_edge_labels=True)
[1, [(2, 1, 1)]]
sage: G.edge_cut(0,1,value_only=False,use_edge_labels=True,method='LP')
(1.0, [(2, 1)])
Returns a list of edge-disjoint paths between two vertices as given by Menger’s theorem.
The edge version of Menger’s theorem asserts that the size of the minimum edge cut between two vertices \(s\) and`t` (the minimum number of edges whose removal disconnects \(s\) and \(t\)) is equal to the maximum number of pairwise edge-independent paths from \(s\) to \(t\).
This function returns a list of such paths.
INPUT:
method – There are currently two different implementations of this method :
- If method = "FF" (default), a Python implementation of the Ford-Fulkerson algorithm is used.
- If method = "LP", the flow problem is solved using Linear Programming.
Note
This function is topological: it does not take the eventual weights of the edges into account.
EXAMPLE:
In a complete bipartite graph
sage: g = graphs.CompleteBipartiteGraph(2,3)
sage: g.edge_disjoint_paths(0,1)
[[0, 2, 1], [0, 3, 1], [0, 4, 1]]
Returns the desired number of edge-disjoint spanning trees/arborescences.
INPUT:
ALGORITHM:
Mixed Integer Linear Program. The formulation can be found in [LPForm].
There are at least two possible rewritings of this method which do not use Linear Programming:
- The algorithm presented in the paper entitled “A short proof of the tree-packing theorem”, by Thomas Kaiser [KaisPacking].
- The implementation of a Matroid class and of the Matroid Union Theorem (see section 42.3 of [SchrijverCombOpt]), applied to the cycle Matroid (see chapter 51 of [SchrijverCombOpt]).
EXAMPLES:
The Petersen Graph does have a spanning tree (it is connected):
sage: g = graphs.PetersenGraph()
sage: [T] = g.edge_disjoint_spanning_trees(1)
sage: T.is_tree()
True
Though, it does not have 2 edge-disjoint trees (as it has less than \(2(|V|-1)\) edges):
sage: g.edge_disjoint_spanning_trees(2)
Traceback (most recent call last):
...
EmptySetError: This graph does not contain the required number of trees/arborescences !
By Edmond’s theorem, a graph which is \(k\)-connected always has \(k\) edge-disjoint arborescences, regardless of the root we pick:
sage: g = digraphs.RandomDirectedGNP(28,.3) # reduced from 30 to 28, cf. #9584
sage: k = Integer(g.edge_connectivity())
sage: arborescences = g.edge_disjoint_spanning_trees(k) # long time (up to 15s on sage.math, 2011)
sage: all([a.is_directed_acyclic() for a in arborescences]) # long time
True
sage: all([a.is_connected() for a in arborescences]) # long time
True
In the undirected case, we can only ensure half of it:
sage: g = graphs.RandomGNP(30,.3)
sage: k = floor(Integer(g.edge_connectivity())/2)
sage: trees = g.edge_disjoint_spanning_trees(k)
sage: all([t.is_tree() for t in trees])
True
REFERENCES:
[LPForm] | Nathann Cohen, Several Graph problems and their Linear Program formulations, http://hal.archives-ouvertes.fr/inria-00504914/en |
[KaisPacking] | Thomas Kaiser A short proof of the tree-packing theorem Arxiv 0911.2809 |
[SchrijverCombOpt] | (1, 2) Alexander Schrijver Combinatorial optimization: polyhedra and efficiency 2003 |
Returns an iterator over edges.
The iterator returned is over the edges incident with any vertex given in the parameter vertices. If the graph is directed, iterates over edges going out only. If vertices is None, then returns an iterator over all edges. If self is directed, returns outgoing edges only.
INPUT:
EXAMPLES:
sage: for i in graphs.PetersenGraph().edge_iterator([0]):
... print i
(0, 1, None)
(0, 4, None)
(0, 5, None)
sage: D = DiGraph( { 0 : [1,2], 1: [0] } )
sage: for i in D.edge_iterator([0]):
... print i
(0, 1, None)
(0, 2, None)
sage: G = graphs.TetrahedralGraph()
sage: list(G.edge_iterator(labels=False))
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
sage: D = DiGraph({1:[0], 2:[0]})
sage: list(D.edge_iterator(0))
[]
sage: list(D.edge_iterator(0, ignore_direction=True))
[(1, 0, None), (2, 0, None)]
Returns the label of an edge. Note that if the graph allows multiple edges, then a list of labels on the edge is returned.
EXAMPLES:
sage: G = Graph({0 : {1 : 'edgelabel'}}, sparse=True)
sage: G.edges(labels=False)
[(0, 1)]
sage: G.edge_label( 0, 1 )
'edgelabel'
sage: D = DiGraph({0 : {1 : 'edgelabel'}}, sparse=True)
sage: D.edges(labels=False)
[(0, 1)]
sage: D.edge_label( 0, 1 )
'edgelabel'
sage: G = Graph(multiedges=True, sparse=True)
sage: [G.add_edge(0,1,i) for i in range(1,6)]
[None, None, None, None, None]
sage: sorted(G.edge_label(0,1))
[1, 2, 3, 4, 5]
TESTS:
sage: G = Graph()
sage: G.add_edge(0,1,[7])
sage: G.add_edge(0,2,[7])
sage: G.edge_label(0,1)[0] += 1
sage: G.edges()
[(0, 1, [8]), (0, 2, [7])]
Returns a list of edge labels.
EXAMPLES:
sage: G = Graph({0:{1:'x',2:'z',3:'a'}, 2:{5:'out'}}, sparse=True)
sage: G.edge_labels()
['x', 'z', 'a', 'out']
sage: G = DiGraph({0:{1:'x',2:'z',3:'a'}, 2:{5:'out'}}, sparse=True)
sage: G.edge_labels()
['x', 'z', 'a', 'out']
Return a list of edges.
Each edge is a triple (u,v,l) where u and v are vertices and l is a label. If the parameter labels is False then a list of couple (u,v) is returned where u and v are vertices.
INPUT:
OUTPUT: A list of tuples. It is safe to change the returned list.
Warning
Since any object may be a vertex, there is no guarantee that any two vertices will be comparable, and thus no guarantee how two edges may compare. With default objects for vertices (all integers), or when all the vertices are of the same simple type, then there should not be a problem with how the vertices will be sorted. However, if you need to guarantee a total order for the sorting of the edges, use the key argument, as illustrated in the examples below.
EXAMPLES:
sage: graphs.DodecahedralGraph().edges()
[(0, 1, None), (0, 10, None), (0, 19, None), (1, 2, None), (1, 8, None), (2, 3, None), (2, 6, None), (3, 4, None), (3, 19, None), (4, 5, None), (4, 17, None), (5, 6, None), (5, 15, None), (6, 7, None), (7, 8, None), (7, 14, None), (8, 9, None), (9, 10, None), (9, 13, None), (10, 11, None), (11, 12, None), (11, 18, None), (12, 13, None), (12, 16, None), (13, 14, None), (14, 15, None), (15, 16, None), (16, 17, None), (17, 18, None), (18, 19, None)]
sage: graphs.DodecahedralGraph().edges(labels=False)
[(0, 1), (0, 10), (0, 19), (1, 2), (1, 8), (2, 3), (2, 6), (3, 4), (3, 19), (4, 5), (4, 17), (5, 6), (5, 15), (6, 7), (7, 8), (7, 14), (8, 9), (9, 10), (9, 13), (10, 11), (11, 12), (11, 18), (12, 13), (12, 16), (13, 14), (14, 15), (15, 16), (16, 17), (17, 18), (18, 19)]
sage: D = graphs.DodecahedralGraph().to_directed()
sage: D.edges()
[(0, 1, None), (0, 10, None), (0, 19, None), (1, 0, None), (1, 2, None), (1, 8, None), (2, 1, None), (2, 3, None), (2, 6, None), (3, 2, None), (3, 4, None), (3, 19, None), (4, 3, None), (4, 5, None), (4, 17, None), (5, 4, None), (5, 6, None), (5, 15, None), (6, 2, None), (6, 5, None), (6, 7, None), (7, 6, None), (7, 8, None), (7, 14, None), (8, 1, None), (8, 7, None), (8, 9, None), (9, 8, None), (9, 10, None), (9, 13, None), (10, 0, None), (10, 9, None), (10, 11, None), (11, 10, None), (11, 12, None), (11, 18, None), (12, 11, None), (12, 13, None), (12, 16, None), (13, 9, None), (13, 12, None), (13, 14, None), (14, 7, None), (14, 13, None), (14, 15, None), (15, 5, None), (15, 14, None), (15, 16, None), (16, 12, None), (16, 15, None), (16, 17, None), (17, 4, None), (17, 16, None), (17, 18, None), (18, 11, None), (18, 17, None), (18, 19, None), (19, 0, None), (19, 3, None), (19, 18, None)]
sage: D.edges(labels = False)
[(0, 1), (0, 10), (0, 19), (1, 0), (1, 2), (1, 8), (2, 1), (2, 3), (2, 6), (3, 2), (3, 4), (3, 19), (4, 3), (4, 5), (4, 17), (5, 4), (5, 6), (5, 15), (6, 2), (6, 5), (6, 7), (7, 6), (7, 8), (7, 14), (8, 1), (8, 7), (8, 9), (9, 8), (9, 10), (9, 13), (10, 0), (10, 9), (10, 11), (11, 10), (11, 12), (11, 18), (12, 11), (12, 13), (12, 16), (13, 9), (13, 12), (13, 14), (14, 7), (14, 13), (14, 15), (15, 5), (15, 14), (15, 16), (16, 12), (16, 15), (16, 17), (17, 4), (17, 16), (17, 18), (18, 11), (18, 17), (18, 19), (19, 0), (19, 3), (19, 18)]
The default is to sort the returned list in the default fashion, as in the above examples. this can be overridden by specifying a key function. This first example just ignores the labels in the third component of the triple.
sage: G=graphs.CycleGraph(5)
sage: G.edges(key = lambda x: (x[1],-x[0]))
[(0, 1, None), (1, 2, None), (2, 3, None), (3, 4, None), (0, 4, None)]
We set the labels to characters and then perform a default sort followed by a sort according to the labels.
sage: G=graphs.CycleGraph(5)
sage: for e in G.edges():
... G.set_edge_label(e[0], e[1], chr(ord('A')+e[0]+5*e[1]))
sage: G.edges(sort=True)
[(0, 1, 'F'), (0, 4, 'U'), (1, 2, 'L'), (2, 3, 'R'), (3, 4, 'X')]
sage: G.edges(key=lambda x: x[2])
[(0, 1, 'F'), (1, 2, 'L'), (2, 3, 'R'), (0, 4, 'U'), (3, 4, 'X')]
TESTS:
It is an error to turn off sorting while providing a key function for sorting.
sage: P=graphs.PetersenGraph()
sage: P.edges(sort=False, key=lambda x: x)
Traceback (most recent call last):
...
ValueError: sort keyword is False, yet a key function is given
Returns incident edges to some vertices.
If vertices` is a vertex, then it returns the list of edges incident to that vertex. If ``vertices is a list of vertices then it returns the list of all edges adjacent to those vertices. If vertices is None, returns a list of all edges in graph. For digraphs, only lists outward edges.
INPUT:
EXAMPLES:
sage: graphs.PetersenGraph().edges_incident([0,9], labels=False)
[(0, 1), (0, 4), (0, 5), (4, 9), (6, 9), (7, 9)]
sage: D = DiGraph({0:[1]})
sage: D.edges_incident([0])
[(0, 1, None)]
sage: D.edges_incident([1])
[]
TESTS:
sage: G = Graph({0:[0]}, loops=True) # ticket 9581
sage: G.edges_incident(0)
[(0, 0, None)]
Returns the right eigenspaces of the adjacency matrix of the graph.
INPUT:
OUTPUT:
A list of pairs. Each pair is an eigenvalue of the adjacency matrix of the graph, followed by the vector space that is the eigenspace for that eigenvalue, when the eigenvectors are placed on the right of the matrix.
For some graphs, some of the the eigenspaces are described exactly by vector spaces over a NumberField(). For numerical eigenvectors use eigenvectors().
EXAMPLES:
sage: P = graphs.PetersenGraph()
sage: P.eigenspaces()
[
(3, Vector space of degree 10 and dimension 1 over Rational Field
User basis matrix:
[1 1 1 1 1 1 1 1 1 1]),
(-2, Vector space of degree 10 and dimension 4 over Rational Field
User basis matrix:
[ 1 0 0 0 -1 -1 -1 0 1 1]
[ 0 1 0 0 -1 0 -2 -1 1 2]
[ 0 0 1 0 -1 1 -1 -2 0 2]
[ 0 0 0 1 -1 1 0 -1 -1 1]),
(1, Vector space of degree 10 and dimension 5 over Rational Field
User basis matrix:
[ 1 0 0 0 0 1 -1 0 0 -1]
[ 0 1 0 0 0 -1 1 -1 0 0]
[ 0 0 1 0 0 0 -1 1 -1 0]
[ 0 0 0 1 0 0 0 -1 1 -1]
[ 0 0 0 0 1 -1 0 0 -1 1])
]
Eigenspaces for the Laplacian should be identical since the Petersen graph is regular. However, since the output also contains the eigenvalues, the two outputs are slightly different.
sage: P.eigenspaces(laplacian=True)
[
(0, Vector space of degree 10 and dimension 1 over Rational Field
User basis matrix:
[1 1 1 1 1 1 1 1 1 1]),
(5, Vector space of degree 10 and dimension 4 over Rational Field
User basis matrix:
[ 1 0 0 0 -1 -1 -1 0 1 1]
[ 0 1 0 0 -1 0 -2 -1 1 2]
[ 0 0 1 0 -1 1 -1 -2 0 2]
[ 0 0 0 1 -1 1 0 -1 -1 1]),
(2, Vector space of degree 10 and dimension 5 over Rational Field
User basis matrix:
[ 1 0 0 0 0 1 -1 0 0 -1]
[ 0 1 0 0 0 -1 1 -1 0 0]
[ 0 0 1 0 0 0 -1 1 -1 0]
[ 0 0 0 1 0 0 0 -1 1 -1]
[ 0 0 0 0 1 -1 0 0 -1 1])
]
Notice how one eigenspace below is described with a square root of 2. For the two possible values (positive and negative) there is a corresponding eigenspace.
sage: C = graphs.CycleGraph(8)
sage: C.eigenspaces()
[
(2, Vector space of degree 8 and dimension 1 over Rational Field
User basis matrix:
[1 1 1 1 1 1 1 1]),
(-2, Vector space of degree 8 and dimension 1 over Rational Field
User basis matrix:
[ 1 -1 1 -1 1 -1 1 -1]),
(0, Vector space of degree 8 and dimension 2 over Rational Field
User basis matrix:
[ 1 0 -1 0 1 0 -1 0]
[ 0 1 0 -1 0 1 0 -1]),
(a3, Vector space of degree 8 and dimension 2 over Number Field in a3 with defining polynomial x^2 - 2
User basis matrix:
[ 1 0 -1 -a3 -1 0 1 a3]
[ 0 1 a3 1 0 -1 -a3 -1])
]
A digraph may have complex eigenvalues and eigenvectors. For a 3-cycle, we have:
sage: T = DiGraph({0:[1], 1:[2], 2:[0]})
sage: T.eigenspaces()
[
(1, Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[1 1 1]),
(a1, Vector space of degree 3 and dimension 1 over Number Field in a1 with defining polynomial x^2 + x + 1
User basis matrix:
[ 1 a1 -a1 - 1])
]
Returns the right eigenvectors of the adjacency matrix of the graph.
INPUT:
OUTPUT:
A list of triples. Each triple begins with an eigenvalue of the adjacency matrix of the graph. This is followed by a list of eigenvectors for the eigenvalue, when the eigenvectors are placed on the right side of the matrix. Together, the eigenvectors form a basis for the eigenspace. The triple concludes with the algebraic multiplicity of the eigenvalue.
For some graphs, the exact eigenspaces provided by eigenspaces() provide additional insight into the structure of the eigenspaces.
EXAMPLES:
sage: P = graphs.PetersenGraph()
sage: P.eigenvectors()
[(3, [
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
], 1), (-2, [
(1, 0, 0, 0, -1, -1, -1, 0, 1, 1),
(0, 1, 0, 0, -1, 0, -2, -1, 1, 2),
(0, 0, 1, 0, -1, 1, -1, -2, 0, 2),
(0, 0, 0, 1, -1, 1, 0, -1, -1, 1)
], 4), (1, [
(1, 0, 0, 0, 0, 1, -1, 0, 0, -1),
(0, 1, 0, 0, 0, -1, 1, -1, 0, 0),
(0, 0, 1, 0, 0, 0, -1, 1, -1, 0),
(0, 0, 0, 1, 0, 0, 0, -1, 1, -1),
(0, 0, 0, 0, 1, -1, 0, 0, -1, 1)
], 5)]
Eigenspaces for the Laplacian should be identical since the Petersen graph is regular. However, since the output also contains the eigenvalues, the two outputs are slightly different.
sage: P.eigenvectors(laplacian=True)
[(0, [
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
], 1), (5, [
(1, 0, 0, 0, -1, -1, -1, 0, 1, 1),
(0, 1, 0, 0, -1, 0, -2, -1, 1, 2),
(0, 0, 1, 0, -1, 1, -1, -2, 0, 2),
(0, 0, 0, 1, -1, 1, 0, -1, -1, 1)
], 4), (2, [
(1, 0, 0, 0, 0, 1, -1, 0, 0, -1),
(0, 1, 0, 0, 0, -1, 1, -1, 0, 0),
(0, 0, 1, 0, 0, 0, -1, 1, -1, 0),
(0, 0, 0, 1, 0, 0, 0, -1, 1, -1),
(0, 0, 0, 0, 1, -1, 0, 0, -1, 1)
], 5)]
sage: C = graphs.CycleGraph(8)
sage: C.eigenvectors()
[(2, [
(1, 1, 1, 1, 1, 1, 1, 1)
], 1), (-2, [
(1, -1, 1, -1, 1, -1, 1, -1)
], 1), (0, [
(1, 0, -1, 0, 1, 0, -1, 0),
(0, 1, 0, -1, 0, 1, 0, -1)
], 2), (-1.4142135623..., [(1, 0, -1, 1.4142135623..., -1, 0, 1, -1.4142135623...), (0, 1, -1.4142135623..., 1, 0, -1, 1.4142135623..., -1)], 2), (1.4142135623..., [(1, 0, -1, -1.4142135623..., -1, 0, 1, 1.4142135623...), (0, 1, 1.4142135623..., 1, 0, -1, -1.4142135623..., -1)], 2)]
A digraph may have complex eigenvalues. Previously, the complex parts of graph eigenvalues were being dropped. For a 3-cycle, we have:
sage: T = DiGraph({0:[1], 1:[2], 2:[0]})
sage: T.eigenvectors()
[(1, [
(1, 1, 1)
], 1), (-0.5000000000... - 0.8660254037...*I, [(1, -0.5000000000... - 0.8660254037...*I, -0.5000000000... + 0.8660254037...*I)], 1), (-0.5000000000... + 0.8660254037...*I, [(1, -0.5000000000... + 0.8660254037...*I, -0.5000000000... - 0.8660254037...*I)], 1)]
Return a list of edges forming an eulerian circuit if one exists. Otherwise return False.
