Module that creates formulas of propositional calculus

Formulas consist of the following operators:

  • & – and
  • | – or
  • ~ – not
  • ^ – xor
  • -> – if-then
  • <-> – if and only if

Operators can be applied to variables that consist of a leading letter and trailing underscores and alphanumerics. Parentheses may be used to explicitly show order of operation.

AUTHORS:

  • Chris Gorecki (2006): initial version, propcalc, boolformula, logictable, logicparser, booleval
  • Michael Greenberg – boolopt
  • Paul Scurek (2013-08-05): updated docstring formatting

EXAMPLES:

We can create boolean formulas in different ways:

sage: import sage.logic.propcalc as propcalc
sage: f = propcalc.formula("a&((b|c)^a->c)<->b")
sage: g = propcalc.formula("boolean<->algebra")
sage: (f&~g).ifthen(f)
((a&((b|c)^a->c)<->b)&(~(boolean<->algebra)))->(a&((b|c)^a->c)<->b)

We can create a truth table from a formula:

sage: f.truthtable()
a      b      c      value
False  False  False  True
False  False  True   True
False  True   False  False
False  True   True   False
True   False  False  True
True   False  True   False
True   True   False  True
True   True   True   True
sage: f.truthtable(end=3)
a      b      c      value
False  False  False  True
False  False  True   True
False  True   False  False
sage: f.truthtable(start=4)
a      b      c      value
True   False  False  True
True   False  True   False
True   True   False  True
True   True   True   True
sage: propcalc.formula("a").truthtable()
a      value
False  False
True   True

Now we can evaluate the formula for a given set of input:

sage: f.evaluate({'a':True, 'b':False, 'c':True})
False
sage: f.evaluate({'a':False, 'b':False, 'c':True})
True

And we can convert a boolean formula to conjunctive normal form:

sage: f.convert_cnf_table()
sage: f
(a|~b|c)&(a|~b|~c)&(~a|b|~c)
sage: f.convert_cnf_recur()
sage: f
(a|~b|c)&(a|~b|~c)&(~a|b|~c)

Or determine if an expression is satisfiable, a contradiction, or a tautology:

sage: f = propcalc.formula("a|b")
sage: f.is_satisfiable()
True
sage: f = f & ~f
sage: f.is_satisfiable()
False
sage: f.is_contradiction()
True
sage: f = f | ~f
sage: f.is_tautology()
True

The equality operator compares semantic equivalence:

sage: f = propcalc.formula("(a|b)&c")
sage: g = propcalc.formula("c&(b|a)")
sage: f == g
True
sage: g = propcalc.formula("a|b&c")
sage: f == g
False

It is an error to create a formula with bad syntax:

sage: propcalc.formula("")
Traceback (most recent call last):
...
SyntaxError: malformed statement
sage: propcalc.formula("a&b~(c|(d)")
Traceback (most recent call last):
...
SyntaxError: malformed statement
sage: propcalc.formula("a&&b")
Traceback (most recent call last):
...
SyntaxError: malformed statement
sage: propcalc.formula("a&b a")
Traceback (most recent call last):
...
SyntaxError: malformed statement

It is also an error to not abide by the naming conventions.
sage: propcalc.formula("~a&9b")
Traceback (most recent call last):
...
NameError: invalid variable name 9b: identifiers must begin with a letter and contain only alphanumerics and underscores
sage.logic.propcalc.formula(s)

Return an instance of BooleanFormula

INPUT:

  • s – a string that contains a logical expression.

OUTPUT:

An instance of BooleanFormula

EXAMPLES:

This example illustrates ways to create a boolean formula.

sage: import sage.logic.propcalc as propcalc
sage: f = propcalc.formula("a&~b|c")
sage: g = propcalc.formula("a^c<->b")
sage: f&g|f
((a&~b|c)&(a^c<->b))|(a&~b|c)

We now demonstrate some possible errors.

sage: propcalc.formula("((a&b)")
Traceback (most recent call last):
...
SyntaxError: malformed statement
sage: propcalc.formula("_a&b")
Traceback (most recent call last):
...
NameError: invalid variable name _a: identifiers must begin with a letter and contain only alphanumerics and underscores

Previous topic

Symbolic Logic

Next topic

Module that creates boolean formulas as instances of the BooleanFormula class.

This Page