p-adic functions from ell_rational_field.py, moved here to reduce crowding in that file.

sage.schemes.elliptic_curves.padics.matrix_of_frobenius(self, p, prec=20, check=False, check_hypotheses=True, algorithm='auto')

Returns the matrix of Frobenius on the Monsky Washnitzer cohomology of the elliptic curve.

INPUT:

• p - prime (= 5) for which $$E$$ is good and ordinary

• prec - (relative) $$p$$-adic precision for result (default 20)

• check - boolean (default: False), whether to perform a consistency check. This will slow down the computation by a constant factor 2. (The consistency check is to verify that its trace is correct to the specified precision. Otherwise, the trace is used to compute one column from the other one (possibly after a change of basis).)

• check_hypotheses - boolean, whether to check that this is a curve for which the $$p$$-adic sigma function makes sense

• algorithm - one of “standard”, “sqrtp”, or “auto”. This selects which version of Kedlaya’s algorithm is used. The “standard” one is the one described in Kedlaya’s paper. The “sqrtp” one has better performance for large $$p$$, but only works when $$p > 6N$$ ($$N=$$ prec). The “auto” option selects “sqrtp” whenever possible.

Note that if the “sqrtp” algorithm is used, a consistency check will automatically be applied, regardless of the setting of the “check” flag.

OUTPUT: a matrix of $$p$$-adic number to precision prec

EXAMPLES:

sage: E = EllipticCurve('37a1')
sage: E.matrix_of_frobenius(7)
[             2*7 + 4*7^2 + 5*7^4 + 6*7^5 + 6*7^6 + 7^8 + 4*7^9 + 3*7^10 + 2*7^11 + 5*7^12 + 4*7^14 + 7^16 + 2*7^17 + 3*7^18 + 4*7^19 + 3*7^20 + O(7^21)                                   2 + 3*7 + 6*7^2 + 7^3 + 3*7^4 + 5*7^5 + 3*7^7 + 7^8 + 3*7^9 + 6*7^13 + 7^14 + 7^16 + 5*7^17 + 4*7^18 + 7^19 + O(7^20)]
[    2*7 + 3*7^2 + 7^3 + 3*7^4 + 6*7^5 + 2*7^6 + 3*7^7 + 5*7^8 + 3*7^9 + 2*7^11 + 6*7^12 + 5*7^13 + 4*7^16 + 4*7^17 + 6*7^18 + 6*7^19 + 4*7^20 + O(7^21) 6 + 4*7 + 2*7^2 + 6*7^3 + 7^4 + 6*7^7 + 5*7^8 + 2*7^9 + 3*7^10 + 4*7^11 + 7^12 + 6*7^13 + 2*7^14 + 6*7^15 + 5*7^16 + 4*7^17 + 3*7^18 + 2*7^19 + O(7^20)]
sage: M = E.matrix_of_frobenius(11,prec=3); M
[   9*11 + 9*11^3 + O(11^4)          10 + 11 + O(11^3)]
[     2*11 + 11^2 + O(11^4) 6 + 11 + 10*11^2 + O(11^3)]
sage: M.det()
11 + O(11^4)
sage: M.trace()
6 + 10*11 + 10*11^2 + O(11^3)
sage: E.ap(11)
-5


Returns the value of the $$p$$-adic modular form $$E2$$ for $$(E, \omega)$$ where $$\omega$$ is the usual invariant differential $$dx/(2y + a_1 x + a_3)$$.

INPUT:

• p - prime (= 5) for which $$E$$ is good and ordinary

• prec - (relative) p-adic precision (= 1) for result

• check - boolean, whether to perform a consistency check. This will slow down the computation by a constant factor 2. (The consistency check is to compute the whole matrix of frobenius on Monsky-Washnitzer cohomology, and verify that its trace is correct to the specified precision. Otherwise, the trace is used to compute one column from the other one (possibly after a change of basis).)

• check_hypotheses - boolean, whether to check that this is a curve for which the p-adic sigma function makes sense

• algorithm - one of “standard”, “sqrtp”, or “auto”. This selects which version of Kedlaya’s algorithm is used. The “standard” one is the one described in Kedlaya’s paper. The “sqrtp” one has better performance for large $$p$$, but only works when $$p > 6N$$ ($$N=$$ prec). The “auto” option selects “sqrtp” whenever possible.