This is implemented using Hierholzer’s algorithm.
INPUT:
OUTPUT:
either ([edges], [vertices]) or [edges] of an Eulerian circuit (or path)
EXAMPLES:
sage: g=graphs.CycleGraph(5);
sage: g.eulerian_circuit()
[(0, 4, None), (4, 3, None), (3, 2, None), (2, 1, None), (1, 0, None)]
sage: g.eulerian_circuit(labels=False)
[(0, 4), (4, 3), (3, 2), (2, 1), (1, 0)]
sage: g = graphs.CompleteGraph(7)
sage: edges, vertices = g.eulerian_circuit(return_vertices=True)
sage: vertices
[0, 6, 5, 4, 6, 3, 5, 2, 4, 3, 2, 6, 1, 5, 0, 4, 1, 3, 0, 2, 1, 0]
sage: graphs.CompleteGraph(4).eulerian_circuit()
False
A disconnected graph can be eulerian:
sage: g = Graph({0: [], 1: [2], 2: [3], 3: [1], 4: []})
sage: g.eulerian_circuit(labels=False)
[(1, 3), (3, 2), (2, 1)]
sage: g = DiGraph({0: [1], 1: [2, 4], 2:[3], 3:[1]})
sage: g.eulerian_circuit(labels=False, path=True)
[(0, 1), (1, 2), (2, 3), (3, 1), (1, 4)]
sage: g = Graph({0:[1,2,3], 1:[2,3], 2:[3,4], 3:[4]})
sage: g.is_eulerian(path=True)
(0, 1)
sage: g.eulerian_circuit(labels=False, path=True)
[(1, 3), (3, 4), (4, 2), (2, 3), (3, 0), (0, 2), (2, 1), (1, 0)]
TESTS:
sage: Graph({'H': ['G','L','L','D'], 'L': ['G','D']}).eulerian_circuit(labels=False)
[('H', 'D'), ('D', 'L'), ('L', 'G'), ('G', 'H'), ('H', 'L'), ('L', 'H')]
sage: Graph({0: [0, 1, 1, 1, 1]}).eulerian_circuit(labels=False)
[(0, 1), (1, 0), (0, 1), (1, 0), (0, 0)]
Returns a DiGraph which is an Eulerian orientation of the current graph.
An Eulerian graph being a graph such that any vertex has an even degree, an Eulerian orientation of a graph is an orientation of its edges such that each vertex \(v\) verifies \(d^+(v)=d^-(v)=d(v)/2\), where \(d^+\) and \(d^-\) respectively represent the out-degree and the in-degree of a vertex.
If the graph is not Eulerian, the orientation verifies for any vertex \(v\) that \(| d^+(v)-d^-(v) | \leq 1\).
ALGORITHM:
This algorithm is a random walk through the edges of the graph, which orients the edges according to the walk. When a vertex is reached which has no non-oriented edge ( this vertex must have odd degree ), the walk resumes at another vertex of odd degree, if any.
This algorithm has complexity \(O(m)\), where \(m\) is the number of edges in the graph.
EXAMPLES:
The CubeGraph with parameter 4, which is regular of even degree, has an Eulerian orientation such that \(d^+=d^-\):
sage: g=graphs.CubeGraph(4)
sage: g.degree()
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]
sage: o=g.eulerian_orientation()
sage: o.in_degree()
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
sage: o.out_degree()
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
Secondly, the Petersen Graph, which is 3 regular has an orientation such that the difference between \(d^+\) and \(d^-\) is at most 1:
sage: g=graphs.PetersenGraph()
sage: o=g.eulerian_orientation()
sage: o.in_degree()
[2, 2, 2, 2, 2, 1, 1, 1, 1, 1]
sage: o.out_degree()
[1, 1, 1, 1, 1, 2, 2, 2, 2, 2]
Return the faces of an embedded graph.
A combinatorial embedding of a graph is a clockwise ordering of the neighbors of each vertex. From this information one can define the faces of the embedding, which is what this method returns.
INPUT:
Note
embedding is an ordered list based on the hash order of the vertices of graph. To avoid confusion, it might be best to set the rot_sys based on a ‘nice_copy’ of the graph.
See also
EXAMPLES:
sage: T = graphs.TetrahedralGraph()
sage: T.faces({0: [1, 3, 2], 1: [0, 2, 3], 2: [0, 3, 1], 3: [0, 1, 2]})
[[(0, 1), (1, 2), (2, 0)],
[(3, 2), (2, 1), (1, 3)],
[(2, 3), (3, 0), (0, 2)],
[(0, 3), (3, 1), (1, 0)]]
With no embedding provided:
sage: graphs.TetrahedralGraph().faces()
[[(0, 1), (1, 2), (2, 0)],
[(3, 2), (2, 1), (1, 3)],
[(2, 3), (3, 0), (0, 2)],
[(0, 3), (3, 1), (1, 0)]]
With no embedding provided (non-planar graph):
sage: graphs.PetersenGraph().faces()
Traceback (most recent call last):
...
ValueError: No embedding is provided and the graph is not planar.
Computes the minimum feedback vertex set of a (di)graph.
The minimum feedback vertex set of a (di)graph is a set of vertices that intersect all of its cycles. Equivalently, a minimum feedback vertex set of a (di)graph is a set \(S\) of vertices such that the digraph \(G-S\) is acyclic. For more information, see Wikipedia article Feedback_vertex_set.
INPUT:
ALGORITHMS:
(Constraints generation)
When the parameter constraint_generation is enabled (default) the following MILP formulation is used to solve the problem:
As the number of circuits contained in a graph is exponential, this LP is solved through constraint generation. This means that the solver is sequentially asked to solve the problem, knowing only a portion of the circuits contained in \(G\), each time adding to the list of its constraints the circuit which its last answer had left intact.
(Another formulation based on an ordering of the vertices)
When the graph is directed, a second (and very slow) formulation is available, which should only be used to check the result of the first implementation in case of doubt.
A brief explanation:
An acyclic digraph can be seen as a poset, and every poset has a linear extension. This means that in any acyclic digraph the vertices can be ordered with a total order \(<\) in such a way that if \((u,v)\in G\), then \(u<v\). Thus, this linear program is built in order to assign to each vertex \(v\) a number \(d_v\in [0,\dots,n-1]\) such that if there exists an edge \((u,v)\in G\) then either \(d_v<d_u\) or one of \(u\) or \(v\) is removed. The number of vertices removed is then minimized, which is the objective.
EXAMPLES:
The necessary example:
sage: g = graphs.PetersenGraph()
sage: fvs = g.feedback_vertex_set()
sage: len(fvs)
3
sage: g.delete_vertices(fvs)
sage: g.is_forest()
True
In a digraph built from a graph, any edge is replaced by arcs going in the two opposite directions, thus creating a cycle of length two. Hence, to remove all the cycles from the graph, each edge must see one of its neighbors removed: a feedback vertex set is in this situation a vertex cover:
sage: cycle = graphs.CycleGraph(5)
sage: dcycle = DiGraph(cycle)
sage: cycle.vertex_cover(value_only=True)
3
sage: feedback = dcycle.feedback_vertex_set()
sage: len(feedback)
3
sage: (u,v,l) = next(cycle.edge_iterator())
sage: u in feedback or v in feedback
True
For a circuit, the minimum feedback arc set is clearly \(1\):
sage: circuit = digraphs.Circuit(5)
sage: circuit.feedback_vertex_set(value_only=True) == 1
True
TESTS:
Comparing with/without constraint generation:
sage: g = digraphs.RandomDirectedGNP(10,.3)
sage: x = g.feedback_vertex_set(value_only = True)
sage: y = g.feedback_vertex_set(value_only = True,
....: constraint_generation = False)
sage: x == y
True
Bad algorithm:
sage: g = graphs.PetersenGraph()
sage: g.feedback_vertex_set(constraint_generation = False)
Traceback (most recent call last):
...
ValueError: The only implementation available for undirected graphs is with constraint_generation set to True.
Returns a maximum flow in the graph from x to y represented by an optimal valuation of the edges. For more information, see the Wikipedia article on maximum flow.
As an optimization problem, is can be expressed this way :
INPUT:
x – Source vertex
y – Sink vertex
value_only – boolean (default: True)
integer – boolean (default: False)
use_edge_labels – boolean (default: True)
vertex_bound – boolean (default: False)
method – There are currently two different implementations of this method :
- If method = "FF", a Python implementation of the Ford-Fulkerson algorithm is used (only available when vertex_bound = False)
- If method = "LP", the flow problem is solved using Linear Programming.
- If method = None (default), the Ford-Fulkerson implementation is used iif vertex_bound = False.
solver – Specify a Linear Program solver to be used. If set to None, the default one is used. function of MixedIntegerLinearProgram. See the documentation of MixedIntegerLinearProgram.solve for more information.
Only useful when LP is used to solve the flow problem.
verbose (integer) – sets the level of verbosity. Set to 0 by default (quiet).
Only useful when LP is used to solve the flow problem.
Note
Even though the two different implementations are meant to return the same Flow values, they can not be expected to return the same Flow graphs.
Besides, the use of Linear Programming may possibly mean a (slight) numerical noise.
EXAMPLES:
Two basic applications of the flow method for the PappusGraph and the ButterflyGraph with parameter \(2\)
sage: g=graphs.PappusGraph()
sage: g.flow(1,2)
3
sage: b=digraphs.ButterflyGraph(2)
sage: b.flow(('00',1),('00',2))
1
The flow method can be used to compute a matching in a bipartite graph by linking a source \(s\) to all the vertices of the first set and linking a sink \(t\) to all the vertices of the second set, then computing a maximum \(s-t\) flow
sage: g = DiGraph()
sage: g.add_edges([('s',i) for i in range(4)])
sage: g.add_edges([(i,4+j) for i in range(4) for j in range(4)])
sage: g.add_edges([(4+i,'t') for i in range(4)])
sage: [cardinal, flow_graph] = g.flow('s','t',integer=True,value_only=False)
sage: flow_graph.delete_vertices(['s','t'])
sage: len(flow_graph.edges())
4
TESTS:
An exception if raised when forcing “FF” with vertex_bound = True:
sage: g = graphs.PetersenGraph()
sage: g.flow(0,1,vertex_bound = True, method = "FF")
Traceback (most recent call last):
...
ValueError: This method does not support both vertex_bound=True and method="FF".
Or if the method is different from the expected values:
sage: g.flow(0,1, method="Divination")
Traceback (most recent call last):
...
ValueError: The method argument has to be equal to either "FF", "LP" or None
The two methods are indeed returning the same results (possibly with some numerical noise, cf. trac ticket #12362):
sage: g = graphs.RandomGNP(20,.3)
sage: for u,v in g.edges(labels=False):
... g.set_edge_label(u,v,round(random(),5))
sage: flow_ff = g.flow(0,1, method="FF")
sage: flow_lp = g.flow(0,1,method="LP")
sage: abs(flow_ff-flow_lp) < 0.01
True
Returns the minimal genus of the graph.
The genus of a compact surface is the number of handles it has. The genus of a graph is the minimal genus of the surface it can be embedded into.
Note - This function uses Euler’s formula and thus it is necessary to consider only connected graphs.
INPUT:
EXAMPLES:
sage: g = graphs.PetersenGraph()
sage: g.genus() # tests for minimal genus by default
1
sage: g.genus(on_embedding=True, maximal=True) # on_embedding overrides minimal and maximal arguments
1
sage: g.genus(maximal=True) # setting maximal to True overrides default minimal=True
3
sage: g.genus(on_embedding=g.get_embedding()) # can also send a valid combinatorial embedding dict
3
sage: (graphs.CubeGraph(3)).genus()
0
sage: K23 = graphs.CompleteBipartiteGraph(2,3)
sage: K23.genus()
0
sage: K33 = graphs.CompleteBipartiteGraph(3,3)
sage: K33.genus()
1
Using the circular argument, we can compute the minimal genus preserving a planar, ordered boundary:
sage: cube = graphs.CubeGraph(2)
sage: cube.set_boundary(['01','10'])
doctest:...: DeprecationWarning: The boundary parameter is deprecated and will soon disappear.
See http://trac.sagemath.org/15494 for details.
sage: cube.genus()
0
sage: cube.is_circular_planar()
True
sage: cube.genus(circular=True)
doctest:...: DeprecationWarning: The boundary parameter is deprecated and will soon disappear.
See http://trac.sagemath.org/15494 for details.
0
sage: cube.genus(circular=True, on_embedding=True)
0
sage: cube.genus(circular=True, maximal=True)
Traceback (most recent call last):
...
NotImplementedError: Cannot compute the maximal genus of a genus respecting a boundary.
Note: not everything works for multigraphs, looped graphs or digraphs. But the minimal genus is ultimately computable for every connected graph – but the embedding we obtain for the simple graph can’t be easily converted to an embedding of a non-simple graph. Also, the maximal genus of a multigraph does not trivially correspond to that of its simple graph.
sage: G = DiGraph({ 0 : [0,1,1,1], 1 : [2,2,3,3], 2 : [1,3,3], 3:[0,3]})
sage: G.genus()
Traceback (most recent call last):
...
NotImplementedError: Can't work with embeddings of non-simple graphs
sage: G.to_simple().genus()
0
sage: G.genus(set_embedding=False)
0
sage: G.genus(maximal=True, set_embedding=False)
Traceback (most recent call last):
...
NotImplementedError: Can't compute the maximal genus of a graph with loops or multiple edges
We break graphs with cut vertices into their blocks, which greatly speeds up computation of minimal genus. This is not implemented for maximal genus.
sage: K5 = graphs.CompleteGraph(5)
sage: G = K5.copy()
sage: s = 4
sage: for i in range(1,100):
... k = K5.relabel(range(s,s+5),inplace=False)
... G.add_edges(k.edges())
... s += 4
...
sage: G.genus()
100
Returns the boundary of the (di)graph.
EXAMPLES:
sage: G = graphs.PetersenGraph()
sage: G.set_boundary([0,1,2,3,4])
doctest:...: DeprecationWarning: The boundary parameter is deprecated and will soon disappear.
See http://trac.sagemath.org/15494 for details.
sage: G.get_boundary()
[0, 1, 2, 3, 4]
Returns the attribute _embedding if it exists.
_embedding is a dictionary organized with vertex labels as keys and a list of each vertex’s neighbors in clockwise order.
Error-checked to insure valid embedding is returned.
EXAMPLES:
sage: G = graphs.PetersenGraph()
sage: G.genus()
1
sage: G.get_embedding()
{0: [1, 4, 5], 1: [0, 2, 6], 2: [1, 3, 7], 3: [2, 4, 8], 4: [0, 3, 9], 5: [0, 7, 8], 6: [1, 9, 8], 7: [2, 5, 9], 8: [3, 6, 5], 9: [4, 6, 7]}
Returns the position dictionary, a dictionary specifying the coordinates of each vertex.
EXAMPLES: By default, the position of a graph is None:
sage: G = Graph()
sage: G.get_pos()
sage: G.get_pos() is None
True
sage: P = G.plot(save_pos=True)
sage: G.get_pos()
{}
Some of the named graphs come with a pre-specified positioning:
sage: G = graphs.PetersenGraph()
sage: G.get_pos()
{0: (...e-17, 1.0),
...
9: (0.475..., 0.154...)}
Retrieve the object associated with a given vertex.
INPUT:
EXAMPLES:
sage: d = {0 : graphs.DodecahedralGraph(), 1 : graphs.FlowerSnark(), 2 : graphs.MoebiusKantorGraph(), 3 : graphs.PetersenGraph() }
sage: d[2]
Moebius-Kantor Graph: Graph on 16 vertices
sage: T = graphs.TetrahedralGraph()
sage: T.vertices()
[0, 1, 2, 3]
sage: T.set_vertices(d)
sage: T.get_vertex(1)
Flower Snark: Graph on 20 vertices
Return a dictionary of the objects associated to each vertex.
INPUT:
EXAMPLES:
sage: d = {0 : graphs.DodecahedralGraph(), 1 : graphs.FlowerSnark(), 2 : graphs.MoebiusKantorGraph(), 3 : graphs.PetersenGraph() }
sage: T = graphs.TetrahedralGraph()
sage: T.set_vertices(d)
sage: T.get_vertices([1,2])
{1: Flower Snark: Graph on 20 vertices,
2: Moebius-Kantor Graph: Graph on 16 vertices}
Computes the girth of the graph. For directed graphs, computes the girth of the undirected graph.
The girth is the length of the shortest cycle in the graph. Graphs without cycles have infinite girth.
EXAMPLES:
sage: graphs.TetrahedralGraph().girth()
3
sage: graphs.CubeGraph(3).girth()
4
sage: graphs.PetersenGraph().girth()
5
sage: graphs.HeawoodGraph().girth()
6
sage: next(graphs.trees(9)).girth()
+Infinity
See also
TESTS:
Prior to trac ticket #12243, the girth computation assumed vertices were integers (and failed). The example below tests the computation for graphs with vertices that are not integers. In this example the vertices are sets.
sage: G = graphs.OddGraph(3)
sage: type(G.vertices()[0])
<class 'sage.sets.set.Set_object_enumerated_with_category'>
sage: G.girth()
5
Ticket trac ticket #12355:
sage: H=Graph([(0, 1), (0, 3), (0, 4), (0, 5), (1, 2), (1, 3), (1, 4), (1, 6), (2, 5), (3, 4), (5, 6)])
sage: H.girth()
3
Girth < 3 (see trac ticket #12355):
sage: g = graphs.PetersenGraph()
sage: g.allow_multiple_edges(True)
sage: g.allow_loops(True)
sage: g.girth()
5
sage: g.add_edge(0,0)
sage: g.girth()
1
sage: g.delete_edge(0,0)
sage: g.add_edge(0,1)
sage: g.girth()
2
sage: g.delete_edge(0,1)
sage: g.girth()
5
sage: g = DiGraph(g)
sage: g.girth()
2
Returns a GraphPlot object.
EXAMPLES:
Creating a graphplot object uses the same options as graph.plot():
sage: g = Graph({}, loops=True, multiedges=True, sparse=True)
sage: g.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'),
... (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')])
sage: g.set_boundary([0,1])
doctest:...: DeprecationWarning: The boundary parameter is deprecated and will soon disappear.
See http://trac.sagemath.org/15494 for details.
sage: GP = g.graphplot(edge_labels=True, color_by_label=True, edge_style='dashed')
sage: GP.plot()
Graphics object consisting of 22 graphics primitives
We can modify the graphplot object. Notice that the changes are cumulative:
sage: GP.set_edges(edge_style='solid')
sage: GP.plot()
Graphics object consisting of 22 graphics primitives
sage: GP.set_vertices(talk=True)
sage: GP.plot()
Graphics object consisting of 22 graphics primitives
Returns a representation in the dot language.
