Modular Forms for \(\Gamma_0(N)\) over \(\QQ\)

TESTS:

sage: m = ModularForms(Gamma0(389),6)
sage: loads(dumps(m)) == m
True
class sage.modular.modform.ambient_g0.ModularFormsAmbient_g0_Q(level, weight)

Bases: sage.modular.modform.ambient.ModularFormsAmbient

A space of modular forms for \(\Gamma_0(N)\) over \(\QQ\).

cuspidal_submodule()

Return the cuspidal submodule of this space of modular forms for \(\Gamma_0(N)\).

EXAMPLES:

sage: m = ModularForms(Gamma0(33),4)
sage: s = m.cuspidal_submodule(); s
Cuspidal subspace of dimension 10 of Modular Forms space of dimension 14 for Congruence Subgroup Gamma0(33) of weight 4 over Rational Field
sage: type(s)
<class 'sage.modular.modform.cuspidal_submodule.CuspidalSubmodule_g0_Q_with_category'>
eisenstein_submodule()

Return the Eisenstein submodule of this space of modular forms for \(\Gamma_0(N)\).

EXAMPLES:

sage: m = ModularForms(Gamma0(389),6)
sage: m.eisenstein_submodule()
Eisenstein subspace of dimension 2 of Modular Forms space of dimension 163 for Congruence Subgroup Gamma0(389) of weight 6 over Rational Field

Previous topic

Modular Forms with Character

Next topic

Modular Forms for \(\Gamma_1(N)\) and \(\Gamma_H(N)\) over \(\QQ\)

This Page