Note that if the “sqrtp” algorithm is used, a consistency check will automatically be applied, regardless of the setting of the “check” flag.

OUTPUT: p-adic number to precision prec

Note

If the discriminant of the curve has nonzero valuation at p, then the result will not be returned mod $$p^\text{prec}$$, but it still will have prec digits of precision.

TODO: - Once we have a better implementation of the “standard” algorithm, the algorithm selection strategy for “auto” needs to be revisited.

AUTHORS:

• David Harvey (2006-09-01): partly based on code written by Robert Bradshaw at the MSRI 2006 modular forms workshop

ACKNOWLEDGMENT: - discussion with Eyal Goren that led to the trace trick.

EXAMPLES: Here is the example discussed in the paper “Computation of p-adic Heights and Log Convergence” (Mazur, Stein, Tate):

sage: EllipticCurve([-1, 1/4]).padic_E2(5)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + 4*5^10 + 2*5^11 + 2*5^12 + 2*5^14 + 3*5^15 + 3*5^16 + 3*5^17 + 4*5^18 + 2*5^19 + O(5^20)


Let’s try to higher precision (this is the same answer the MAGMA implementation gives):

sage: EllipticCurve([-1, 1/4]).padic_E2(5, 100)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + 4*5^10 + 2*5^11 + 2*5^12 + 2*5^14 + 3*5^15 + 3*5^16 + 3*5^17 + 4*5^18 + 2*5^19 + 4*5^20 + 5^21 + 4*5^22 + 2*5^23 + 3*5^24 + 3*5^26 + 2*5^27 + 3*5^28 + 2*5^30 + 5^31 + 4*5^33 + 3*5^34 + 4*5^35 + 5^36 + 4*5^37 + 4*5^38 + 3*5^39 + 4*5^41 + 2*5^42 + 3*5^43 + 2*5^44 + 2*5^48 + 3*5^49 + 4*5^50 + 2*5^51 + 5^52 + 4*5^53 + 4*5^54 + 3*5^55 + 2*5^56 + 3*5^57 + 4*5^58 + 4*5^59 + 5^60 + 3*5^61 + 5^62 + 4*5^63 + 5^65 + 3*5^66 + 2*5^67 + 5^69 + 2*5^70 + 3*5^71 + 3*5^72 + 5^74 + 5^75 + 5^76 + 3*5^77 + 4*5^78 + 4*5^79 + 2*5^80 + 3*5^81 + 5^82 + 5^83 + 4*5^84 + 3*5^85 + 2*5^86 + 3*5^87 + 5^88 + 2*5^89 + 4*5^90 + 4*5^92 + 3*5^93 + 4*5^94 + 3*5^95 + 2*5^96 + 4*5^97 + 4*5^98 + 2*5^99 + O(5^100)


Check it works at low precision too:

sage: EllipticCurve([-1, 1/4]).padic_E2(5, 1)
2 + O(5)
2 + 4*5 + O(5^2)
2 + 4*5 + O(5^3)


TODO: With the old(-er), i.e., = sage-2.4 p-adics we got $$5 + O(5^2)$$ as output, i.e., relative precision 1, but with the newer p-adics we get relative precision 0 and absolute precision 1.

sage: EllipticCurve([1, 1, 1, 1, 1]).padic_E2(5, 1)
O(5)


Check it works for different models of the same curve (37a), even when the discriminant changes by a power of p (note that E2 depends on the differential too, which is why it gets scaled in some of the examples below):

sage: X1 = EllipticCurve([-1, 1/4])
sage: X1.j_invariant(), X1.discriminant()
(110592/37, 37)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + O(5^10)

sage: X2 = EllipticCurve([0, 0, 1, -1, 0])
sage: X2.j_invariant(), X2.discriminant()
(110592/37, 37)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + O(5^10)

sage: X3 = EllipticCurve([-1*(2**4), 1/4*(2**6)])
sage: X3.j_invariant(), X3.discriminant() / 2**12
(110592/37, 37)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + O(5^10)

sage: X4 = EllipticCurve([-1*(7**4), 1/4*(7**6)])
sage: X4.j_invariant(), X4.discriminant() / 7**12
(110592/37, 37)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + O(5^10)

sage: X5 = EllipticCurve([-1*(5**4), 1/4*(5**6)])
sage: X5.j_invariant(), X5.discriminant() / 5**12
(110592/37, 37)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + O(5^10)

sage: X6 = EllipticCurve([-1/(5**4), 1/4/(5**6)])
sage: X6.j_invariant(), X6.discriminant() * 5**12
(110592/37, 37)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + O(5^10)