The dot language is a text based format for graphs. It is used by the software suite graphviz. The specifications of the language are available on the web (see the reference [dotspec]).
INPUT:
labels - “string” or “latex” (default: “string”). If labels is string latex command are not interpreted. This option stands for both vertex labels and edge labels.
vertex_labels - boolean (default: True) whether to add the labels on vertices.
edge_labels - boolean (default: False) whether to add the labels on edges.
edge_color - (default: None) specify a default color for the edges.
edge_colors - (default: None) a dictionary whose keys are colors and values are list of edges. The list of edges need not to be complete in which case the default color is used.
whether to color each edge with a different color according to its label; the colors are chosen along a rainbow, unless they are specified by a function or dictionary mapping labels to colors; this option is incompatible with edge_color and edge_colors.
edge_options - a function (or tuple thereof) mapping edges to a dictionary of options for this edge.
EXAMPLES:
sage: G = Graph({0:{1:None,2:None}, 1:{0:None,2:None}, 2:{0:None,1:None,3:'foo'}, 3:{2:'foo'}},sparse=True)
sage: print G.graphviz_string(edge_labels=True)
graph {
node_0 [label="0"];
node_1 [label="1"];
node_2 [label="2"];
node_3 [label="3"];
node_0 -- node_1;
node_0 -- node_2;
node_1 -- node_2;
node_2 -- node_3 [label="foo"];
}
A variant, with the labels in latex, for post-processing with dot2tex:
sage: print G.graphviz_string(edge_labels=True,labels = "latex")
graph {
node [shape="plaintext"];
node_0 [label=" ", texlbl="$0$"];
node_1 [label=" ", texlbl="$1$"];
node_2 [label=" ", texlbl="$2$"];
node_3 [label=" ", texlbl="$3$"];
node_0 -- node_1;
node_0 -- node_2;
node_1 -- node_2;
node_2 -- node_3 [label=" ", texlbl="$\text{\texttt{foo}}$"];
}
Same, with a digraph and a color for edges:
sage: G = DiGraph({0:{1:None,2:None}, 1:{2:None}, 2:{3:'foo'}, 3:{}} ,sparse=True)
sage: print G.graphviz_string(edge_color="red")
digraph {
node_0 [label="0"];
node_1 [label="1"];
node_2 [label="2"];
node_3 [label="3"];
edge [color="red"];
node_0 -> node_1;
node_0 -> node_2;
node_1 -> node_2;
node_2 -> node_3;
}
A digraph using latex labels for vertices and edges:
sage: f(x) = -1/x
sage: g(x) = 1/(x+1)
sage: G = DiGraph()
sage: G.add_edges([(i,f(i),f) for i in (1,2,1/2,1/4)])
sage: G.add_edges([(i,g(i),g) for i in (1,2,1/2,1/4)])
sage: print G.graphviz_string(labels="latex",edge_labels=True)
digraph {
node [shape="plaintext"];
node_7 [label=" ", texlbl="$\frac{2}{3}$"];
node_5 [label=" ", texlbl="$\frac{1}{3}$"];
node_6 [label=" ", texlbl="$\frac{1}{2}$"];
node_9 [label=" ", texlbl="$1$"];
node_4 [label=" ", texlbl="$\frac{1}{4}$"];
node_8 [label=" ", texlbl="$\frac{4}{5}$"];
node_0 [label=" ", texlbl="$-4$"];
node_10 [label=" ", texlbl="$2$"];
node_1 [label=" ", texlbl="$-2$"];
node_3 [label=" ", texlbl="$-\frac{1}{2}$"];
node_2 [label=" ", texlbl="$-1$"];
node_6 -> node_1 [label=" ", texlbl="$x \ {\mapsto}\ -\frac{1}{x}$"];
node_6 -> node_7 [label=" ", texlbl="$x \ {\mapsto}\ \frac{1}{x + 1}$"];
node_9 -> node_2 [label=" ", texlbl="$x \ {\mapsto}\ -\frac{1}{x}$"];
node_9 -> node_6 [label=" ", texlbl="$x \ {\mapsto}\ \frac{1}{x + 1}$"];
node_4 -> node_0 [label=" ", texlbl="$x \ {\mapsto}\ -\frac{1}{x}$"];
node_4 -> node_8 [label=" ", texlbl="$x \ {\mapsto}\ \frac{1}{x + 1}$"];
node_10 -> node_3 [label=" ", texlbl="$x \ {\mapsto}\ -\frac{1}{x}$"];
node_10 -> node_5 [label=" ", texlbl="$x \ {\mapsto}\ \frac{1}{x + 1}$"];
}
sage: print G.graphviz_string(labels="latex",color_by_label=True)
digraph {
node [shape="plaintext"];
node_7 [label=" ", texlbl="$\frac{2}{3}$"];
node_5 [label=" ", texlbl="$\frac{1}{3}$"];
node_6 [label=" ", texlbl="$\frac{1}{2}$"];
node_9 [label=" ", texlbl="$1$"];
node_4 [label=" ", texlbl="$\frac{1}{4}$"];
node_8 [label=" ", texlbl="$\frac{4}{5}$"];
node_0 [label=" ", texlbl="$-4$"];
node_10 [label=" ", texlbl="$2$"];
node_1 [label=" ", texlbl="$-2$"];
node_3 [label=" ", texlbl="$-\frac{1}{2}$"];
node_2 [label=" ", texlbl="$-1$"];
node_6 -> node_1 [color = "#ff0000"];
node_6 -> node_7 [color = "#00ffff"];
node_9 -> node_2 [color = "#ff0000"];
node_9 -> node_6 [color = "#00ffff"];
node_4 -> node_0 [color = "#ff0000"];
node_4 -> node_8 [color = "#00ffff"];
node_10 -> node_3 [color = "#ff0000"];
node_10 -> node_5 [color = "#00ffff"];
}
sage: print G.graphviz_string(labels="latex",color_by_label={ f: "red", g: "blue" })
digraph {
node [shape="plaintext"];
node_7 [label=" ", texlbl="$\frac{2}{3}$"];
node_5 [label=" ", texlbl="$\frac{1}{3}$"];
node_6 [label=" ", texlbl="$\frac{1}{2}$"];
node_9 [label=" ", texlbl="$1$"];
node_4 [label=" ", texlbl="$\frac{1}{4}$"];
node_8 [label=" ", texlbl="$\frac{4}{5}$"];
node_0 [label=" ", texlbl="$-4$"];
node_10 [label=" ", texlbl="$2$"];
node_1 [label=" ", texlbl="$-2$"];
node_3 [label=" ", texlbl="$-\frac{1}{2}$"];
node_2 [label=" ", texlbl="$-1$"];
node_6 -> node_1 [color = "red"];
node_6 -> node_7 [color = "blue"];
node_9 -> node_2 [color = "red"];
node_9 -> node_6 [color = "blue"];
node_4 -> node_0 [color = "red"];
node_4 -> node_8 [color = "blue"];
node_10 -> node_3 [color = "red"];
node_10 -> node_5 [color = "blue"];
}
Edge-specific options can also be specified by providing a function (or tuple thereof) which maps each edge to a dictionary of options. Valid options are “color”, “backward” (a boolean), “dot” (a string containing a sequence of options in dot format), “label” (a string), “label_style” (“string” or “latex”), “edge_string” (“–” or “->”). Here we state that the graph should be laid out so that edges starting from 1 are going backward (e.g. going up instead of down):
sage: def edge_options((u,v,label)):
... return { "backward": u == 1 }
sage: print G.graphviz_string(edge_options = edge_options)
digraph {
node_7 [label="2/3"];
node_5 [label="1/3"];
node_6 [label="1/2"];
node_9 [label="1"];
node_4 [label="1/4"];
node_8 [label="4/5"];
node_0 [label="-4"];
node_10 [label="2"];
node_1 [label="-2"];
node_3 [label="-1/2"];
node_2 [label="-1"];
node_6 -> node_1;
node_6 -> node_7;
node_2 -> node_9 [dir=back];
node_6 -> node_9 [dir=back];
node_4 -> node_0;
node_4 -> node_8;
node_10 -> node_3;
node_10 -> node_5;
}
We now test all options:
sage: def edge_options((u,v,label)):
... options = { "color": { f: "red", g: "blue" }[label] }
... if (u,v) == (1/2, -2): options["label"] = "coucou"; options["label_style"] = "string"
... if (u,v) == (1/2,2/3): options["dot"] = "x=1,y=2"
... if (u,v) == (1, -1): options["label_style"] = "latex"
... if (u,v) == (1, 1/2): options["edge_string"] = "<-"
... if (u,v) == (1/2, 1): options["backward"] = True
... return options
sage: print G.graphviz_string(edge_options = edge_options)
digraph {
node_7 [label="2/3"];
node_5 [label="1/3"];
node_6 [label="1/2"];
node_9 [label="1"];
node_4 [label="1/4"];
node_8 [label="4/5"];
node_0 [label="-4"];
node_10 [label="2"];
node_1 [label="-2"];
node_3 [label="-1/2"];
node_2 [label="-1"];
node_6 -> node_1 [label="coucou", color = "red"];
node_6 -> node_7 [x=1,y=2, color = "blue"];
node_9 -> node_2 [label=" ", texlbl="$x \ {\mapsto}\ -\frac{1}{x}$", color = "red"];
node_9 <- node_6 [color = "blue"];
node_4 -> node_0 [color = "red"];
node_4 -> node_8 [color = "blue"];
node_10 -> node_3 [color = "red"];
node_10 -> node_5 [color = "blue"];
}
TESTS:
The following digraph has tuples as vertices:
sage: print digraphs.ButterflyGraph(1).graphviz_string()
digraph {
node_3 [label="('1', 1)"];
node_0 [label="('0', 0)"];
node_2 [label="('1', 0)"];
node_1 [label="('0', 1)"];
node_0 -> node_3;
node_0 -> node_1;
node_2 -> node_3;
node_2 -> node_1;
}
The following digraph has vertices with newlines in their string representations:
sage: m1 = matrix(3,3)
sage: m2 = matrix(3,3, 1)
sage: m1.set_immutable()
sage: m2.set_immutable()
sage: g = DiGraph({ m1: [m2] })
sage: print g.graphviz_string()
digraph {
node_0 [label="[0 0 0]\n\
[0 0 0]\n\
[0 0 0]"];
node_1 [label="[1 0 0]\n\
[0 1 0]\n\
[0 0 1]"];
node_0 -> node_1;
}
REFERENCES:
[dotspec] | http://www.graphviz.org/doc/info/lang.html |
Write a representation in the dot in a file.
The dot language is a plaintext format for graph structures. See the documentation of graphviz_string() for available options.
INPUT:
filename - the name of the file to write in
options - options for the graphviz string
EXAMPLES:
sage: G = Graph({0:{1:None,2:None}, 1:{0:None,2:None}, 2:{0:None,1:None,3:'foo'}, 3:{2:'foo'}},sparse=True)
sage: tempfile = os.path.join(SAGE_TMP, 'temp_graphviz')
sage: G.graphviz_to_file_named(tempfile, edge_labels=True)
sage: print open(tempfile).read()
graph {
node_0 [label="0"];
node_1 [label="1"];
node_2 [label="2"];
node_3 [label="3"];
node_0 -- node_1;
node_0 -- node_2;
node_1 -- node_2;
node_2 -- node_3 [label="foo"];
}
Returns a Hamiltonian cycle/circuit of the current graph/digraph
A graph (resp. digraph) is said to be Hamiltonian if it contains as a subgraph a cycle (resp. a circuit) going through all the vertices.
Computing a Hamiltonian cycle/circuit being NP-Complete, this algorithm could run for some time depending on the instance.
ALGORITHM:
See Graph.traveling_salesman_problem for ‘tsp’ algorithm and find_hamiltonian from sage.graphs.generic_graph_pyx for ‘backtrack’ algorithm.
INPUT:
- algorithm - one of ‘tsp’ or ‘backtrack’.
OUTPUT:
If using the ‘tsp’ algorithm, returns a Hamiltonian cycle/circuit if it exists; otherwise, raises a EmptySetError exception. If using the ‘backtrack’ algorithm, returns a pair (B,P). If B is True then P is a Hamiltonian cycle and if B is False, P is a longest path found by the algorithm. Observe that if B is False, the graph may still be Hamiltonian. The ‘backtrack’ algorithm is only implemented for undirected graphs.
Warning
The ‘backtrack’ algorithm may loop endlessly on graphs with vertices of degree 1.
NOTE:
This function, as is_hamiltonian, computes a Hamiltonian cycle if it exists: the user should NOT test for Hamiltonicity using is_hamiltonian before calling this function, as it would result in computing it twice.
The backtrack algorithm is only implemented for undirected graphs.
EXAMPLES:
The Heawood Graph is known to be Hamiltonian
sage: g = graphs.HeawoodGraph()
sage: g.hamiltonian_cycle()
TSP from Heawood graph: Graph on 14 vertices
The Petersen Graph, though, is not
sage: g = graphs.PetersenGraph()
sage: g.hamiltonian_cycle()
Traceback (most recent call last):
...
EmptySetError: The given graph is not hamiltonian
Now, using the backtrack algorithm in the Heawood graph
sage: G=graphs.HeawoodGraph()
sage: G.hamiltonian_cycle(algorithm='backtrack')
(True, [11, 10, 1, 2, 3, 4, 9, 8, 7, 6, 5, 0, 13, 12])
And now in the Petersen graph
sage: G=graphs.PetersenGraph()
sage: G.hamiltonian_cycle(algorithm='backtrack')
(False, [6, 8, 5, 0, 1, 2, 7, 9, 4, 3])
Finally, we test the algorithm in a cube graph, which is Hamiltonian
sage: G=graphs.CubeGraph(3)
sage: G.hamiltonian_cycle(algorithm='backtrack')
(True, ['010', '110', '100', '000', '001', '101', '111', '011'])
Returns True if (u, v) is an edge, False otherwise.
INPUT: The following forms are accepted by NetworkX:
EXAMPLES:
sage: graphs.EmptyGraph().has_edge(9,2)
False
sage: DiGraph().has_edge(9,2)
False
sage: G = Graph(sparse=True)
sage: G.add_edge(0,1,"label")
sage: G.has_edge(0,1,"different label")
False
sage: G.has_edge(0,1,"label")
True
Returns whether there are loops in the (di)graph.
EXAMPLES:
sage: G = Graph(loops=True); G
Looped graph on 0 vertices
sage: G.has_loops()
False
sage: G.allows_loops()
True
sage: G.add_edge((0,0))
sage: G.has_loops()
True
sage: G.loops()
[(0, 0, None)]
sage: G.allow_loops(False); G
Graph on 1 vertex
sage: G.has_loops()
False
sage: G.edges()
[]
sage: D = DiGraph(loops=True); D
Looped digraph on 0 vertices
sage: D.has_loops()
False
sage: D.allows_loops()
True
sage: D.add_edge((0,0))
sage: D.has_loops()
True
sage: D.loops()
[(0, 0, None)]
sage: D.allow_loops(False); D
Digraph on 1 vertex
sage: D.has_loops()
False
sage: D.edges()
[]
Returns whether there are multiple edges in the (di)graph.
INPUT:
EXAMPLES:
sage: G = Graph(multiedges=True,sparse=True); G
Multi-graph on 0 vertices
sage: G.has_multiple_edges()
False
sage: G.allows_multiple_edges()
True
sage: G.add_edges([(0,1)]*3)
sage: G.has_multiple_edges()
True
sage: G.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: G.allow_multiple_edges(False); G
Graph on 2 vertices
sage: G.has_multiple_edges()
False
sage: G.edges()
[(0, 1, None)]
sage: D = DiGraph(multiedges=True,sparse=True); D
Multi-digraph on 0 vertices
sage: D.has_multiple_edges()
False
sage: D.allows_multiple_edges()
True
sage: D.add_edges([(0,1)]*3)
sage: D.has_multiple_edges()
True
sage: D.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: D.allow_multiple_edges(False); D
Digraph on 2 vertices
sage: D.has_multiple_edges()
False
sage: D.edges()
[(0, 1, None)]
sage: G = DiGraph({1:{2: 'h'}, 2:{1:'g'}},sparse=True)
sage: G.has_multiple_edges()
False
sage: G.has_multiple_edges(to_undirected=True)
True
sage: G.multiple_edges()
[]
sage: G.multiple_edges(to_undirected=True)
[(1, 2, 'h'), (2, 1, 'g')]
Return True if vertex is one of the vertices of this graph.
INPUT:
OUTPUT:
EXAMPLES:
sage: g = Graph({0:[1,2,3], 2:[4]}); g
Graph on 5 vertices
sage: 2 in g
True
sage: 10 in g
False
sage: graphs.PetersenGraph().has_vertex(99)
False
Returns the incidence matrix of the (di)graph.
Each row is a vertex, and each column is an edge. Note that in the case of graphs, there is a choice of orientation for each edge.
EXAMPLES:
sage: G = graphs.CubeGraph(3)
sage: G.incidence_matrix()
[-1 -1 -1 0 0 0 0 0 0 0 0 0]
[ 0 0 1 -1 -1 0 0 0 0 0 0 0]
[ 0 1 0 0 0 -1 -1 0 0 0 0 0]
[ 0 0 0 0 1 0 1 -1 0 0 0 0]
[ 1 0 0 0 0 0 0 0 -1 -1 0 0]
[ 0 0 0 1 0 0 0 0 0 1 -1 0]
[ 0 0 0 0 0 1 0 0 1 0 0 -1]
[ 0 0 0 0 0 0 0 1 0 0 1 1]
A well known result states that the product of the incidence matrix with its transpose is in fact the Kirchhoff matrix:
sage: G = graphs.PetersenGraph()
sage: G.incidence_matrix()*G.incidence_matrix().transpose() == G.kirchhoff_matrix()
True
sage: D = DiGraph( { 0: [1,2,3], 1: [0,2], 2: [3], 3: [4], 4: [0,5], 5: [1] } )
sage: D.incidence_matrix()
[-1 -1 -1 0 0 0 0 0 1 1]
[ 0 0 1 -1 0 0 0 1 -1 0]
[ 0 1 0 1 -1 0 0 0 0 0]
[ 1 0 0 0 1 -1 0 0 0 0]
[ 0 0 0 0 0 1 -1 0 0 -1]
[ 0 0 0 0 0 0 1 -1 0 0]
Returns an exhaustive list of paths (also lists) through only interior vertices from vertex start to vertex end in the (di)graph.
Note - start and end do not necessarily have to be boundary vertices.
INPUT:
EXAMPLES:
sage: eg1 = Graph({0:[1,2], 1:[4], 2:[3,4], 4:[5], 5:[6]})
sage: sorted(eg1.all_paths(0,6))
[[0, 1, 4, 5, 6], [0, 2, 4, 5, 6]]
sage: eg2 = copy(eg1)
sage: eg2.set_boundary([0,1,3])
doctest:...: DeprecationWarning: The boundary parameter is deprecated and will soon disappear.