Test check=True vs check=False:

sage: EllipticCurve([-1, 1/4]).padic_E2(5, 1, check=False)
2 + O(5)
2 + O(5)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + 4*5^10 + 2*5^11 + 2*5^12 + 2*5^14 + 3*5^15 + 3*5^16 + 3*5^17 + 4*5^18 + 2*5^19 + 4*5^20 + 5^21 + 4*5^22 + 2*5^23 + 3*5^24 + 3*5^26 + 2*5^27 + 3*5^28 + O(5^30)
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + 5^8 + 3*5^9 + 4*5^10 + 2*5^11 + 2*5^12 + 2*5^14 + 3*5^15 + 3*5^16 + 3*5^17 + 4*5^18 + 2*5^19 + 4*5^20 + 5^21 + 4*5^22 + 2*5^23 + 3*5^24 + 3*5^26 + 2*5^27 + 3*5^28 + O(5^30)


Here’s one using the $$p^{1/2}$$ algorithm:

sage: EllipticCurve([-1, 1/4]).padic_E2(3001, 3, algorithm="sqrtp")
1907 + 2819*3001 + 1124*3001^2 + O(3001^3)


The equation of the curve must be minimal at $$p$$.

INPUT:

• p - prime = 5 for which the curve has semi-stable reduction
• prec - integer = 1, desired precision of result
• sigma - precomputed value of sigma. If not supplied, this function will call padic_sigma to compute it.
• check_hypotheses - boolean, whether to check that this is a curve for which the p-adic height makes sense

OUTPUT: A function that accepts two parameters:

• a Q-rational point on the curve whose height should be computed
• optional boolean flag ‘check’: if False, it skips some input checking, and returns the p-adic height of that point to the desired precision.
• The normalization (sign and a factor 1/2 with respect to some other normalizations that appear in the literature) is chosen in such a way as to make the p-adic Birch Swinnerton-Dyer conjecture hold as stated in [Mazur-Tate-Teitelbaum].

AUTHORS:

• Jennifer Balakrishnan: original code developed at the 2006 MSRI graduate workshop on modular forms
• David Harvey (2006-09-13): integrated into Sage, optimised to speed up repeated evaluations of the returned height function, addressed some thorny precision questions
• David Harvey (2006-09-30): rewrote to use division polynomials for computing denominator of $$nP$$.
• David Harvey (2007-02): cleaned up according to algorithms in “Efficient Computation of p-adic Heights”
• Chris Wuthrich (2007-05): added supersingular and multiplicative heights

EXAMPLES:

sage: E = EllipticCurve("37a")
sage: P = E.gens()[0]
sage: h(P)
5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + O(5^10)


An anomalous case:

sage: h = E.padic_height(53, 10)
sage: h(P)
26*53^-1 + 30 + 20*53 + 47*53^2 + 10*53^3 + 32*53^4 + 9*53^5 + 22*53^6 + 35*53^7 + 30*53^8 + 17*53^9 + O(53^10)


Boundary case:

sage: E.padic_height(5, 3)(P)
5 + 5^2 + O(5^3)


A case that works the division polynomial code a little harder:

sage: E.padic_height(5, 10)(5*P)
5^3 + 5^4 + 5^5 + 3*5^8 + 4*5^9 + O(5^10)


Check that answers agree over a range of precisions:

sage: max_prec = 30    # make sure we get past p^2    # long time
sage: full = E.padic_height(5, max_prec)(P)           # long time
sage: for prec in range(1, max_prec):                 # long time
...       assert E.padic_height(5, prec)(P) == full   # long time


A supersingular prime for a curve:

sage: E = EllipticCurve('37a')
sage: E.is_supersingular(3)
True
sage: h(E.gens()[0])
(3 + 3^3 + O(3^6), 2*3^2 + 3^3 + 3^4 + 3^5 + 2*3^6 + O(3^7))
5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + 5^10 + 3*5^11 + 3*5^12 + 5^13 + 4*5^14 + 5^15 + 2*5^16 + 5^17 + 2*5^18 + 4*5^19 + O(5^20)
(3 + 2*3^2 + 3^3 + O(3^4), 3^2 + 2*3^3 + 3^4 + O(3^5))


A torsion point in both the good and supersingular cases:

sage: E = EllipticCurve('11a')
sage: P = E.torsion_subgroup().gen(0).element(); P
(5 : 5 : 1)
sage: h(P)
0
sage: h(P)
0


The result is not dependent on the model for the curve:

sage: E = EllipticCurve([0,0,0,0,2^12*17])
sage: Em = E.minimal_model()
sage: P = E.gens()[0]
sage: Pm = Em.gens()[0]
sage: h(P) == hm(Pm)
True


Computes the cyclotomic $$p$$-adic height pairing matrix of this curve with respect to the basis self.gens() for the Mordell-Weil group for a given odd prime p of good ordinary reduction.

INPUT:

• p - prime = 5
• prec - answer will be returned modulo $$p^{\mathrm{prec}}$$
• height - precomputed height function. If not supplied, this function will call padic_height to compute it.
• check_hypotheses - boolean, whether to check that this is a curve for which the p-adic height makes sense

OUTPUT: The p-adic cyclotomic height pairing matrix of this curve to the given precision.

TODO: - remove restriction that curve must be in minimal Weierstrass form. This is currently required for E.gens().

AUTHORS:

• David Harvey, Liang Xiao, Robert Bradshaw, Jennifer Balakrishnan: original implementation at the 2006 MSRI graduate workshop on modular forms
• David Harvey (2006-09-13): cleaned up and integrated into Sage, removed some redundant height computations

EXAMPLES:

sage: E = EllipticCurve("37a")
[5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + O(5^10)]


A rank two example:

sage: e =EllipticCurve('389a')
sage: e._set_gens([e(-1, 1), e(1,0)])  # avoid platform dependent gens
[                      3*5 + 2*5^2 + 5^4 + 5^5 + 5^7 + 4*5^9 + O(5^10) 5 + 4*5^2 + 5^3 + 2*5^4 + 3*5^5 + 4*5^6 + 5^7 + 5^8 + 2*5^9 + O(5^10)]
[5 + 4*5^2 + 5^3 + 2*5^4 + 3*5^5 + 4*5^6 + 5^7 + 5^8 + 2*5^9 + O(5^10)                         4*5 + 2*5^4 + 3*5^6 + 4*5^7 + 4*5^8 + O(5^10)]


An anomalous rank 3 example:

sage: e = EllipticCurve("5077a")
sage: e._set_gens([e(-1,3), e(2,0), e(4,6)])
[4 + 3*5 + 4*5^2 + 4*5^3 + O(5^4)       4 + 4*5^2 + 2*5^3 + O(5^4)       3*5 + 4*5^2 + 5^3 + O(5^4)]
[      4 + 4*5^2 + 2*5^3 + O(5^4)   3 + 4*5 + 3*5^2 + 5^3 + O(5^4)                 2 + 4*5 + O(5^4)]
[      3*5 + 4*5^2 + 5^3 + O(5^4)                 2 + 4*5 + O(5^4)     1 + 3*5 + 5^2 + 5^3 + O(5^4)]


The equation of the curve must be minimal at $$p$$.

INPUT:

• p - prime = 5 for which the curve has good ordinary reduction
• prec - integer = 2, desired precision of result
• E2 - precomputed value of E2. If not supplied, this function will call padic_E2 to compute it. The value supplied must be correct mod $$p^(prec-2)$$ (or slightly higher in the anomalous case; see the code for details).
• check_hypotheses - boolean, whether to check that this is a curve for which the p-adic height makes sense

OUTPUT: A function that accepts two parameters:

• a Q-rational point on the curve whose height should be computed
• optional boolean flag ‘check’: if False, it skips some input checking, and returns the p-adic height of that point to the desired precision.
• The normalization (sign and a factor 1/2 with respect to some other normalizations that appear in the literature) is chosen in such a way as to make the p-adic Birch Swinnerton-Dyer conjecture hold as stated in [Mazur-Tate-Teitelbaum].