See http://trac.sagemath.org/15494 for details.
sage: sorted(eg2.interior_paths(0,6))
doctest:...: DeprecationWarning: The boundary parameter is deprecated and will soon disappear.
See http://trac.sagemath.org/15494 for details.
[[0, 2, 4, 5, 6]]
sage: sorted(eg2.all_paths(0,6))
[[0, 1, 4, 5, 6], [0, 2, 4, 5, 6]]
sage: eg3 = graphs.PetersenGraph()
sage: eg3.set_boundary([0,1,2,3,4])
sage: sorted(eg3.all_paths(1,4))
[[1, 0, 4],
[1, 0, 5, 7, 2, 3, 4],
[1, 0, 5, 7, 2, 3, 8, 6, 9, 4],
[1, 0, 5, 7, 9, 4],
[1, 0, 5, 7, 9, 6, 8, 3, 4],
[1, 0, 5, 8, 3, 2, 7, 9, 4],
[1, 0, 5, 8, 3, 4],
[1, 0, 5, 8, 6, 9, 4],
[1, 0, 5, 8, 6, 9, 7, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 8, 5, 0, 4],
[1, 2, 3, 8, 5, 7, 9, 4],
[1, 2, 3, 8, 6, 9, 4],
[1, 2, 3, 8, 6, 9, 7, 5, 0, 4],
[1, 2, 7, 5, 0, 4],
[1, 2, 7, 5, 8, 3, 4],
[1, 2, 7, 5, 8, 6, 9, 4],
[1, 2, 7, 9, 4],
[1, 2, 7, 9, 6, 8, 3, 4],
[1, 2, 7, 9, 6, 8, 5, 0, 4],
[1, 6, 8, 3, 2, 7, 5, 0, 4],
[1, 6, 8, 3, 2, 7, 9, 4],
[1, 6, 8, 3, 4],
[1, 6, 8, 5, 0, 4],
[1, 6, 8, 5, 7, 2, 3, 4],
[1, 6, 8, 5, 7, 9, 4],
[1, 6, 9, 4],
[1, 6, 9, 7, 2, 3, 4],
[1, 6, 9, 7, 2, 3, 8, 5, 0, 4],
[1, 6, 9, 7, 5, 0, 4],
[1, 6, 9, 7, 5, 8, 3, 4]]
sage: sorted(eg3.interior_paths(1,4))
[[1, 6, 8, 5, 7, 9, 4], [1, 6, 9, 4]]
sage: dg = DiGraph({0:[1,3,4], 1:[3], 2:[0,3,4],4:[3]}, boundary=[4])
sage: sorted(dg.all_paths(0,3))
[[0, 1, 3], [0, 3], [0, 4, 3]]
sage: sorted(dg.interior_paths(0,3))
[[0, 1, 3], [0, 3]]
sage: ug = dg.to_undirected()
sage: sorted(ug.all_paths(0,3))
[[0, 1, 3], [0, 2, 3], [0, 2, 4, 3], [0, 3], [0, 4, 2, 3], [0, 4, 3]]
sage: sorted(ug.interior_paths(0,3))
[[0, 1, 3], [0, 2, 3], [0, 3]]
Tests whether the given graph is chordal.
A Graph \(G\) is said to be chordal if it contains no induced hole (a cycle of length at least 4).
Alternatively, chordality can be defined using a Perfect Elimination Order :
A Perfect Elimination Order of a graph \(G\) is an ordering \(v_1,...,v_n\) of its vertex set such that for all \(i\), the neighbors of \(v_i\) whose index is greater that \(i\) induce a complete subgraph in \(G\). Hence, the graph \(G\) can be totally erased by successively removing vertices whose neighborhood is a clique (also called simplicial vertices) [Fulkerson65].
(It can be seen that if \(G\) contains an induced hole, then it can not have a perfect elimination order. Indeed, if we write \(h_1,...,h_k\) the \(k\) vertices of such a hole, then the first of those vertices to be removed would have two non-adjacent neighbors in the graph.)
A Graph is then chordal if and only if it has a Perfect Elimination Order.
INPUT:
certificate (boolean) – Whether to return a certificate.
If certificate = False (default), returns True or False accordingly.
If certificate = True, returns :
- (True, peo) when the graph is chordal, where peo is a perfect elimination order of its vertices.
- (False, Hole) when the graph is not chordal, where Hole (a Graph object) is an induced subgraph of self isomorphic to a hole.
algorithm – Two algorithms are available for this method (see next section), which can be selected by setting algorithm = "A" or algorithm = "B" (default). While they will agree on whether the given graph is chordal, they can not be expected to return the same certificates.
ALGORITHM:
This algorithm works through computing a Lex BFS on the graph, then checking whether the order is a Perfect Elimination Order by computing for each vertex \(v\) the subgraph induces by its non-deleted neighbors, then testing whether this graph is complete.
This problem can be solved in \(O(m)\) [Rose75] ( where \(m\) is the number of edges in the graph ) but this implementation is not linear because of the complexity of Lex BFS.
Note
Because of a past bug (#11735, #11961), the first implementation (algorithm A) of this method sometimes returned as certificates subgraphs which were not holes. Since then, this bug has been fixed and the values are now double-checked before being returned, so that the algorithm only returns correct values or raises an exception. In the case where an exception is raised, the user is advised to switch to the other algorithm. And to please report the bug :-)
EXAMPLES:
The lexicographic product of a Path and a Complete Graph is chordal
sage: g = graphs.PathGraph(5).lexicographic_product(graphs.CompleteGraph(3))
sage: g.is_chordal()
True
The same goes with the product of a random lobster ( which is a tree ) and a Complete Graph
sage: g = graphs.RandomLobster(10,.5,.5).lexicographic_product(graphs.CompleteGraph(3))
sage: g.is_chordal()
True
The disjoint union of chordal graphs is still chordal:
sage: (2*g).is_chordal()
True
Let us check the certificate given by Sage is indeed a perfect elimintion order:
sage: (_, peo) = g.is_chordal(certificate = True)
sage: for v in peo:
... if not g.subgraph(g.neighbors(v)).is_clique():
... print "This should never happen !"
... g.delete_vertex(v)
sage: print "Everything is fine !"
Everything is fine !
Of course, the Petersen Graph is not chordal as it has girth 5
sage: g = graphs.PetersenGraph()
sage: g.girth()
5
sage: g.is_chordal()
False
We can even obtain such a cycle as a certificate
sage: (_, hole) = g.is_chordal(certificate = True)
sage: hole
Subgraph of (Petersen graph): Graph on 5 vertices
sage: hole.is_isomorphic(graphs.CycleGraph(5))
True
TESTS:
This shouldn’t raise exceptions (trac ticket #10899):
sage: Graph(1).is_chordal()
True
sage: for g in graphs(5):
....: _ = g.is_chordal()
REFERENCES:
[Rose75] | Rose, D.J. and Tarjan, R.E., Algorithmic aspects of vertex elimination, Proceedings of seventh annual ACM symposium on Theory of computing Page 254, ACM 1975 |
[Fulkerson65] | Fulkerson, D.R. and Gross, OA Incidence matrices and interval graphs Pacific J. Math 1965 Vol. 15, number 3, pages 835–855 |
TESTS:
Trac Ticket #11735:
sage: g = Graph({3:[2,1,4],2:[1],4:[1],5:[2,1,4]})
sage: _, g1 = g.is_chordal(certificate=True); g1.is_chordal()
False
sage: g1.is_isomorphic(graphs.CycleGraph(g1.order()))
True
Tests whether the graph is circulant.
For more information on circulant graphs, see the Wikipedia page on circulant graphs.
INPUT:
OUTPUT:
When certificate is set to False (default) this method only returns True or False answers. When certificate is set to True, the method either returns (False, None) or (True, lists_of_parameters) each element of lists_of_parameters can be used to define the graph as a circulant graph.
See the documentation of CirculantGraph() and Circulant() for more information, and the examples below.
See also
CirculantGraph() – a constructor for circulant graphs.
EXAMPLES:
The Petersen graph is not a circulant graph:
sage: g = graphs.PetersenGraph()
sage: g.is_circulant()
False
A cycle is obviously a circulant graph, but several sets of parameters can be used to define it:
sage: g = graphs.CycleGraph(5)
sage: g.is_circulant(certificate = True)
(True, [(5, [1, 4]), (5, [2, 3])])
The same goes for directed graphs:
sage: g = digraphs.Circuit(5)
sage: g.is_circulant(certificate = True)
(True, [(5, [1]), (5, [3]), (5, [2]), (5, [4])])
With this information, it is very easy to create (and plot) all possible drawings of a circulant graph:
sage: g = graphs.CirculantGraph(13, [2, 3, 10, 11])
sage: for param in g.is_circulant(certificate = True)[1]:
... graphs.CirculantGraph(*param)
Circulant graph ([2, 3, 10, 11]): Graph on 13 vertices
Circulant graph ([1, 5, 8, 12]): Graph on 13 vertices
Circulant graph ([4, 6, 7, 9]): Graph on 13 vertices
TESTS:
sage: digraphs.DeBruijn(3,1).is_circulant(certificate = True)
(True, [(3, [0, 1, 2])])
sage: Graph(1).is_circulant(certificate = True)
(True, (1, []))
sage: Graph(0).is_circulant(certificate = True)
(True, (0, []))
sage: Graph({0:[0]}).is_circulant(certificate = True)
(True, (1, [0]))
Tests whether the graph is circular planar (outerplanar)
A graph is circular planar if it has a planar embedding in which all vertices can be drawn in order on a circle. This method can also be used to check the existence of a planar embedding in which the vertices of a specific set (the boundary) can be drawn on a circle, all other vertices being drawn inside of the circle. An order can be defined on the vertices of the boundary in order to define how they are to appear on the circle.
INPUT:
boolean first entry and the Kuratowski subgraph or minor as the second entry (see OUTPUT below). It is set to False by default.
planarity on. (i.e.: will return True or False only for the given embedding). It is set to False by default.
variable that contains a combinatorial embedding (clockwise ordering of neighbors at each vertex). This value will only be set if a circular planar embedding is found. It is stored as a Python dict: v1: [n1,n2,n3] where v1 is a vertex and n1,n2,n3 are its neighbors. It is set to True by default.
boundary - a set of vertices that are required to be drawn on the circle, all others being drawn inside of it. It is set to None by default, meaning that all vertices should be drawn on the boundary.
boundary. It is set to False by default, and required boundary to be defined.
plotting) to reflect the combinatorial embedding. Note that this value will default to False if set_emb is set to False. Also, the position dictionary will only be updated if a circular planar embedding is found.
OUTPUT:
The method returns True if the graph is circular planar, and False if it is not.
If kuratowski is set to True, then this function will return a tuple, whose first entry is a boolean and whose second entry is the Kuratowski subgraph or minor isolated by the Boyer-Myrvold algorithm. Note that this graph might contain a vertex or edges that were not in the initial graph. These would be elements referred to below as parts of the wheel and the star, which were added to the graph to require that the boundary can be drawn on the boundary of a disc, with all other vertices drawn inside (and no edge crossings). For more information, see [Kirkman].
ALGORITHM:
This is a linear time algorithm to test for circular planarity. It relies on the edge-addition planarity algorithm due to Boyer-Myrvold. We accomplish linear time for circular planarity by modifying the graph before running the general planarity algorithm.
REFERENCE:
[BM04] | John M. Boyer and Wendy J. Myrvold, On the Cutting Edge: Simplified O(n) Planarity by Edge Addition. Journal of Graph Algorithms and Applications, Vol. 8, No. 3, pp. 241-273, 2004. |
[Kirkman] | Kirkman, Emily A. O(n) Circular Planarity Testing. [Online] Available: soon! |
EXAMPLES:
sage: g439 = Graph({1:[5,7], 2:[5,6], 3:[6,7], 4:[5,6,7]})
sage: g439.set_boundary([1,2,3,4])
doctest:...: DeprecationWarning: The boundary parameter is deprecated and will soon disappear.
See http://trac.sagemath.org/15494 for details.
sage: g439.show()
sage: g439.is_circular_planar(boundary = [1,2,3,4])
False
sage: g439.is_circular_planar(kuratowski=True, boundary = [1,2,3,4])
(False, Graph on 8 vertices)
sage: g439.is_circular_planar(kuratowski=True, boundary = [1,2,3])
(True, None)
sage: g439.get_embedding()
{1: [7, 5],
2: [5, 6],
3: [6, 7],
4: [7, 6, 5],
5: [1, 4, 2],
6: [2, 4, 3],
7: [3, 4, 1]}
Order matters:
sage: K23 = graphs.CompleteBipartiteGraph(2,3)
sage: K23.is_circular_planar(boundary = [0,1,2,3])
True
sage: K23.is_circular_planar(ordered=True, boundary = [0,1,2,3])
False
With a different order:
sage: K23.is_circular_planar(set_embedding=True, boundary = [0,2,1,3])
True
Tests whether a set of vertices is a clique
A clique is a set of vertices such that there is an edge between any two vertices.
INPUT:
EXAMPLES:
sage: g = graphs.CompleteGraph(4)
sage: g.is_clique([1,2,3])
True
sage: g.is_clique()
True
sage: h = graphs.CycleGraph(4)
sage: h.is_clique([1,2])
True
sage: h.is_clique([1,2,3])
False
sage: h.is_clique()
False
sage: i = graphs.CompleteGraph(4).to_directed()
sage: i.delete_edge([0,1])
sage: i.is_clique()
True
sage: i.is_clique(directed_clique=True)
False
Indicates whether the (di)graph is connected. Note that in a graph, path connected is equivalent to connected.
EXAMPLES:
sage: G = Graph( { 0 : [1, 2], 1 : [2], 3 : [4, 5], 4 : [5] } )
sage: G.is_connected()
False
sage: G.add_edge(0,3)
sage: G.is_connected()
True
sage: D = DiGraph( { 0 : [1, 2], 1 : [2], 3 : [4, 5], 4 : [5] } )
sage: D.is_connected()
False
sage: D.add_edge(0,3)
sage: D.is_connected()
True
sage: D = DiGraph({1:[0], 2:[0]})
sage: D.is_connected()
True
Returns True if the input edge is a cut-edge or a bridge.
A cut edge (or bridge) is an edge that when removed increases the number of connected components. This function works with simple graphs as well as graphs with loops and multiedges. In a digraph, a cut edge is an edge that when removed increases the number of (weakly) connected components.
INPUT: The following forms are accepted
OUTPUT:
EXAMPLES:
sage: G = graphs.CompleteGraph(4)
sage: G.is_cut_edge(0,2)
False
sage: G = graphs.CompleteGraph(4)
sage: G.add_edge((0,5,'silly'))
sage: G.is_cut_edge((0,5,'silly'))
True
sage: G = Graph([[0,1],[0,2],[3,4],[4,5],[3,5]])
sage: G.is_cut_edge((0,1))
True
sage: G = Graph([[0,1],[0,2],[1,1]], loops = True)
sage: G.is_cut_edge((1,1))
False
sage: G = digraphs.Circuit(5)
sage: G.is_cut_edge((0,1))
False
sage: G = graphs.CompleteGraph(6)
sage: G.is_cut_edge((0,7))
Traceback (most recent call last):
...
ValueError: edge not in graph
Returns True if the input vertex is a cut-vertex.
A vertex is a cut-vertex if its removal from the (di)graph increases the number of (strongly) connected components. Isolated vertices or leafs are not cut-vertices. This function works with simple graphs as well as graphs with loops and multiple edges.
INPUT:
OUTPUT:
Returns True if u is a cut-vertex, and False otherwise.
EXAMPLES:
Giving a LollipopGraph(4,2), that is a complete graph with 4 vertices with a pending edge:
sage: G = graphs.LollipopGraph(4,2)
sage: G.is_cut_vertex(0)
False
sage: G.is_cut_vertex(3)
True
Comparing the weak and strong connectivity of a digraph:
sage: D = digraphs.Circuit(6)
sage: D.is_strongly_connected()
True
sage: D.is_cut_vertex(2)
True
sage: D.is_cut_vertex(2, weak=True)
False
Giving a vertex that is not in the graph:
sage: G = graphs.CompleteGraph(6)
sage: G.is_cut_vertex(7)
Traceback (most recent call last):
...
ValueError: The input vertex is not in the vertex set.
Returns True is the position dictionary for this graph is set and that position dictionary gives a planar embedding.
This simply checks all pairs of edges that don’t share a vertex to make sure that they don’t intersect.
Note
This function require that _pos attribute is set. (Returns False otherwise.)
EXAMPLES:
sage: D = graphs.DodecahedralGraph()
sage: D.set_planar_positions()
sage: D.is_drawn_free_of_edge_crossings()
True
Checks whether the given partition is equitable with respect to self.
A partition is equitable with respect to a graph if for every pair of cells C1, C2 of the partition, the number of edges from a vertex of C1 to C2 is the same, over all vertices in C1.
INPUT:
EXAMPLES:
sage: G = graphs.PetersenGraph()
sage: G.is_equitable([[0,4],[1,3,5,9],[2,6,8],[7]])
False
sage: G.is_equitable([[0,4],[1,3,5,9],[2,6,8,7]])
True
sage: G.is_equitable([[0,4],[1,3,5,9],[2,6,8,7]], quotient_matrix=True)
[1 2 0]
[1 0 2]
[0 2 1]
sage: ss = (graphs.WheelGraph(6)).line_graph(labels=False)
sage: prt = [[(0, 1)], [(0, 2), (0, 3), (0, 4), (1, 2), (1, 4)], [(2, 3), (3, 4)]]
sage: ss.is_equitable(prt)
Traceback (most recent call last):
...
TypeError: Partition ([[(0, 1)], [(0, 2), (0, 3), (0, 4), (1, 2), (1, 4)], [(2, 3), (3, 4)]]) is not valid for this graph: vertices are incorrect.
sage: ss = (graphs.WheelGraph(5)).line_graph(labels=False)
sage: ss.is_equitable(prt)
False
Return true if the graph has a (closed) tour that visits each edge exactly once.
INPUT:
OUTPUT:
True or False for the closed tour case. For an open tour search (path``=``True) the function returns False if the graph is not semi-eulerian, or a tuple (u, v) in the other case. This tuple defines the edge that would make the graph eulerian, i.e. close an existing open tour. This edge may or may not be already present in the graph.
EXAMPLES:
sage: graphs.CompleteGraph(4).is_eulerian()
False
sage: graphs.CycleGraph(4).is_eulerian()
True
sage: g = DiGraph({0:[1,2], 1:[2]}); g.is_eulerian()
False
sage: g = DiGraph({0:[2], 1:[3], 2:[0,1], 3:[2]}); g.is_eulerian()
True
sage: g = DiGraph({0:[1], 1:[2], 2:[0], 3:[]}); g.is_eulerian()
True
sage: g = Graph([(1,2), (2,3), (3,1), (4,5), (5,6), (6,4)]); g.is_eulerian()
False
sage: g = DiGraph({0: [1]}); g.is_eulerian(path=True)
(1, 0)
sage: graphs.CycleGraph(4).is_eulerian(path=True)
False
sage: g = DiGraph({0: [1], 1: [2,3], 2: [4]}); g.is_eulerian(path=True)
False
sage: g = Graph({0:[1,2,3], 1:[2,3], 2:[3,4], 3:[4]}, multiedges=True)
sage: g.is_eulerian()
False
sage: e = g.is_eulerian(path=True); e
(0, 1)
sage: g.add_edge(e)
sage: g.is_eulerian(path=False)
True
sage: g.is_eulerian(path=True)
False
TESTS:
sage: g = Graph({0:[], 1:[], 2:[], 3:[]}); g.is_eulerian()
True
Returns whether the current graph is a Gallai tree.
A graph is a Gallai tree if and only if it is connected and its \(2\)-connected components are all isomorphic to complete graphs or odd cycles.
A connected graph is not degree-choosable if and only if it is a Gallai tree [erdos1978choos].
REFERENCES:
[erdos1978choos] | Erdos, P. and Rubin, A.L. and Taylor, H. Proc. West Coast Conf. on Combinatorics Graph Theory and Computing, Congressus Numerantium vol 26, pages 125–157, 1979 |
EXAMPLES:
A complete graph is, or course, a Gallai Tree:
sage: g = graphs.CompleteGraph(15)
sage: g.is_gallai_tree()
True
The Petersen Graph is not:
sage: g = graphs.PetersenGraph()
sage: g.is_gallai_tree()
False
A Graph built from vertex-disjoint complete graphs linked by one edge to a special vertex \(-1\) is a ‘’star-shaped’’ Gallai tree
sage: g = 8 * graphs.CompleteGraph(6)
sage: g.add_edges([(-1,c[0]) for c in g.connected_components()])
sage: g.is_gallai_tree()
True
Tests whether the current graph is Hamiltonian.
A graph (resp. digraph) is said to be Hamiltonian if it contains as a subgraph a cycle (resp. a circuit) going through all the vertices.
Testing for Hamiltonicity being NP-Complete, this algorithm could run for some time depending on the instance.
ALGORITHM:
See Graph.traveling_salesman_problem.
OUTPUT:
Returns True if a Hamiltonian cycle/circuit exists, and False otherwise.
NOTE:
This function, as hamiltonian_cycle and traveling_salesman_problem, computes a Hamiltonian cycle if it exists: the user should NOT test for Hamiltonicity using is_hamiltonian before calling hamiltonian_cycle or traveling_salesman_problem as it would result in computing it twice.
EXAMPLES:
The Heawood Graph is known to be Hamiltonian
sage: g = graphs.HeawoodGraph()
sage: g.is_hamiltonian()
True
The Petergraph, though, is not
sage: g = graphs.PetersenGraph()
sage: g.is_hamiltonian()
False
TESTS:
When no solver is installed, a OptionalPackageNotFoundError exception is raised:
sage: from sage.misc.exceptions import OptionalPackageNotFoundError
sage: try:
... g = graphs.ChvatalGraph()
... if not g.is_hamiltonian():
... print "There is something wrong here !"
... except OptionalPackageNotFoundError:
... pass
sage: g=graphs.CycleGraph(10)
sage: g.allow_loops(True)
sage: g.add_edge(0,0)
sage: g.is_hamiltonian()
True
Returns True if the set vertices is an independent set, False if not. An independent set is a set of vertices such that there is no edge between any two vertices.
INPUT:
EXAMPLES:
sage: graphs.CycleGraph(4).is_independent_set([1,3])
True
sage: graphs.CycleGraph(4).is_independent_set([1,2,3])
False
Check whether self is an interval graph
INPUT:
ALGORITHM:
Through the use of PQ-Trees
AUTHOR:
Nathann Cohen (implementation)
EXAMPLES:
A Petersen Graph is not chordal, nor can it be an interval graph
sage: g = graphs.PetersenGraph()
sage: g.is_interval()
False
Though we can build intervals from the corresponding random generator:
sage: g = graphs.RandomIntervalGraph(20)
sage: g.is_interval()
True
This method can also return, given an interval graph, a possible embedding (we can actually compute all of them through the PQ-Tree structures):
sage: g = Graph(':S__@_@A_@AB_@AC_@ACD_@ACDE_ACDEF_ACDEFG_ACDEGH_ACDEGHI_ACDEGHIJ_ACDEGIJK_ACDEGIJKL_ACDEGIJKLMaCEGIJKNaCEGIJKNaCGIJKNPaCIP', loops=False, multiedges=False)
sage: d = g.is_interval(certificate = True)
sage: print d # not tested
{0: (0, 20), 1: (1, 9), 2: (2, 36), 3: (3, 5), 4: (4, 38), 5: (6, 21), 6: (7, 27), 7: (8, 12), 8: (10, 29), 9: (11, 16), 10: (13, 39), 11: (14, 31), 12: (15, 32), 13: (17, 23), 14: (18, 22), 15: (19, 33), 16: (24, 25), 17: (26, 35), 18: (28, 30), 19: (34, 37)}
From this embedding, we can clearly build an interval graph isomorphic to the previous one:
sage: g2 = graphs.IntervalGraph(d.values())
sage: g2.is_isomorphic(g)
True
Enumerate all small interval graphs:
sage: n = 8
sage: count = [0]*(n+1)
sage: for g in graphs(n, augment='vertices',property= lambda x:x.is_interval()): # not tested -- 50s
....: count[g.order()] += 1 # not tested -- 50s
sage: count # not tested -- 50s
[1, 1, 2, 4, 10, 27, 92, 369, 1807]
See also
Tests for isomorphism between self and other.
INPUT:
EXAMPLES: Graphs:
sage: from sage.groups.perm_gps.permgroup_named import SymmetricGroup
sage: D = graphs.DodecahedralGraph()
sage: E = copy(D)
sage: gamma = SymmetricGroup(20).random_element()
sage: E.relabel(gamma)
sage: D.is_isomorphic(E)
True
sage: D = graphs.DodecahedralGraph()
sage: S = SymmetricGroup(20)
sage: gamma = S.random_element()
sage: E = copy(D)
sage: E.relabel(gamma)
sage: a,b = D.is_isomorphic(E, certify=True); a
True
sage: from sage.plot.graphics import GraphicsArray
sage: from sage.graphs.generic_graph_pyx import spring_layout_fast
sage: position_D = spring_layout_fast(D)
sage: position_E = {}
sage: for vert in position_D:
... position_E[b[vert]] = position_D[vert]
sage: GraphicsArray([D.plot(pos=position_D), E.plot(pos=position_E)]).show() # long time
sage: g=graphs.HeawoodGraph()
sage: g.is_isomorphic(g)
True
Multigraphs:
sage: G = Graph(multiedges=True,sparse=True)
sage: G.add_edge((0,1,1))
sage: G.add_edge((0,1,2))
sage: G.add_edge((0,1,3))
sage: G.add_edge((0,1,4))
sage: H = Graph(multiedges=True,sparse=True)
sage: H.add_edge((3,4))
sage: H.add_edge((3,4))
sage: H.add_edge((3,4))
sage: H.add_edge((3,4))
sage: G.is_isomorphic(H)
True
Digraphs:
sage: A = DiGraph( { 0 : [1,2] } )
sage: B = DiGraph( { 1 : [0,2] } )
sage: A.is_isomorphic(B, certify=True)
(True, {0: 1, 1: 0, 2: 2})
Edge labeled graphs:
sage: G = Graph(sparse=True)
sage: G.add_edges( [(0,1,'a'),(1,2,'b'),(2,3,'c'),(3,4,'b'),(4,0,'a')] )
sage: H = G.relabel([1,2,3,4,0], inplace=False)
sage: G.is_isomorphic(H, edge_labels=True)
True
Edge labeled digraphs:
sage: G = DiGraph()
sage: G.add_edges( [(0,1,'a'),(1,2,'b'),(2,3,'c'),(3,4,'b'),(4,0,'a')] )
sage: H = G.relabel([1,2,3,4,0], inplace=False)
sage: G.is_isomorphic(H, edge_labels=True)
True
sage: G.is_isomorphic(H, edge_labels=True, certify=True)
(True, {0: 1, 1: 2, 2: 3, 3: 4, 4: 0})
TESTS:
sage: g1 = '~?A[~~{ACbCwV_~__OOcCW_fAA{CF{CCAAAC__bCCCwOOV___~____OOOOcCCCW___fAAAA'+ ... '{CCCF{CCCCAAAAAC____bCCCCCwOOOOV_____~_O@ACG_@ACGOo@ACG?{?`A?GV_GO@AC}@?_OGC'+ ... 'C?_OI@?K?I@?_OM?_OGD?F_A@OGC@{A@?_OG?O@?gCA?@_GCA@O?B_@OGCA?BoA@?gC?@{A?GO`?'+ ... '??_GO@AC??E?O`?CG??[?O`A?G??{?GO`A???|A?_GOC`AC@_OCGACEAGS?HA?_SA`aO@G?cOC_N'+ ... 'G_C@AOP?GnO@_GACOE?g?`OGACCOGaGOc?HA?`GORCG_AO@B?K@[`A?OCI@A@By?_K@?SCABA?H?'+ ... 'SA?a@GC`CH?Q?C_c?cGRC@G_AOCOa@Ax?QC?_GOo_CNg@A?oC@CaCGO@CGA_O`?GSGPAGOC_@OO_'+ ... 'aCHaG?cO@CB?_`Ax?GQC?_cAOCG^OGAC@_D?IGO`?D?O_I?HAOO`AGOHA?cC?oAO`AW_Q?HCACAC'+ ... 'GO`[_OCHA?_cCACG^O_@CAGO`A?GCOGc@?I?OQOC?IGC_o@CAGCCE?A@DBG_OA@C_CP?OG_VA_CO'+ ... 'G@D?_OA_DFgA@CO?aH?Ga@?a?_I?S@A@@Oa@?@P@GCO_AACO_a_?`K_GCQ@?cAOG_OGAwQ@?K?cC'+ ... 'GH?I?ABy@C?G_S@@GCA@C`?OI?_D?OP@G?IGGP@O_AGCP?aG?GCPAX?cA?OGSGCGCAGCJ`?oAGCC'+ ... 'HAA?A_CG^O@CAG_GCSCAGCCGOCG@OA_`?`?g_OACG_`CAGOAO_H?a_?`AXA?OGcAAOP?a@?CGVAC'+ ... 'OG@_AGG`OA_?O`|?Ga?COKAAGCA@O`A?a?S@?HCG`?_?gO`AGGaC?PCAOGI?A@GO`K_CQ@?GO_`O'+ ... 'GCAACGVAG@_COOCQ?g?I?O`ByC?G_P?O`A?H@G?_P?`OAGC?gD?_C@_GCAGDG_OA@CCPC?AOQ??g'+ ... '_R@_AGCO____OCC_@OAbaOC?g@C_H?AOOC@?a`y?PC?G`@OOH??cOG_OOAG@_COAP?WA?_KAGC@C'+ ... '_CQ@?HAACH??c@P?_AWGaC?P?gA_C_GAD?I?Awa?S@?K?`C_GAOGCS?@|?COGaA@CAAOQ?AGCAGO'+ ... 'ACOG@_G_aC@_G@CA@@AHA?OGc?WAAH@G?P?_?cH_`CAGOGACc@@GA?S?CGVCG@OA_CICAOOC?PO?'+ ... 'OG^OG_@CAC_cC?AOP?_OICG@?oAGCO_GO_GB@?_OG`AH?cA?OH?`P??cC_O?SCGR@O_AGCAI?Q?_'+ ... 'GGS?D?O`[OI?_D@@CCA?cCA_?_O`By?_PC?IGAGOQ?@A@?aO`A?Q@?K?__`_E?_GCA@CGO`C_GCQ'+ ... '@A?gAOQ?@C?DCACGR@GCO_AGPA@@GAA?A_CO`Aw_I?S@?SCB@?OC_?_P@ACNgOC@A?aCGOCAGCA@'+ ... 'CA?H@GG_C@AOGa?OOG_O?g_OA?oDC_AO@GOCc?@P?_A@D??cC``O?cGAOGD?@OA_CAGCA?_cwKA?'+ ... '`?OWGG?_PO?I?S?H@?^OGAC@_Aa@CAGC?a@?_Q?@H?_OCHA?OQA_P?_G_O?WA?_IG_Q?HC@A@ADC'+ ... 'A?AI?AC_?QAWOHA?cAGG_I?S?G_OG@GA?`[D?O_IA?`GGCS?OA_?c@?Q?^OAC@_G_Ca@CA@?OGCO'+ ... 'H@G@A@?GQC?_Q@GP?_OG?IGGB?OCGaG?cO@A__QGC?E?A@CH@G?GRAGOC_@GGOW@O?O_OGa?_c?G'+ ... 'V@CGA_OOaC?a_?a?A_CcC@?CNgA?oC@GGE@?_OH?a@?_?QA`A@?QC?_KGGO_OGCAa@?A?_KCGPC@'+ ... 'G_AOAGPGC?D@?a_A?@GGO`KH?Q?C_QGAA_?gOG_OA?_GG`AwH?SA?`?cAI?A@D?I?@?QA?`By?K@'+ ... '?O`GGACA@CGCA@CC_?WO`?`A?OCH?`OCA@COG?I?oC@ACGPCG_AO@_aAA?Aa?g?GD@G?CO`AWOc?'+ ... 'HA?OcG_?g@OGCAAAOC@ACJ_`OGACAGCS?CAGI?A`@?OCACG^'
sage: g2 = '~?A[??osR?WARSETCJ_QWASehOXQg`QwChK?qSeFQ_sTIaWIV?XIR?KAC?B?`?COCG?o?O_'+ ... '@_?`??B?`?o@_O_WCOCHC@_?`W?E?AD_O?WCCeO?WCSEGAGAIaA@_?aw?OK?ER?`?@_HQXA?B@Q_'+ ... 'pA?a@Qg_`?o?h[?GOK@IR?@A?BEQcoCG?K\IB?GOCWiTC?GOKWIV??CGEKdH_H_?CB?`?DC??_WC'+ ... 'G?SO?AP?O_?g_?D_?`?C__?D_?`?CCo??@_O_XDC???WCGEGg_??a?`G_aa??E?AD_@cC??K?CJ?'+ ... '@@K?O?WCCe?aa?G?KAIB?Gg_A?a?ag_@DC?OK?CV??EOO@?o?XK??GH`A?B?Qco?Gg`A?B@Q_o?C'+ ... 'SO`?P?hSO?@DCGOK?IV???K_`A@_HQWC??_cCG?KXIRG?@D?GO?WySEG?@D?GOCWiTCC??a_CGEK'+ ... 'DJ_@??K_@A@bHQWAW?@@K??_WCG?g_?CSO?A@_O_@P??Gg_?Ca?`?@P??Gg_?D_?`?C__?EOO?Ao'+ ... '?O_AAW?@@K???WCGEPP??Gg_??B?`?pDC??aa??AGACaAIG?@DC??K?CJ?BGG?@cC??K?CJ?@@K?'+ ... '?_e?G?KAAR?PP??Gg_A?B?a_oAIG?@DC?OCOCTC?Gg_?CSO@?o?P[??X@??K__A@_?qW??OR??GH'+ ... '`A?B?Qco?Gg_?CSO`?@_hOW?AIG?@DCGOCOITC??PP??Gg`A@_@Qw??@cC??qACGE?dH_O?AAW?@'+ ... '@GGO?WqSeO?AIG?@D?GO?WySEG?@DC??a_CGAKTIaA??PP??Gg@A@b@Qw?O?BGG?@c?GOKXIR?KA'+ ... 'C?H_?CCo?A@_O_?WCG@P??Gg_?CB?`?COCG@P??Gg_?Ca?`?E?AC?g_?CSO?Ao?O_@_?`@GG?@cC'+ ... '??k?CG??WCGOR??GH_??B?`?o@_O`DC??aa???KACB?a?`AIG?@DC??COCHC@_?`AIG?@DC??K?C'+ ... 'J??o?O`cC??qA??E?AD_O?WC?OR??GH_A?B?_cq?B?_AIG?@DC?O?WCSEGAGA?Gg_?CSO@?P?PSO'+ ... 'OK?C?PP??Gg_A@_?aw?OK?C?X@??K__A@_?qWCG?K??GH_?CCo`?@_HQXA?B??AIG?@DCGO?WISE'+ ... 'GOCO??PP??Gg`A?a@Qg_`?o??@DC??aaCGE?DJ_@A@_??BGG?@cCGOK@IR?@A?BO?AAW?@@GGO?W'+ ... 'qSe?`?@g?@DC??a_CG?K\IB?GOCQ??PP??Gg@A?bDQg_@A@_O?AIG?@D?GOKWIV??CGE@??K__?E'+ ... 'O?`?pchK?_SA_OI@OGD?gCA_SA@OI?c@H?Q?c_H?QOC_HGAOCc?QOC_HGAOCc@GAQ?c@H?QD?gCA'+ ... '_SA@OI@?gD?_SA_OKA_SA@OI@?gD?_SA_OI@OHI?c_H?QOC_HGAOCc@GAQ?eC_H?QOC_HGAOCc@G'+ ... 'AQ?c@XD?_SA_OI@OGD?gCA_SA@PKGO`A@ACGSGO`?`ACICGO_?ACGOcGO`?O`AC`ACHACGO???^?'+ ... '????}Bw????Fo^???????Fo?}?????Bw?^?Bw?????GO`AO`AC`ACGACGOcGO`??aCGO_O`ADACG'+ ... 'OGO`A@ACGOA???@{?N_@{?????Fo?}????OFo????N_}????@{????Bw?OACGOgO`A@ACGSGO`?`'+ ... 'ACG?OaCGO_GO`AO`AC`ACGACGO_@G???Fo^?????}Bw????Fo??AC@{?????Fo?}?Fo?????^??A'+ ... 'OGO`AO`AC@ACGQCGO_GO`A?HAACGOgO`A@ACGOGO`A`ACG?GQ??^?Bw?????N_@{?????Fo?QC??'+ ... 'Fo^?????}????@{Fo???CHACGO_O`ACACGOgO`A@ACGO@AOcGO`?O`AC`ACGACGOcGO`?@GQFo??'+ ... '??N_????^@{????Bw??`GRw?????N_@{?????Fo?}???HAO_OI@OGD?gCA_SA@OI@?gDK_??C@GA'+ ... 'Q?c@H?Q?c_H?QOC_HEW????????????????????????~~~~~'
sage: G1 = Graph(g1)
sage: G2 = Graph(g2)
sage: G1.is_isomorphic(G2)
True
Ensure that isomorphic looped graphs with non-range vertex labels report correctly (trac ticket #10814, fixed by trac ticket #8395):
sage: G1 = Graph({1:[0,1]})
sage: G2 = Graph({2:[0,2]})
sage: G1.is_isomorphic(G2)
True
sage: G = Graph(multiedges = True, loops = True)
sage: H = Graph(multiedges = True, loops = True)
sage: G.add_edges([(0,1,0),(1,0,1),(1,1,2),(0,0,3)])
sage: H.add_edges([(0,1,3),(1,0,2),(1,1,1),(0,0,0)])
sage: G.is_isomorphic(H, certify=True)
(True, {0: 0, 1: 1})
sage: set_random_seed(0)
sage: D = digraphs.RandomDirectedGNP(6, .2)
sage: D.is_isomorphic(D, certify = True)
(True, {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5})
sage: D.is_isomorphic(D,edge_labels=True, certify = True)
(True, {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5})
Ensure that trac trac ticket #11620 is fixed:
sage: G1 = DiGraph([(0, 0, 'c'), (0, 4, 'b'), (0, 5, 'c'),
... (0, 5, 't'), (1, 1, 'c'), (1, 3,'c'), (1, 3, 't'), (1, 5, 'b'),
... (2, 2, 'c'), (2, 3, 'b'), (2, 4, 'c'),(2, 4, 't'), (3, 1, 't'),
... (3, 2, 'b'), (3, 2, 'c'), (3, 4, 'c'), (4, 0,'b'), (4, 0, 'c'),
... (4, 2, 't'), (4, 5, 'c'), (5, 0, 't'), (5, 1, 'b'), (5, 1, 'c'),
... (5, 3, 'c')], loops=True, multiedges=True)
sage: G2 = G1.relabel({0:4, 1:5, 2:3, 3:2, 4:1,5:0}, inplace=False)
sage: G1.canonical_label(edge_labels=True) == G2.canonical_label(edge_labels=True)
True
sage: G1.is_isomorphic(G2,edge_labels=True)
True
Ensure that trac ticket #13114 is fixed
sage: g = Graph([(0, 0, 0), (0, 2, 0), (1, 1, 0), (1, 2, 0), (1, 2, 1), (2, 2, 0)], multiedges=True, loops=True)
sage: gg = Graph([(0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 2, 0), (2, 2, 0), (2, 2, 1)], multiedges=True, loops=True)
sage: g.is_isomorphic(gg)
False
Ensure that trac:\(14777\) is fixed
sage: g = Graph()
sage: h = Graph()
sage: g.is_isomorphic(h)
True
Returns True if the graph is planar, and False otherwise. This wraps the reference implementation provided by John Boyer of the linear time planarity algorithm by edge addition due to Boyer Myrvold. (See reference code in graphs.planarity).