AUTHORS:

• David Harvey (2008-01): based on the padic_height() function, using the algorithm of”Computing p-adic heights via point multiplication”

EXAMPLES:

sage: E = EllipticCurve("37a")
sage: P = E.gens()[0]
sage: h(P)
5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + O(5^10)


An anomalous case:

sage: h = E.padic_height_via_multiply(53, 10)
sage: h(P)
26*53^-1 + 30 + 20*53 + 47*53^2 + 10*53^3 + 32*53^4 + 9*53^5 + 22*53^6 + 35*53^7 + 30*53^8 + 17*53^9 + O(53^10)


Supply the value of E2 manually:

sage: E2 = E.padic_E2(5, 8)
sage: E2
2 + 4*5 + 2*5^3 + 5^4 + 3*5^5 + 2*5^6 + O(5^8)
sage: h = E.padic_height_via_multiply(5, 10, E2=E2)
sage: h(P)
5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + O(5^10)


Boundary case:

sage: E.padic_height_via_multiply(5, 3)(P)
5 + 5^2 + O(5^3)


Check that answers agree over a range of precisions:

sage: max_prec = 30    # make sure we get past p^2    # long time
sage: full = E.padic_height(5, max_prec)(P)           # long time
sage: for prec in range(2, max_prec):                 # long time
...       assert E.padic_height_via_multiply(5, prec)(P) == full   # long time


Return the $$p$$-adic $$L$$-series of self at $$p$$, which is an object whose approx method computes approximation to the true $$p$$-adic $$L$$-series to any desired precision.

INPUT:

• p - prime
• use_eclib - bool (default:False); whether or not to use John Cremona’s eclib for the computation of modular symbols
• normalize - ‘L_ratio’ (default), ‘period’ or ‘none’; this is describes the way the modular symbols are normalized. See modular_symbol for more details.

EXAMPLES:

sage: E = EllipticCurve('37a')
5-adic L-series of Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: type(L)


We compute the $$3$$-adic $$L$$-series of two curves of rank $$0$$ and in each case verify the interpolation property for their leading coefficient (i.e., value at 0):

sage: e = EllipticCurve('11a')
sage: ms = e.modular_symbol()
sage: [ms(1/11), ms(1/3), ms(0), ms(oo)]
[0, -3/10, 1/5, 0]
sage: ms(0)
1/5
sage: P = L.series(5)
sage: P(0)
2 + 3 + 3^2 + 2*3^3 + 2*3^5 + 3^6 + O(3^7)
sage: alpha = L.alpha(9); alpha
2 + 3^2 + 2*3^3 + 2*3^4 + 2*3^6 + 3^8 + O(3^9)
sage: R.<x> = QQ[]
sage: f = x^2 - e.ap(3)*x + 3
sage: f(alpha)
O(3^9)
sage: r = e.lseries().L_ratio(); r
1/5
sage: (1 - alpha^(-1))^2 * r
2 + 3 + 3^2 + 2*3^3 + 2*3^5 + 3^6 + 3^7 + O(3^9)
sage: P(0)
2 + 3 + 3^2 + 2*3^3 + 2*3^5 + 3^6 + O(3^7)


Next consider the curve 37b:

sage: e = EllipticCurve('37b')
sage: P = L.series(5)
sage: alpha = L.alpha(9); alpha
1 + 2*3 + 3^2 + 2*3^5 + 2*3^7 + 3^8 + O(3^9)
sage: r = e.lseries().L_ratio(); r
1/3
sage: (1 - alpha^(-1))^2 * r
3 + 3^2 + 2*3^4 + 2*3^5 + 2*3^6 + 3^7 + O(3^9)
sage: P(0)
3 + 3^2 + 2*3^4 + 2*3^5 + O(3^6)


We can use eclib to compute the $$L$$-series:

sage: e = EllipticCurve('11a')
sage: L.series(5,prec=10)   # NOTE: Output below prints slightly incorrectly -- see trac 10280!
2 + 3 + 3^2 + 2*3^3 + 2*3^5 + 3^6 + O(3^7) + (1 + 3 + 2*3^2 + 3^3 + O(3^4))*T + (1 + 2*3 + O(3^4))*T^2 + (3 + 2*3^2 + O(3^3))*T^3 + (2*3 + 3^2 + O(3^3))*T^4 + (2 + 2*3 + 2*3^2 + O(3^3))*T^5 + (1 + 3^2 + O(3^3))*T^6 + (2 + 3^2 + O(3^3))*T^7 + (2 + 2*3 + 2*3^2 + O(3^3))*T^8 + (2 + O(3^2))*T^9 + O(T^10)


Computes the cyclotomic p-adic regulator of this curve.