Note - the argument on_embedding takes precedence over set_embedding. This means that only the on_embedding combinatorial embedding will be tested for planarity and no _embedding attribute will be set as a result of this function call, unless on_embedding is None.
REFERENCE:
INPUT:
EXAMPLES:
sage: g = graphs.CubeGraph(4)
sage: g.is_planar()
False
sage: g = graphs.CircularLadderGraph(4)
sage: g.is_planar(set_embedding=True)
True
sage: g.get_embedding()
{0: [1, 4, 3],
1: [2, 5, 0],
2: [3, 6, 1],
3: [0, 7, 2],
4: [0, 5, 7],
5: [1, 6, 4],
6: [2, 7, 5],
7: [4, 6, 3]}
sage: g = graphs.PetersenGraph()
sage: (g.is_planar(kuratowski=True))[1].adjacency_matrix()
[0 1 0 0 0 1 0 0 0]
[1 0 1 0 0 0 1 0 0]
[0 1 0 1 0 0 0 1 0]
[0 0 1 0 0 0 0 0 1]
[0 0 0 0 0 0 1 1 0]
[1 0 0 0 0 0 0 1 1]
[0 1 0 0 1 0 0 0 1]
[0 0 1 0 1 1 0 0 0]
[0 0 0 1 0 1 1 0 0]
sage: k43 = graphs.CompleteBipartiteGraph(4,3)
sage: result = k43.is_planar(kuratowski=True); result
(False, Graph on 6 vertices)
sage: result[1].is_isomorphic(graphs.CompleteBipartiteGraph(3,3))
True
Multi-edged and looped graphs are partially supported:
sage: G = Graph({0:[1,1]}, multiedges=True)
sage: G.is_planar()
True
sage: G.is_planar(on_embedding={})
Traceback (most recent call last):
...
NotImplementedError: Cannot compute with embeddings of multiple-edged or looped graphs.
sage: G.is_planar(set_pos=True)
Traceback (most recent call last):
...
NotImplementedError: Cannot compute with embeddings of multiple-edged or looped graphs.
sage: G.is_planar(set_embedding=True)
Traceback (most recent call last):
...
NotImplementedError: Cannot compute with embeddings of multiple-edged or looped graphs.
sage: G.is_planar(kuratowski=True)
(True, None)
sage: G = graphs.CompleteGraph(5)
sage: G = Graph(G, multiedges=True)
sage: G.add_edge(0,1)
sage: G.is_planar()
False
sage: b,k = G.is_planar(kuratowski=True)
sage: b
False
sage: k.vertices()
[0, 1, 2, 3, 4]
Return True if this graph is (\(k\)-)regular.
INPUT:
EXAMPLES:
sage: G = graphs.HoffmanSingletonGraph()
sage: G.is_regular()
True
sage: G.is_regular(9)
False
So the Hoffman-Singleton graph is regular, but not 9-regular. In fact, we can now find the degree easily as follows:
sage: next(G.degree_iterator())
7
The house graph is not regular:
sage: graphs.HouseGraph().is_regular()
False
A graph without vertices is \(k\)-regular for every \(k\):
sage: Graph().is_regular()
True
Tests whether self is a subgraph of other.
Warning
Please note that this method does not check whether self contains a subgraph isomorphic to other, but only if it directly contains it as a subgraph !
By default induced is True for backwards compatibility.
INPUT:
OUTPUT:
boolean – True iff self is a (possibly induced) subgraph of other.
See also
If you are interested in the (possibly induced) subgraphs isomorphic to self in other, you are looking for the following methods:
EXAMPLES:
sage: P = graphs.PetersenGraph()
sage: G = P.subgraph(range(6))
sage: G.is_subgraph(P)
True
sage: H=graphs.CycleGraph(5)
sage: G=graphs.PathGraph(5)
sage: G.is_subgraph(H)
False
sage: G.is_subgraph(H, induced=False)
True
sage: H.is_subgraph(G, induced=False)
False
TESTS:
Raise an error when self and other are of different types:
sage: Graph([(0,1)]).is_subgraph( DiGraph([(0,1)]) )
Traceback (most recent call last):
...
ValueError: The input parameter must be a Graph.
sage: DiGraph([(0,1)]).is_subgraph( Graph([(0,1)]) )
Traceback (most recent call last):
...
ValueError: The input parameter must be a DiGraph.
Tests whether the digraph is transitively reduced.
A digraph is transitively reduced if it is equal to its transitive reduction.
EXAMPLES:
sage: d = DiGraph({0:[1],1:[2],2:[3]})
sage: d.is_transitively_reduced()
True
sage: d = DiGraph({0:[1,2],1:[2]})
sage: d.is_transitively_reduced()
False
sage: d = DiGraph({0:[1,2],1:[2],2:[]})
sage: d.is_transitively_reduced()
False
Returns whether the automorphism group of self is transitive within the partition provided, by default the unit partition of the vertices of self (thus by default tests for vertex transitivity in the usual sense).
EXAMPLES:
sage: G = Graph({0:[1],1:[2]})
sage: G.is_vertex_transitive()
False
sage: P = graphs.PetersenGraph()
sage: P.is_vertex_transitive()
True
sage: D = graphs.DodecahedralGraph()
sage: D.is_vertex_transitive()
True
sage: R = graphs.RandomGNP(2000, .01)
sage: R.is_vertex_transitive()
False
Returns the Kirchhoff matrix (a.k.a. the Laplacian) of the graph.
The Kirchhoff matrix is defined to be \(D - M\), where \(D\) is the diagonal degree matrix (each diagonal entry is the degree of the corresponding vertex), and \(M\) is the adjacency matrix. If normalized is True, then the returned matrix is \(D^{-1/2}(D-M)D^{-1/2}\).
( In the special case of DiGraphs, \(D\) is defined as the diagonal in-degree matrix or diagonal out-degree matrix according to the value of indegree)
INPUT:
Default is to take weights into consideration if and only if the graph is weighted.
If True, each diagonal entry of \(D\) is equal to the in-degree of the corresponding vertex.
Else, each diagonal entry of \(D\) is equal to the out-degree of the corresponding vertex.
By default, indegree is set to True
( This variable only matters when the graph is a digraph )
normalized – Binary variable :
- If True, the returned matrix is \(D^{-1/2}(D-M)D^{-1/2}\), a normalized version of the Laplacian matrix. (More accurately, the normalizing matrix used is equal to \(D^{-1/2}\) only for non-isolated vertices. If vertex \(i\) is isolated, then diagonal entry \(i\) in the matrix is 1, rather than a division by zero.)
- Else, the matrix \(D-M\) is returned
Note that any additional keywords will be passed on to either the adjacency_matrix or weighted_adjacency_matrix method.
AUTHORS:
EXAMPLES:
sage: G = Graph(sparse=True)
sage: G.add_edges([(0,1,1),(1,2,2),(0,2,3),(0,3,4)])
sage: M = G.kirchhoff_matrix(weighted=True); M
[ 8 -1 -3 -4]
[-1 3 -2 0]
[-3 -2 5 0]
[-4 0 0 4]
sage: M = G.kirchhoff_matrix(); M
[ 3 -1 -1 -1]
[-1 2 -1 0]
[-1 -1 2 0]
[-1 0 0 1]
sage: G.set_boundary([2,3])
doctest:...: DeprecationWarning: The boundary parameter is deprecated and will soon disappear.
See http://trac.sagemath.org/15494 for details.
sage: M = G.kirchhoff_matrix(weighted=True, boundary_first=True); M
doctest:...: DeprecationWarning: The boundary parameter is deprecated and will soon disappear.
See http://trac.sagemath.org/15494 for details.
[ 5 0 -3 -2]
[ 0 4 -4 0]
[-3 -4 8 -1]
[-2 0 -1 3]
sage: M = G.kirchhoff_matrix(boundary_first=True); M
doctest:...: DeprecationWarning: The boundary parameter is deprecated and will soon disappear.
See http://trac.sagemath.org/15494 for details.
[ 2 0 -1 -1]
[ 0 1 -1 0]
[-1 -1 3 -1]
[-1 0 -1 2]
sage: M = G.laplacian_matrix(boundary_first=True); M
[ 2 0 -1 -1]
[ 0 1 -1 0]
[-1 -1 3 -1]
[-1 0 -1 2]
sage: M = G.laplacian_matrix(boundary_first=True, sparse=False); M
[ 2 0 -1 -1]
[ 0 1 -1 0]
[-1 -1 3 -1]
[-1 0 -1 2]
sage: M = G.laplacian_matrix(normalized=True); M
[ 1 -1/6*sqrt(3)*sqrt(2) -1/6*sqrt(3)*sqrt(2) -1/3*sqrt(3)]
[-1/6*sqrt(3)*sqrt(2) 1 -1/2 0]
[-1/6*sqrt(3)*sqrt(2) -1/2 1 0]
[ -1/3*sqrt(3) 0 0 1]
sage: Graph({0:[],1:[2]}).laplacian_matrix(normalized=True)
[ 0 0 0]
[ 0 1 -1]
[ 0 -1 1]
A weighted directed graph with loops, changing the variable indegree
sage: G = DiGraph({1:{1:2,2:3}, 2:{1:4}}, weighted=True,sparse=True)
sage: G.laplacian_matrix()
[ 4 -3]
[-4 3]
sage: G = DiGraph({1:{1:2,2:3}, 2:{1:4}}, weighted=True,sparse=True)
sage: G.laplacian_matrix(indegree=False)
[ 3 -3]
[-4 4]
Returns the tensor product of self and other.
The tensor product of \(G\) and \(H\) is the graph \(L\) with vertex set \(V(L)\) equal to the Cartesian product of the vertices \(V(G)\) and \(V(H)\), and \(((u,v), (w,x))\) is an edge iff - \((u, w)\) is an edge of self, and - \((v, x)\) is an edge of other.
The tensor product is also known as the categorical product and the kronecker product (refering to the kronecker matrix product). See Wikipedia article on the Kronecker product.
EXAMPLES:
sage: Z = graphs.CompleteGraph(2)
sage: C = graphs.CycleGraph(5)
sage: T = C.tensor_product(Z); T
Graph on 10 vertices
sage: T.size()
10
sage: T.plot() # long time
Graphics object consisting of 21 graphics primitives
sage: D = graphs.DodecahedralGraph()
sage: P = graphs.PetersenGraph()
sage: T = D.tensor_product(P); T
Graph on 200 vertices
sage: T.size()
900
sage: T.plot() # long time
Graphics object consisting of 1101 graphics primitives
TESTS:
Tensor product of graphs:
sage: G = Graph([(0,1), (1,2)])
sage: H = Graph([('a','b')])
sage: T = G.tensor_product(H)
sage: T.edges(labels=None)
[((0, 'a'), (1, 'b')), ((0, 'b'), (1, 'a')), ((1, 'a'), (2, 'b')), ((1, 'b'), (2, 'a'))]
sage: T.is_isomorphic( H.tensor_product(G) )
True
Tensor product of digraphs:
sage: I = DiGraph([(0,1), (1,2)])
sage: J = DiGraph([('a','b')])
sage: T = I.tensor_product(J)
sage: T.edges(labels=None)
[((0, 'a'), (1, 'b')), ((1, 'a'), (2, 'b'))]
sage: T.is_isomorphic( J.tensor_product(I) )
True
The tensor product of two DeBruijn digraphs of same diameter is a DeBruijn digraph:
sage: B1 = digraphs.DeBruijn(2, 3)
sage: B2 = digraphs.DeBruijn(3, 3)
sage: T = B1.tensor_product( B2 )
sage: T.is_isomorphic( digraphs.DeBruijn( 2*3, 3) )
True
Returns the Kirchhoff matrix (a.k.a. the Laplacian) of the graph.
The Kirchhoff matrix is defined to be \(D - M\), where \(D\) is the diagonal degree matrix (each diagonal entry is the degree of the corresponding vertex), and \(M\) is the adjacency matrix. If normalized is True, then the returned matrix is \(D^{-1/2}(D-M)D^{-1/2}\).
( In the special case of DiGraphs, \(D\) is defined as the diagonal in-degree matrix or diagonal out-degree matrix according to the value of indegree)
INPUT:
Default is to take weights into consideration if and only if the graph is weighted.
If True, each diagonal entry of \(D\) is equal to the in-degree of the corresponding vertex.
Else, each diagonal entry of \(D\) is equal to the out-degree of the corresponding vertex.
By default, indegree is set to True
( This variable only matters when the graph is a digraph )
normalized – Binary variable :
- If True, the returned matrix is \(D^{-1/2}(D-M)D^{-1/2}\), a normalized version of the Laplacian matrix. (More accurately, the normalizing matrix used is equal to \(D^{-1/2}\) only for non-isolated vertices. If vertex \(i\) is isolated, then diagonal entry \(i\) in the matrix is 1, rather than a division by zero.)
- Else, the matrix \(D-M\) is returned
Note that any additional keywords will be passed on to either the adjacency_matrix or weighted_adjacency_matrix method.
AUTHORS:
EXAMPLES:
sage: G = Graph(sparse=True)
sage: G.add_edges([(0,1,1),(1,2,2),(0,2,3),(0,3,4)])
sage: M = G.kirchhoff_matrix(weighted=True); M
[ 8 -1 -3 -4]
[-1 3 -2 0]
[-3 -2 5 0]
[-4 0 0 4]
sage: M = G.kirchhoff_matrix(); M
[ 3 -1 -1 -1]
[-1 2 -1 0]
[-1 -1 2 0]
[-1 0 0 1]
sage: G.set_boundary([2,3])
doctest:...: DeprecationWarning: The boundary parameter is deprecated and will soon disappear.
See http://trac.sagemath.org/15494 for details.
sage: M = G.kirchhoff_matrix(weighted=True, boundary_first=True); M
doctest:...: DeprecationWarning: The boundary parameter is deprecated and will soon disappear.
See http://trac.sagemath.org/15494 for details.
[ 5 0 -3 -2]
[ 0 4 -4 0]
[-3 -4 8 -1]
[-2 0 -1 3]
sage: M = G.kirchhoff_matrix(boundary_first=True); M
doctest:...: DeprecationWarning: The boundary parameter is deprecated and will soon disappear.
See http://trac.sagemath.org/15494 for details.
[ 2 0 -1 -1]
[ 0 1 -1 0]
[-1 -1 3 -1]
[-1 0 -1 2]
sage: M = G.laplacian_matrix(boundary_first=True); M
[ 2 0 -1 -1]
[ 0 1 -1 0]
[-1 -1 3 -1]
[-1 0 -1 2]
sage: M = G.laplacian_matrix(boundary_first=True, sparse=False); M
[ 2 0 -1 -1]
[ 0 1 -1 0]
[-1 -1 3 -1]
[-1 0 -1 2]
sage: M = G.laplacian_matrix(normalized=True); M
[ 1 -1/6*sqrt(3)*sqrt(2) -1/6*sqrt(3)*sqrt(2) -1/3*sqrt(3)]
[-1/6*sqrt(3)*sqrt(2) 1 -1/2 0]
[-1/6*sqrt(3)*sqrt(2) -1/2 1 0]
[ -1/3*sqrt(3) 0 0 1]
sage: Graph({0:[],1:[2]}).laplacian_matrix(normalized=True)
[ 0 0 0]
[ 0 1 -1]
[ 0 -1 1]
A weighted directed graph with loops, changing the variable indegree
sage: G = DiGraph({1:{1:2,2:3}, 2:{1:4}}, weighted=True,sparse=True)
sage: G.laplacian_matrix()
[ 4 -3]
[-4 3]
sage: G = DiGraph({1:{1:2,2:3}, 2:{1:4}}, weighted=True,sparse=True)
sage: G.laplacian_matrix(indegree=False)
[ 3 -3]
[-4 4]
Returns an instance of GraphLatex for the graph.
Changes to this object will affect the LaTeX version of the graph. For a full explanation of how to use LaTeX to render graphs, see the introduction to the graph_latex module.
EXAMPLES:
sage: g = graphs.PetersenGraph()
sage: opts = g.latex_options()
sage: opts
LaTeX options for Petersen graph: {}
sage: opts.set_option('tkz_style', 'Classic')
sage: opts
LaTeX options for Petersen graph: {'tkz_style': 'Classic'}
Returns a layout for the vertices of this graph.
INPUT:
- layout – one of “acyclic”, “circular”, “ranked”, “graphviz”, “planar”, “spring”, or “tree”
- pos – a dictionary of positions or None (the default)
- save_pos – a boolean
- layout options – (see below)
If layout=algorithm is specified, this algorithm is used to compute the positions.