INPUT:

• p - prime = 5
• prec - answer will be returned modulo $$p^{\mathrm{prec}}$$
• height - precomputed height function. If not supplied, this function will call padic_height to compute it.
• check_hypotheses - boolean, whether to check that this is a curve for which the p-adic height makes sense

OUTPUT: The p-adic cyclotomic regulator of this curve, to the requested precision.

If the rank is 0, we output 1.

TODO: - remove restriction that curve must be in minimal Weierstrass form. This is currently required for E.gens().

AUTHORS:

• Liang Xiao: original implementation at the 2006 MSRI graduate workshop on modular forms
• David Harvey (2006-09-13): cleaned up and integrated into Sage, removed some redundant height computations
• Chris Wuthrich (2007-05-22): added multiplicative and supersingular cases
• David Harvey (2007-09-20): fixed some precision loss that was occurring

EXAMPLES:

sage: E = EllipticCurve("37a")
5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + O(5^10)


An anomalous case:

sage: E.padic_regulator(53, 10)
26*53^-1 + 30 + 20*53 + 47*53^2 + 10*53^3 + 32*53^4 + 9*53^5 + 22*53^6 + 35*53^7 + 30*53^8 + O(53^9)


An anomalous case where the precision drops some:

sage: E = EllipticCurve("5077a")
5 + 5^2 + 4*5^3 + 2*5^4 + 2*5^5 + 2*5^6 + 4*5^7 + 2*5^8 + 5^9 + O(5^10)


Check that answers agree over a range of precisions:

sage: max_prec = 30    # make sure we get past p^2    # long time
sage: full = E.padic_regulator(5, max_prec)           # long time
sage: for prec in range(1, max_prec):                 # long time
...       assert E.padic_regulator(5, prec) == full   # long time


A case where the generator belongs to the formal group already (trac #3632):

sage: E = EllipticCurve([37,0])
2*5^2 + 2*5^3 + 5^4 + 5^5 + 4*5^6 + 3*5^8 + 4*5^9 + O(5^10)


The result is not dependent on the model for the curve:

sage: E = EllipticCurve([0,0,0,0,2^12*17])
sage: Em = E.minimal_model()
True


Allow a Python int as input:

sage: E = EllipticCurve('37a')
5 + 5^2 + 5^3 + 3*5^6 + 4*5^7 + 5^9 + 5^10 + 3*5^11 + 3*5^12 + 5^13 + 4*5^14 + 5^15 + 2*5^16 + 5^17 + 2*5^18 + 4*5^19 + O(5^20)


Computes the p-adic sigma function with respect to the standard invariant differential $$dx/(2y + a_1 x + a_3)$$, as defined by Mazur and Tate, as a power series in the usual uniformiser $$t$$ at the origin.

The equation of the curve must be minimal at $$p$$.

INPUT:

• p - prime = 5 for which the curve has good ordinary reduction
• N - integer = 1, indicates precision of result; see OUTPUT section for description
• E2 - precomputed value of E2. If not supplied, this function will call padic_E2 to compute it. The value supplied must be correct mod $$p^{N-2}$$.
• check - boolean, whether to perform a consistency check (i.e. verify that the computed sigma satisfies the defining
• differential equation - note that this does NOT guarantee correctness of all the returned digits, but it comes pretty close :-))
• check_hypotheses - boolean, whether to check that this is a curve for which the p-adic sigma function makes sense

OUTPUT: A power series $$t + \cdots$$ with coefficients in $$\ZZ_p$$.

The output series will be truncated at $$O(t^{N+1})$$, and the coefficient of $$t^n$$ for $$n \geq 1$$ will be correct to precision $$O(p^{N-n+1})$$.

In practice this means the following. If $$t_0 = p^k u$$, where $$u$$ is a $$p$$-adic unit with at least $$N$$ digits of precision, and $$k \geq 1$$, then the returned series may be used to compute $$\sigma(t_0)$$ correctly modulo $$p^{N+k}$$ (i.e. with $$N$$ correct $$p$$-adic digits).

ALGORITHM: Described in “Efficient Computation of p-adic Heights” (David Harvey), which is basically an optimised version of the algorithm from “p-adic Heights and Log Convergence” (Mazur, Stein, Tate).

Running time is soft-$$O(N^2 \log p)$$, plus whatever time is necessary to compute $$E_2$$.

AUTHORS:

• David Harvey (2006-09-12)
• David Harvey (2007-02): rewrote

EXAMPLES:

sage: EllipticCurve([-1, 1/4]).padic_sigma(5, 10)
O(5^11) + (1 + O(5^10))*t + O(5^9)*t^2 + (3 + 2*5^2 + 3*5^3 + 3*5^6 + 4*5^7 + O(5^8))*t^3 + O(5^7)*t^4 + (2 + 4*5^2 + 4*5^3 + 5^4 + 5^5 + O(5^6))*t^5 + O(5^5)*t^6 + (2 + 2*5 + 5^2 + 4*5^3 + O(5^4))*t^7 + O(5^3)*t^8 + (1 + 2*5 + O(5^2))*t^9 + O(5)*t^10 + O(t^11)


Run it with a consistency check:

sage: EllipticCurve("37a").padic_sigma(5, 10, check=True)
O(5^11) + (1 + O(5^10))*t + O(5^9)*t^2 + (3 + 2*5^2 + 3*5^3 + 3*5^6 + 4*5^7 + O(5^8))*t^3 + (3 + 2*5 + 2*5^2 + 2*5^3 + 2*5^4 + 2*5^5 + 2*5^6 + O(5^7))*t^4 + (2 + 4*5^2 + 4*5^3 + 5^4 + 5^5 + O(5^6))*t^5 + (2 + 3*5 + 5^4 + O(5^5))*t^6 + (4 + 3*5 + 2*5^2 + O(5^4))*t^7 + (2 + 3*5 + 2*5^2 + O(5^3))*t^8 + (4*5 + O(5^2))*t^9 + (1 + O(5))*t^10 + O(t^11)


Boundary cases:

sage: EllipticCurve([1, 1, 1, 1, 1]).padic_sigma(5, 1)
(1 + O(5))*t + O(t^2)
sage: EllipticCurve([1, 1, 1, 1, 1]).padic_sigma(5, 2)
(1 + O(5^2))*t + (3 + O(5))*t^2 + O(t^3)


Supply your very own value of E2:

sage: X = EllipticCurve("37a")
sage: my_E2 = my_E2 + 5**5    # oops!!!
O(5^11) + (1 + O(5^10))*t + O(5^9)*t^2 + (3 + 2*5^2 + 3*5^3 + 4*5^5 + 2*5^6 + 3*5^7 + O(5^8))*t^3 + (3 + 2*5 + 2*5^2 + 2*5^3 + 2*5^4 + 2*5^5 + 2*5^6 + O(5^7))*t^4 + (2 + 4*5^2 + 4*5^3 + 5^4 + 3*5^5 + O(5^6))*t^5 + (2 + 3*5 + 5^4 + O(5^5))*t^6 + (4 + 3*5 + 2*5^2 + O(5^4))*t^7 + (2 + 3*5 + 2*5^2 + O(5^3))*t^8 + (4*5 + O(5^2))*t^9 + (1 + O(5))*t^10 + O(t^11)


Check that sigma is “weight 1”.

sage: f = EllipticCurve([-1, 3]).padic_sigma(5, 10)
sage: g = EllipticCurve([-1*(2**4), 3*(2**6)]).padic_sigma(5, 10)
sage: t = f.parent().gen()
sage: f(2*t)/2
(1 + O(5^10))*t + (4 + 3*5 + 3*5^2 + 3*5^3 + 4*5^4 + 4*5^5 + 3*5^6 + 5^7 + O(5^8))*t^3 + (3 + 3*5^2 + 5^4 + 2*5^5 + O(5^6))*t^5 + (4 + 5 + 3*5^3 + O(5^4))*t^7 + (4 + 2*5 + O(5^2))*t^9 + O(5)*t^10 + O(t^11)
sage: g
O(5^11) + (1 + O(5^10))*t + O(5^9)*t^2 + (4 + 3*5 + 3*5^2 + 3*5^3 + 4*5^4 + 4*5^5 + 3*5^6 + 5^7 + O(5^8))*t^3 + O(5^7)*t^4 + (3 + 3*5^2 + 5^4 + 2*5^5 + O(5^6))*t^5 + O(5^5)*t^6 + (4 + 5 + 3*5^3 + O(5^4))*t^7 + O(5^3)*t^8 + (4 + 2*5 + O(5^2))*t^9 + O(5)*t^10 + O(t^11)
sage: f(2*t)/2 -g
O(t^11)