Otherwise, if pos is specified, use the given positions.
Otherwise, try to fetch previously computed and saved positions.
Otherwise use the default layout (usually the spring layout)
If save_pos = True, the layout is saved for later use.
EXAMPLES:
sage: g = digraphs.ButterflyGraph(1)
sage: g.layout()
{('0', 0): [2.22..., 0.832...],
('0', 1): [0.833..., 0.543...],
('1', 0): [1.12..., -0.830...],
('1', 1): [2.50..., -0.545...]}
sage: g.layout(layout="acyclic_dummy", save_pos=True)
{('0', 0): [0.3..., 0],
('0', 1): [0.3..., 1],
('1', 0): [0.6..., 0],
('1', 1): [0.6..., 1]}
sage: g.layout(dim = 3)
{('0', 0): [2.02..., 0.528..., 0.343...],
('0', 1): [1.61..., 0.260..., -0.927...],
('1', 0): [0.674..., -0.528..., -0.343...],
('1', 1): [1.07..., -0.260..., 0.927...]}
Here is the list of all the available layout options:
sage: from sage.graphs.graph_plot import layout_options
sage: for key, value in list(sorted(layout_options.iteritems())):
... print "option", key, ":", value
option by_component : Whether to do the spring layout by connected component -- a boolean.
option dim : The dimension of the layout -- 2 or 3.
option heights : A dictionary mapping heights to the list of vertices at this height.
option iterations : The number of times to execute the spring layout algorithm.
option layout : A layout algorithm -- one of : "acyclic", "circular" (plots the graph with vertices evenly distributed on a circle), "ranked", "graphviz", "planar", "spring" (traditional spring layout, using the graph's current positions as initial positions), or "tree" (the tree will be plotted in levels, depending on minimum distance for the root).
option prog : Which graphviz layout program to use -- one of "circo", "dot", "fdp", "neato", or "twopi".
option save_pos : Whether or not to save the computed position for the graph.
option spring : Use spring layout to finalize the current layout.
option tree_orientation : The direction of tree branches -- 'up', 'down', 'left' or 'right'.
option tree_root : A vertex designation for drawing trees. A vertex of the tree to be used as the root for the ``layout='tree'`` option. If no root is specified, then one is chosen close to the center of the tree. Ignored unless ``layout='tree'``
Some of them only apply to certain layout algorithms. For details, see layout_acyclic(), layout_planar(), layout_circular(), layout_spring(), ...
..warning: unknown optional arguments are silently ignored
..warning: graphviz and dot2tex are currently required to obtain a nice ‘acyclic’ layout. See layout_graphviz() for installation instructions.
A subclass may implement another layout algorithm \(blah\), by implementing a method .layout_blah. It may override the default layout by overriding layout_default(), and similarly override the predefined layouts.
TODO: use this feature for all the predefined graphs classes (like for the Petersen graph, ...), rather than systematically building the layout at construction time.
Computes a circular layout for this graph
OUTPUT: a dictionary mapping vertices to positions
EXAMPLES:
sage: G = graphs.CirculantGraph(7,[1,3])
sage: G.layout_circular()
{0: [6.12...e-17, 1.0],
1: [-0.78..., 0.62...],
2: [-0.97..., -0.22...],
3: [-0.43..., -0.90...],
4: [0.43..., -0.90...],
5: [0.97..., -0.22...],
6: [0.78..., 0.62...]}
sage: G.plot(layout = "circular")
Graphics object consisting of 22 graphics primitives
Computes a spring layout for this graph
INPUT:
- iterations – a positive integer
- dim – 2 or 3 (default: 2)
OUTPUT: a dictionary mapping vertices to positions
Returns a layout computed by randomly arranging the vertices along the given heights
EXAMPLES:
sage: g = graphs.LadderGraph(3) #TODO!!!!
sage: g.layout_spring()
{0: [1.28..., -0.943...],
1: [1.57..., -0.101...],
2: [1.83..., 0.747...],
3: [0.531..., -0.757...],
4: [0.795..., 0.108...],
5: [1.08..., 0.946...]}
sage: g = graphs.LadderGraph(7)
sage: g.plot(layout = "spring")
Graphics object consisting of 34 graphics primitives
Extends randomly a partial layout
INPUT:
- pos: a dictionary mapping vertices to positions
OUTPUT: a dictionary mapping vertices to positions
The vertices not referenced in pos are assigned random positions within the box delimited by the other vertices.
EXAMPLES:
sage: H = digraphs.ButterflyGraph(1)
sage: H.layout_extend_randomly({('0',0): (0,0), ('1',1): (1,1)})
{('0', 0): (0, 0),
('0', 1): [0.0446..., 0.332...],
('1', 0): [0.111..., 0.514...],
('1', 1): (1, 1)}
Calls graphviz to compute a layout of the vertices of this graph.
INPUT:
- prog – one of “dot”, “neato”, “twopi”, “circo”, or “fdp”
EXAMPLES:
sage: g = digraphs.ButterflyGraph(2)
sage: g.layout_graphviz() # optional - dot2tex, graphviz
{('...', ...): [...,...],
('...', ...): [...,...],
('...', ...): [...,...],
('...', ...): [...,...],
('...', ...): [...,...],
('...', ...): [...,...],
('...', ...): [...,...],
('...', ...): [...,...],
('...', ...): [...,...],
('...', ...): [...,...],
('...', ...): [...,...],
('...', ...): [...,...]}
sage: g.plot(layout = "graphviz") # optional - dot2tex, graphviz
Note: the actual coordinates are not deterministic
By default, an acyclic layout is computed using graphviz‘s dot layout program. One may specify an alternative layout program:
sage: g.plot(layout = "graphviz", prog = "dot") # optional - dot2tex, graphviz
sage: g.plot(layout = "graphviz", prog = "neato") # optional - dot2tex, graphviz
sage: g.plot(layout = "graphviz", prog = "twopi") # optional - dot2tex, graphviz
sage: g.plot(layout = "graphviz", prog = "fdp") # optional - dot2tex, graphviz
sage: g = graphs.BalancedTree(5,2)
sage: g.plot(layout = "graphviz", prog = "circo") # optional - dot2tex, graphviz
TODO: put here some cool examples showcasing graphviz features.
This requires graphviz and the dot2tex spkg. Here are some installation tips:
- Install graphviz >= 2.14 so that the programs dot, neato, ... are in your path. The graphviz suite can be download from http://graphviz.org.
- Download dot2tex-2.8.?.spkg from http://trac.sagemath.org/sage_trac/ticket/7004 and install it with sage -i dot2tex-2.8.?.spkg
TODO: use the graphviz functionality of Networkx 1.0 once it will be merged into Sage.
Uses Schnyder’s algorithm to compute a planar layout for self, raising an error if self is not planar.
INPUT:
EXAMPLES:
sage: g = graphs.PathGraph(10)
sage: g.set_planar_positions(test=True)
True
sage: g = graphs.BalancedTree(3,4)
sage: g.set_planar_positions(test=True)
True
sage: g = graphs.CycleGraph(7)
sage: g.set_planar_positions(test=True)
True
sage: g = graphs.CompleteGraph(5)
sage: g.set_planar_positions(test=True,set_embedding=True)
Traceback (most recent call last):
...
ValueError: Complete graph is not a planar graph
Computes a ranked layout for this graph
INPUT:
- heights – a dictionary mapping heights to the list of vertices at this height
OUTPUT: a dictionary mapping vertices to positions
Returns a layout computed by randomly arranging the vertices along the given heights
EXAMPLES:
sage: g = graphs.LadderGraph(3)
sage: g.layout_ranked(heights = dict( (i,[i, i+3]) for i in range(3) ))
{0: [0.668..., 0],
1: [0.667..., 1],
2: [0.677..., 2],
3: [1.34..., 0],
4: [1.33..., 1],
5: [1.33..., 2]}
sage: g = graphs.LadderGraph(7)
sage: g.plot(layout = "ranked", heights = dict( (i,[i, i+7]) for i in range(7) ))
Graphics object consisting of 34 graphics primitives
Computes a spring layout for this graph
INPUT:
- iterations – a positive integer
- dim – 2 or 3 (default: 2)
OUTPUT: a dictionary mapping vertices to positions
Returns a layout computed by randomly arranging the vertices along the given heights
EXAMPLES:
sage: g = graphs.LadderGraph(3) #TODO!!!!
sage: g.layout_spring()
{0: [1.28..., -0.943...],
1: [1.57..., -0.101...],
2: [1.83..., 0.747...],
3: [0.531..., -0.757...],
4: [0.795..., 0.108...],
5: [1.08..., 0.946...]}
sage: g = graphs.LadderGraph(7)
sage: g.plot(layout = "spring")
Graphics object consisting of 34 graphics primitives
Computes an ordered tree layout for this graph, which should be a tree (no non-oriented cycles).
INPUT:
OUTPUT: a dictionary mapping vertices to positions
EXAMPLES:
sage: T = graphs.RandomLobster(25, 0.3, 0.3)
sage: T.show(layout='tree', tree_orientation='up')
sage: G = graphs.HoffmanSingletonGraph()
sage: T = Graph()
sage: T.add_edges(G.min_spanning_tree(starting_vertex=0))
sage: T.show(layout='tree', tree_root=0)
sage: G = graphs.BalancedTree(2, 2)
sage: G.layout_tree(tree_root = 0)
{0: (1.5, 0),
1: (2.5, -1),
2: (0.5, -1),
3: (3.0, -2),
4: (2.0, -2),
5: (1.0, -2),
6: (0.0, -2)}
sage: G = graphs.BalancedTree(2,4)
sage: G.plot(layout="tree", tree_root = 0, tree_orientation = "up")
Graphics object consisting of 62 graphics primitives
sage: G = graphs.RandomTree(80)
sage: G.plot(layout="tree", tree_orientation = "right")
Graphics object consisting of 160 graphics primitives
TESTS:
sage: G = graphs.CycleGraph(3)
sage: G.plot(layout='tree')
Traceback (most recent call last):
...
RuntimeError: Cannot use tree layout on this graph: self.is_tree() returns False.
Performs a Lex BFS on the graph.
A Lex BFS ( or Lexicographic Breadth-First Search ) is a Breadth First Search used for the recognition of Chordal Graphs. For more information, see the Wikipedia article on Lex-BFS.
INPUT:
reverse (boolean) – whether to return the vertices in discovery order, or the reverse.
False by default.
tree (boolean) – whether to return the discovery directed tree (each vertex being linked to the one that saw it for the first time)
False by default.
initial_vertex – the first vertex to consider.
None by default.
ALGORITHM:
This algorithm maintains for each vertex left in the graph a code corresponding to the vertices already removed. The vertex of maximal code ( according to the lexicographic order ) is then removed, and the codes are updated.
This algorithm runs in time \(O(n^2)\) ( where \(n\) is the number of vertices in the graph ), which is not optimal. An optimal algorithm would run in time \(O(m)\) ( where \(m\) is the number of edges in the graph ), and require the use of a doubly-linked list which are not available in python and can not really be written efficiently. This could be done in Cython, though.
EXAMPLE:
A Lex BFS is obviously an ordering of the vertices:
sage: g = graphs.PetersenGraph()
sage: len(g.lex_BFS()) == g.order()
True
For a Chordal Graph, a reversed Lex BFS is a Perfect Elimination Order
sage: g = graphs.PathGraph(3).lexicographic_product(graphs.CompleteGraph(2))
sage: g.lex_BFS(reverse=True)
[(2, 1), (2, 0), (1, 1), (1, 0), (0, 1), (0, 0)]
And the vertices at the end of the tree of discovery are, for chordal graphs, simplicial vertices (their neighborhood is a complete graph):
sage: g = graphs.ClawGraph().lexicographic_product(graphs.CompleteGraph(2))
sage: v = g.lex_BFS()[-1]
sage: peo, tree = g.lex_BFS(initial_vertex = v, tree=True)
sage: leaves = [v for v in tree if tree.in_degree(v) ==0]
sage: all([g.subgraph(g.neighbors(v)).is_clique() for v in leaves])
True
TESTS:
There were some problems with the following call in the past (trac 10899) – now it should be fine:
sage: Graph(1).lex_BFS(tree=True)
([0], Digraph on 1 vertex)
Returns the lexicographic product of self and other.
The lexicographic product of \(G\) and \(H\) is the graph \(L\) with vertex set \(V(L)=V(G)\times V(H)\), and \(((u,v), (w,x))\) is an edge iff :
EXAMPLES:
sage: Z = graphs.CompleteGraph(2)
sage: C = graphs.CycleGraph(5)
sage: L = C.lexicographic_product(Z); L
Graph on 10 vertices
sage: L.plot() # long time
Graphics object consisting of 36 graphics primitives
sage: D = graphs.DodecahedralGraph()
sage: P = graphs.PetersenGraph()
sage: L = D.lexicographic_product(P); L
Graph on 200 vertices
sage: L.plot() # long time
Graphics object consisting of 3501 graphics primitives
TESTS:
Lexicographic product of graphs:
sage: G = Graph([(0,1), (1,2)])
sage: H = Graph([('a','b')])
sage: T = G.lexicographic_product(H)
sage: T.edges(labels=None)
[((0, 'a'), (0, 'b')), ((0, 'a'), (1, 'a')), ((0, 'a'), (1, 'b')), ((0, 'b'), (1, 'a')), ((0, 'b'), (1, 'b')), ((1, 'a'), (1, 'b')), ((1, 'a'), (2, 'a')), ((1, 'a'), (2, 'b')), ((1, 'b'), (2, 'a')), ((1, 'b'), (2, 'b')), ((2, 'a'), (2, 'b'))]
sage: T.is_isomorphic( H.lexicographic_product(G) )
False
Lexicographic product of digraphs:
sage: I = DiGraph([(0,1), (1,2)])
sage: J = DiGraph([('a','b')])
sage: T = I.lexicographic_product(J)
sage: T.edges(labels=None)
[((0, 'a'), (0, 'b')), ((0, 'a'), (1, 'a')), ((0, 'a'), (1, 'b')), ((0, 'b'), (1, 'a')), ((0, 'b'), (1, 'b')), ((1, 'a'), (1, 'b')), ((1, 'a'), (2, 'a')), ((1, 'a'), (2, 'b')), ((1, 'b'), (2, 'a')), ((1, 'b'), (2, 'b')), ((2, 'a'), (2, 'b'))]
sage: T.is_isomorphic( J.lexicographic_product(I) )
False
Returns the line graph of the (di)graph.
INPUT:
labels (boolean) – whether edge labels should be taken in consideration. If labels=True, the vertices of the line graph will be triples (u,v,label), and pairs of vertices otherwise.
This is set to True by default.
The line graph of an undirected graph G is an undirected graph H such that the vertices of H are the edges of G and two vertices e and f of H are adjacent if e and f share a common vertex in G. In other words, an edge in H represents a path of length 2 in G.
The line graph of a directed graph G is a directed graph H such that the vertices of H are the edges of G and two vertices e and f of H are adjacent if e and f share a common vertex in G and the terminal vertex of e is the initial vertex of f. In other words, an edge in H represents a (directed) path of length 2 in G.
Note
As a Graph object only accepts hashable objects as vertices (and as the vertices of the line graph are the edges of the graph), this code will fail if edge labels are not hashable. You can also set the argument labels=False to ignore labels.
See also
EXAMPLES:
sage: g = graphs.CompleteGraph(4)
sage: h = g.line_graph()
sage: h.vertices()
[(0, 1, None),
(0, 2, None),
(0, 3, None),
(1, 2, None),
(1, 3, None),
(2, 3, None)]
sage: h.am()
[0 1 1 1 1 0]
[1 0 1 1 0 1]
[1 1 0 0 1 1]
[1 1 0 0 1 1]
[1 0 1 1 0 1]
[0 1 1 1 1 0]
sage: h2 = g.line_graph(labels=False)
sage: h2.vertices()
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
sage: h2.am() == h.am()
True
sage: g = DiGraph([[1..4],lambda i,j: i<j])
sage: h = g.line_graph()
sage: h.vertices()
[(1, 2, None),
(1, 3, None),
(1, 4, None),
(2, 3, None),
(2, 4, None),
(3, 4, None)]
sage: h.edges()
[((1, 2, None), (2, 3, None), None),
((1, 2, None), (2, 4, None), None),
((1, 3, None), (3, 4, None), None),
((2, 3, None), (3, 4, None), None)]
Tests:
sage: g = graphs.KneserGraph(7,1)
sage: C = graphs.CompleteGraph(7)
sage: C.is_isomorphic(g)
True
sage: C.line_graph().is_isomorphic(g.line_graph())
True
Returns a longest path of self.
INPUT:
s (vertex) – forces the source of the path (the method then returns the longest path starting at s). The argument is set to None by default, which means that no constraint is set upon the first vertex in the path.
t (vertex) – forces the destination of the path (the method then returns the longest path ending at t). The argument is set to None by default, which means that no constraint is set upon the last vertex in the path.
use_edge_labels (boolean) – whether the labels on the edges are to be considered as weights (a label set to None or {} being considered as a weight of \(1\)). Set to False by default.
algorithm – one of "MILP" (default) or "backtrack". Two remarks on this respect:
- While the MILP formulation returns an exact answer, the backtrack algorithm is a randomized heuristic.
- As the backtrack algorithm does not support edge weighting, setting use_edge_labels=True will force the use of the MILP algorithm.
solver – (default: None) Specify the Linear Program (LP) solver to be used. If set to None, the default one is used. For more information on LP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
verbose – integer (default: 0). Sets the level of verbosity. Set to 0 by default, which means quiet.
Note
The length of a path is assumed to be the number of its edges, or the sum of their labels.
OUTPUT:
A subgraph of self corresponding to a (directed if self is directed) longest path. If use_edge_labels == True, a pair weight, path is returned.
ALGORITHM:
Mixed Integer Linear Programming. (This problem is known to be NP-Hard).
EXAMPLES:
Petersen’s graph being hypohamiltonian, it has a longest path of length \(n-2\):
sage: g = graphs.PetersenGraph()
sage: lp = g.longest_path()
sage: lp.order() >= g.order() - 2
True
The heuristic totally agrees:
sage: g = graphs.PetersenGraph()
sage: g.longest_path(algorithm="backtrack").edges()
[(0, 1, None), (1, 2, None), (2, 3, None), (3, 4, None), (4, 9, None), (5, 7, None), (5, 8, None), (6, 8, None), (6, 9, None)]
Let us compute longest paths on random graphs with random weights. Each time, we ensure the resulting graph is indeed a path:
sage: for i in range(20):
... g = graphs.RandomGNP(15, 0.3)
... for u, v in g.edges(labels=False):
... g.set_edge_label(u, v, random())
... lp = g.longest_path()
... if (not lp.is_forest() or
... not max(lp.degree()) <= 2 or
... not lp.is_connected()):
... print("Error!")
... break
TESTS:
The argument algorithm must be either 'backtrack' or 'MILP':
sage: graphs.PetersenGraph().longest_path(algorithm="abc")
Traceback (most recent call last):
...
ValueError: algorithm must be either 'backtrack' or 'MILP'
Disconnected graphs not weighted:
sage: g1 = graphs.PetersenGraph()
sage: g2 = 2 * g1
sage: lp1 = g1.longest_path()
sage: lp2 = g2.longest_path()
sage: len(lp1) == len(lp2)
True
Disconnected graphs weighted:
sage: g1 = graphs.PetersenGraph()
sage: for u,v in g.edges(labels=False):
... g.set_edge_label(u, v, random())
sage: g2 = 2 * g1
sage: lp1 = g1.longest_path(use_edge_labels=True)
sage: lp2 = g2.longest_path(use_edge_labels=True)
sage: lp1[0] == lp2[0]
True
Empty graphs:
sage: Graph().longest_path()
Graph on 0 vertices
sage: Graph().longest_path(use_edge_labels=True)
[0, Graph on 0 vertices]
sage: graphs.EmptyGraph().longest_path()
Graph on 0 vertices
sage: graphs.EmptyGraph().longest_path(use_edge_labels=True)
[0, Graph on 0 vertices]
Trivial graphs:
sage: G = Graph()
sage: G.add_vertex(0)
sage: G.longest_path()
Graph on 0 vertices
sage: G.longest_path(use_edge_labels=True)
[0, Graph on 0 vertices]
sage: graphs.CompleteGraph(1).longest_path()
Graph on 0 vertices
sage: graphs.CompleteGraph(1).longest_path(use_edge_labels=True)
[0, Graph on 0 vertices]
Random test for digraphs:
sage: for i in range(20):
... g = digraphs.RandomDirectedGNP(15, 0.3)
... for u, v in g.edges(labels=False):
... g.set_edge_label(u, v, random())
... lp = g.longest_path()
... if (not lp.is_directed_acyclic() or
... not max(lp.out_degree()) <= 1 or
... not max(lp.in_degree()) <= 1 or
... not lp.is_connected()):
... print("Error!")
... print g.edges()
... break
sage: g = graphs.CompleteGraph(5).to_directed()
sage: g.longest_path(s=1,t=2)
Subgraph of (Complete graph): Digraph on 5 vertices
sage: l = [(0, 1), (0, 3), (2, 0), (3, 4)]
sage: G = DiGraph(l)
sage: H = {(0, 3), (2, 0), (3, 4)}
sage: H=={x for x in G.longest_path().edges(labels=False)}
True
Returns a list of all loops in the graph.
EXAMPLES:
sage: G = Graph(4, loops=True)
sage: G.add_edges( [ (0,0), (1,1), (2,2), (3,3), (2,3) ] )
sage: G.loop_edges()
[(0, 0, None), (1, 1, None), (2, 2, None), (3, 3, None)]
sage: D = DiGraph(4, loops=True)
sage: D.add_edges( [ (0,0), (1,1), (2,2), (3,3), (2,3) ] )
sage: D.loop_edges()
[(0, 0, None), (1, 1, None), (2, 2, None), (3, 3, None)]
sage: G = Graph(4, loops=True, multiedges=True, sparse=True)
sage: G.add_edges([(i,i) for i in range(4)])
sage: G.loop_edges()
[(0, 0, None), (1, 1, None), (2, 2, None), (3, 3, None)]
Returns a list of vertices with loops.
EXAMPLES:
sage: G = Graph({0 : [0], 1: [1,2,3], 2: [3]}, loops=True)
sage: G.loop_vertices()
[0, 1]
Returns any loops in the (di)graph.
INPUT:
EXAMPLES:
sage: G = Graph(loops=True); G
Looped graph on 0 vertices
sage: G.has_loops()
False
sage: G.allows_loops()
True
sage: G.add_edge((0,0))
sage: G.has_loops()
True
sage: G.loops()
[(0, 0, None)]
sage: G.allow_loops(False); G
Graph on 1 vertex
sage: G.has_loops()
False
sage: G.edges()
[]
sage: D = DiGraph(loops=True); D
Looped digraph on 0 vertices
sage: D.has_loops()
False
sage: D.allows_loops()
True
sage: D.add_edge((0,0))
sage: D.has_loops()
True
sage: D.loops()
[(0, 0, None)]
sage: D.allow_loops(False); D
Digraph on 1 vertex
sage: D.has_loops()
False
sage: D.edges()
[]
sage: G = graphs.PetersenGraph()
sage: G.loops()
[]
Returns a maximum edge cut of the graph. For more information, see the Wikipedia article on cuts.
INPUT:
EXAMPLE:
Quite obviously, the max cut of a bipartite graph is the number of edges, and the two sets of vertices are the the two sides
sage: g = graphs.CompleteBipartiteGraph(5,6)
sage: [ value, edges, [ setA, setB ]] = g.max_cut(vertices=True)
sage: value == 5*6
True
sage: bsetA, bsetB = map(list,g.bipartite_sets())
sage: (bsetA == setA and bsetB == setB ) or ((bsetA == setB and bsetB == setA ))
True
The max cut of a Petersen graph:
sage: g=graphs.PetersenGraph()
sage: g.max_cut()
12
Merge vertices.
This function replaces a set \(S\) of vertices by a single vertex \(v_{new}\), such that the edge \(uv_{new}\) exists if and only if \(\exists v'\in S: (u,v')\in G\).
The new vertex is named after the first vertex in the list given in argument. If this first name is None, a new vertex is created.
In the case of multigraphs, the multiplicity is preserved.
INPUT:
EXAMPLE:
sage: g=graphs.CycleGraph(3)
sage: g.merge_vertices([0,1])
sage: g.edges()
[(0, 2, None)]
sage: # With a Multigraph :
sage: g=graphs.CycleGraph(3)
sage: g.allow_multiple_edges(True)
sage: g.merge_vertices([0,1])
sage: g.edges(labels=False)
[(0, 2), (0, 2)]
sage: P=graphs.PetersenGraph()
sage: P.merge_vertices([5,7])
sage: P.vertices()
[0, 1, 2, 3, 4, 5, 6, 8, 9]
sage: g=graphs.CycleGraph(5)
sage: g.vertices()
[0, 1, 2, 3, 4]
sage: g.merge_vertices([None, 1, 3])
sage: g.edges(labels=False)
[(0, 4), (0, 5), (2, 5), (4, 5)]
Returns the edges of a minimum spanning tree.
INPUT:
OUTPUT:
The edges of a minimum spanning tree of G, if one exists, otherwise returns the empty list.
See also
EXAMPLES:
Kruskal’s algorithm:
sage: g = graphs.CompleteGraph(5)
sage: len(g.min_spanning_tree())
4
sage: weight = lambda e: 1 / ((e[0] + 1) * (e[1] + 1))
sage: g.min_spanning_tree(weight_function=weight)
[(3, 4, None), (2, 4, None), (1, 4, None), (0, 4, None)]
sage: g = graphs.PetersenGraph()
sage: g.allow_multiple_edges(True)
sage: g.weighted(True)
sage: g.add_edges(g.edges())
sage: g.min_spanning_tree()
[(0, 1, None), (0, 4, None), (0, 5, None), (1, 2, None), (1, 6, None), (2, 3, None), (2, 7, None), (3, 8, None), (4, 9, None)]
Prim’s algorithm:
sage: g = graphs.CompleteGraph(5)
sage: g.min_spanning_tree(algorithm='Prim_edge', starting_vertex=2, weight_function=weight)
[(2, 4, None), (3, 4, None), (1, 4, None), (0, 4, None)]
sage: g.min_spanning_tree(algorithm='Prim_fringe', starting_vertex=2, weight_function=weight)
[(2, 4), (4, 3), (4, 1), (4, 0)]
Solves a multicommodity flow problem.
In the multicommodity flow problem, we are given a set of pairs \((s_i, t_i)\), called terminals meaning that \(s_i\) is willing some flow to \(t_i\).
Even though it is a natural generalisation of the flow problem this version of it is NP-Complete to solve when the flows are required to be integer.
For more information, see the Wikipedia page on multicommodity flows.
INPUT:
ALGORITHM:
(Mixed Integer) Linear Program, depending on the value of integer.
EXAMPLE:
An easy way to obtain a satisfiable multiflow is to compute a matching in a graph, and to consider the paired vertices as terminals
sage: g = graphs.PetersenGraph()
sage: matching = [(u,v) for u,v,_ in g.matching()]
sage: h = g.multicommodity_flow(matching)
sage: len(h)
5
We could also have considered g as symmetric and computed the multiflow in this version instead. In this case, however edges can be used in both directions at the same time:
sage: h = DiGraph(g).multicommodity_flow(matching)
sage: len(h)
5
An exception is raised when the problem has no solution
sage: h = g.multicommodity_flow([(u,v,3) for u,v in matching])
Traceback (most recent call last):
...
EmptySetError: The multiflow problem has no solution
Returns any multiple edges in the (di)graph.
EXAMPLES:
sage: G = Graph(multiedges=True,sparse=True); G
Multi-graph on 0 vertices
sage: G.has_multiple_edges()
False
sage: G.allows_multiple_edges()
True
sage: G.add_edges([(0,1)]*3)
sage: G.has_multiple_edges()
True
sage: G.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: G.allow_multiple_edges(False); G
Graph on 2 vertices
sage: G.has_multiple_edges()
False
sage: G.edges()
[(0, 1, None)]
sage: D = DiGraph(multiedges=True,sparse=True); D
Multi-digraph on 0 vertices
sage: D.has_multiple_edges()
False
sage: D.allows_multiple_edges()
True
sage: D.add_edges([(0,1)]*3)
sage: D.has_multiple_edges()
True
sage: D.multiple_edges()
[(0, 1, None), (0, 1, None), (0, 1, None)]
sage: D.allow_multiple_edges(False); D
Digraph on 2 vertices
sage: D.has_multiple_edges()
False
sage: D.edges()
[(0, 1, None)]
sage: G = DiGraph({1:{2: 'h'}, 2:{1:'g'}},sparse=True)
sage: G.has_multiple_edges()
False
sage: G.has_multiple_edges(to_undirected=True)
True
sage: G.multiple_edges()
[]
sage: G.multiple_edges(to_undirected=True)
[(1, 2, 'h'), (2, 1, 'g')]
Returns a minimum edge multiway cut corresponding to the given set of vertices ( cf. http://www.d.kth.se/~viggo/wwwcompendium/node92.html ) represented by a list of edges.
A multiway cut for a vertex set \(S\) in a graph or a digraph \(G\) is a set \(C\) of edges such that any two vertices \(u,v\) in \(S\) are disconnected when removing the edges from \(C\) from \(G\).
Such a cut is said to be minimum when its cardinality (or weight) is minimum.
INPUT:
vertices (iterable)– the set of vertices
value_only (boolean)
- When set to True, only the value of a minimum multiway cut is returned.
- When set to False (default), the list of edges is returned
solver – (default: None) Specify a Linear Program (LP) solver to be used. If set to None, the default one is used. For more information on LP solvers and which default solver is used, see the method solve of the class MixedIntegerLinearProgram.
verbose – integer (default: 0). Sets the level of verbosity. Set to 0 by default, which means quiet.
EXAMPLES:
Of course, a multiway cut between two vertices correspond to a minimum edge cut
sage: g = graphs.PetersenGraph()
sage: g.edge_cut(0,3) == g.multiway_cut([0,3], value_only = True)
True
As Petersen’s graph is \(3\)-regular, a minimum multiway cut between three vertices contains at most \(2\times 3\) edges (which could correspond to the neighborhood of 2 vertices):
sage: g.multiway_cut([0,3,9], value_only = True) == 2*3
True
In this case, though, the vertices are an independent set. If we pick instead vertices \(0,9,\) and \(7\), we can save \(4\) edges in the multiway cut
sage: g.multiway_cut([0,7,9], value_only = True) == 2*3 - 1
True
This example, though, does not work in the directed case anymore, as it is not possible in Petersen’s graph to mutualise edges
sage: g = DiGraph(g)
sage: g.multiway_cut([0,7,9], value_only = True) == 3*3
True
Of course, a multiway cut between the whole vertex set contains all the edges of the graph:
sage: C = g.multiway_cut(g.vertices())
sage: set(C) == set(g.edges())
True
Returns or sets the graph’s name.
INPUT:
EXAMPLES:
sage: d = {0: [1,4,5], 1: [2,6], 2: [3,7], 3: [4,8], 4: [9], 5: [7, 8], 6: [8,9], 7: [9]}
sage: G = Graph(d); G
Graph on 10 vertices
sage: G.name("Petersen Graph"); G
Petersen Graph: Graph on 10 vertices
sage: G.name(new=""); G
Graph on 10 vertices
sage: G.name()
''
Name of an immutable graph trac ticket #15681
sage: g = graphs.PetersenGraph()
sage: gi = g.copy(immutable=True)
sage: gi.name()
'Petersen graph'
sage: gi.name("Hey")
Traceback (most recent call last):
...
NotImplementedError: An immutable graph does not change name
Return an iterator over neighbors of vertex.
EXAMPLES:
sage: G = graphs.CubeGraph(3)
sage: for i in G.neighbor_iterator('010'):
... print i
011
000
110
sage: D = G.to_directed()
sage: for i in D.neighbor_iterator('010'):
... print i
011
000
110
sage: D = DiGraph({0:[1,2], 3:[0]})
sage: list(D.neighbor_iterator(0))
[1, 2, 3]
Return a list of neighbors (in and out if directed) of vertex.
G[vertex] also works.
EXAMPLES:
sage: P = graphs.PetersenGraph()
sage: sorted(P.neighbors(3))
[2, 4, 8]
sage: sorted(P[4])
[0, 3, 9]
Creates a new NetworkX graph from the Sage graph.
INPUT:
EXAMPLES:
sage: G = graphs.TetrahedralGraph()
sage: N = G.networkx_graph()
sage: type(N)
<class 'networkx.classes.graph.Graph'>
sage: G = graphs.TetrahedralGraph()
sage: G = Graph(G, implementation='networkx')
sage: N = G.networkx_graph()
sage: G._backend._nxg is N
False
sage: G = Graph(graphs.TetrahedralGraph(), implementation='networkx')
sage: N = G.networkx_graph(copy=False)
sage: G._backend._nxg is N
True
Returns the number of edges.
EXAMPLES:
sage: G = graphs.PetersenGraph()
sage: G.size()
15
Returns the number of vertices. Note that len(G) returns the number of vertices in G also.
EXAMPLES:
sage: G = graphs.PetersenGraph()
sage: G.order()
10
sage: G = graphs.TetrahedralGraph()
sage: len(G)
4
Returns the number of edges that are loops.
EXAMPLES:
sage: G = Graph(4, loops=True)
sage: G.add_edges( [ (0,0), (1,1), (2,2), (3,3), (2,3) ] )
sage: G.edges(labels=False)
[(0, 0), (1, 1), (2, 2), (2, 3), (3, 3)]
sage: G.number_of_loops()
4
sage: D = DiGraph(4, loops=True)
sage: D.add_edges( [ (0,0), (1,1), (2,2), (3,3), (2,3) ] )
sage: D.edges(labels=False)
[(0, 0), (1, 1), (2, 2), (2, 3), (3, 3)]
sage: D.number_of_loops()
4
Returns the number of vertices. Note that len(G) returns the number of vertices in G also.
EXAMPLES:
sage: G = graphs.PetersenGraph()
sage: G.order()
10
sage: G = graphs.TetrahedralGraph()
sage: len(G)
4
Returns the set of vertices in the periphery, i.e. whose eccentricity is equal to the diameter of the (di)graph.
In other words, the periphery is the set of vertices achieving the maximum eccentricity.
EXAMPLES:
sage: G = graphs.DiamondGraph()
sage: G.periphery()
[0, 3]
sage: P = graphs.PetersenGraph()
sage: P.subgraph(P.periphery()) == P
True
sage: S = graphs.StarGraph(19)
sage: S.periphery()
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
sage: G = Graph()
sage: G.periphery()
[]
sage: G.add_vertex()
0
sage: G.periphery()
[0]
Returns a graphics object representing the (di)graph.
INPUT:
pos - an optional positioning dictionary
layout - what kind of layout to use, takes precedence over pos
- ‘circular’ – plots the graph with vertices evenly distributed on a circle
- ‘spring’ - uses the traditional spring layout, using the graph’s current positions as initial positions
- ‘tree’ - the (di)graph must be a tree. One can specify the root of the tree using the keyword tree_root, otherwise a root will be selected at random. Then the tree will be plotted in levels, depending on minimum distance for the root.
vertex_labels - whether to print vertex labels
edge_labels - whether to print edge labels. By default, False, but if True, the result of str(l) is printed on the edge for each label l. Labels equal to None are not printed (to set edge labels, see set_edge_label).
vertex_size - size of vertices displayed
vertex_shape - the shape to draw the vertices (Not available for multiedge digraphs.)
graph_border - whether to include a box around the graph
vertex_colors - optional dictionary to specify vertex colors: each key is a color recognizable by matplotlib, and each corresponding entry is a list of vertices. If a vertex is not listed, it looks invisible on the resulting plot (it doesn’t get drawn).
edge_colors - a dictionary specifying edge colors: each key is a color recognized by matplotlib, and each entry is a list of edges.
partition - a partition of the vertex set. if specified, plot will show each cell in a different color. vertex_colors takes precedence.
talk - if true, prints large vertices with white backgrounds so that labels are legible on slides
iterations - how many iterations of the spring layout algorithm to go through, if applicable
whether to color each edge with a different color according to its label; the colors are chosen along a rainbow, unless they are specified by a function or dictionary mapping labels to colors; this option is incompatible with edge_color and edge_colors.
heights - if specified, this is a dictionary from a set of floating point heights to a set of vertices
edge_style - keyword arguments passed into the edge-drawing routine. This currently only works for directed graphs, since we pass off the undirected graph to networkx
tree_root - a vertex of the tree to be used as the root for the layout=”tree” option. If no root is specified, then one is chosen at random. Ignored unless layout=’tree’.
tree_orientation - “up” or “down” (default is “down”). If “up” (resp., “down”), then the root of the tree will appear on the bottom (resp., top) and the tree will grow upwards (resp. downwards). Ignored unless layout=’tree’.
save_pos - save position computed during plotting
Note
EXAMPLES:
sage: from sage.graphs.graph_plot import graphplot_options
sage: list(sorted(graphplot_options.iteritems()))
[...]
sage: from math import sin, cos, pi
sage: P = graphs.PetersenGraph()
sage: d = {'#FF0000':[0,5], '#FF9900':[1,6], '#FFFF00':[2,7], '#00FF00':[3,8], '#0000FF':[4,9]}
sage: pos_dict = {}
sage: for i in range(5):
... x = float(cos(pi/2 + ((2*pi)/5)*i))
... y = float(sin(pi/2 + ((2*pi)/5)*i))
... pos_dict[i] = [x,y]
...
sage: for i in range(10)[5:]:
... x = float(0.5*cos(pi/2 + ((2*pi)/5)*i))
... y = float(0.5