Test that it returns consistent results over a range of precision:

sage: max_N = 30   # get up to at least p^2         # long time
sage: E = EllipticCurve([1, 1, 1, 1, 1])            # long time
sage: p = 5                                         # long time
sage: E2 = E.padic_E2(5, max_N)                     # long time
sage: max_sigma = E.padic_sigma(p, max_N, E2=E2)    # long time
sage: for N in range(3, max_N):                     # long time
...      sigma = E.padic_sigma(p, N, E2=E2)         # long time
...      assert sigma == max_sigma


Computes the p-adic sigma function with respect to the standard invariant differential $$dx/(2y + a_1 x + a_3)$$, as defined by Mazur and Tate, as a power series in the usual uniformiser $$t$$ at the origin.

The equation of the curve must be minimal at $$p$$.

This function differs from padic_sigma() in the precision profile of the returned power series; see OUTPUT below.

INPUT:

• p - prime = 5 for which the curve has good ordinary reduction
• N - integer = 2, indicates precision of result; see OUTPUT section for description
• lamb - integer = 0, see OUTPUT section for description
• E2 - precomputed value of E2. If not supplied, this function will call padic_E2 to compute it. The value supplied must be correct mod $$p^{N-2}$$.
• check_hypotheses - boolean, whether to check that this is a curve for which the p-adic sigma function makes sense

OUTPUT: A power series $$t + \cdots$$ with coefficients in $$\ZZ_p$$.

The coefficient of $$t^j$$ for $$j \geq 1$$ will be correct to precision $$O(p^{N - 2 + (3 - j)(lamb + 1)})$$.

ALGORITHM: Described in “Efficient Computation of p-adic Heights” (David Harvey, to appear in LMS JCM), which is basically an optimised version of the algorithm from “p-adic Heights and Log Convergence” (Mazur, Stein, Tate), and “Computing p-adic heights via point multiplication” (David Harvey, still draft form).

Running time is soft-$$O(N^2 \lambda^{-1} \log p)$$, plus whatever time is necessary to compute $$E_2$$.

AUTHOR:

• David Harvey (2008-01): wrote based on previous padic_sigma function

EXAMPLES:

sage: E = EllipticCurve([-1, 1/4])
O(5^11) + (1 + O(5^10))*t + O(5^9)*t^2 + (3 + 2*5^2 + 3*5^3 + 3*5^6 + 4*5^7 + O(5^8))*t^3 + O(5^7)*t^4 + (2 + 4*5^2 + 4*5^3 + 5^4 + 5^5 + O(5^6))*t^5 + O(5^5)*t^6 + (2 + 2*5 + 5^2 + 4*5^3 + O(5^4))*t^7 + O(5^3)*t^8 + (1 + 2*5 + O(5^2))*t^9 + O(5)*t^10 + O(t^11)


Note the precision of the $$t^3$$ coefficient depends only on $$N$$, not on lamb:

sage: E.padic_sigma_truncated(5, 10, lamb=2)
O(5^17) + (1 + O(5^14))*t + O(5^11)*t^2 + (3 + 2*5^2 + 3*5^3 + 3*5^6 + 4*5^7 + O(5^8))*t^3 + O(5^5)*t^4 + (2 + O(5^2))*t^5 + O(t^6)


Compare against plain padic_sigma() function over a dense range of N and lamb

sage: E = EllipticCurve([1, 2, 3, 4, 7])                            # long time
sage: E2 = E.padic_E2(5, 50)                                        # long time
sage: for N in range(2, 10):                                        # long time
...      for lamb in range(10):                                     # long time
...         correct = E.padic_sigma(5, N + 3*lamb, E2=E2)           # long time
...         compare = E.padic_sigma_truncated(5, N=N, lamb=lamb, E2=E2)    # long time
...         assert compare == correct                               # long time


#### Previous topic

Tate-Shafarevich group

#### Next topic

Complex multiplication for elliptic curves