Platonic Solids

EXAMPLES: The five platonic solids in a row;

sage: G = tetrahedron((0,-3.5,0), color='blue') + cube((0,-2,0),color=(.25,0,.5)) +\
      octahedron(color='red') + dodecahedron((0,2,0), color='orange') +\
      icosahedron(center=(0,4,0), color='yellow')
sage: G.show(aspect_ratio=[1,1,1])

All the platonic solids in the same place:

sage: G = tetrahedron(color='blue',opacity=0.7) + \
      cube(color=(.25,0,.5), opacity=0.7) +\
      octahedron(color='red', opacity=0.7) + \
      dodecahedron(color='orange', opacity=0.7) + icosahedron(opacity=0.7)
sage: G.show(aspect_ratio=[1,1,1])

Display nice faces only:

sage: icosahedron().stickers(['red','blue'], .075, .1)

AUTHORS:

  • Robert Bradshaw (2007, 2008): initial version
  • William Stein
sage.plot.plot3d.platonic.cube(center=(0, 0, 0), size=1, color=None, frame_thickness=0, frame_color=None, **kwds)

A 3D cube centered at the origin with default side lengths 1.

INPUT:

  • center - (default: (0,0,0))
  • size - (default: 1) the side lengths of the cube
  • color - a string that describes a color; this can also be a list of 3-tuples or strings length 6 or 3, in which case the faces (and oppositive faces) are colored.
  • frame_thickness - (default: 0) if positive, then thickness of the frame
  • frame_color - (default: None) if given, gives the color of the frame
  • opacity - (default: 1) if less than 1 then it’s transparent

EXAMPLES:

A simple cube:

sage: cube()

A red cube:

sage: cube(color="red")

A transparent grey cube that contains a red cube:

sage: cube(opacity=0.8, color='grey') + cube(size=3/4)

A transparent colored cube:

sage: cube(color=['red', 'green', 'blue'], opacity=0.5)

A bunch of random cubes:

sage: v = [(random(), random(), random()) for _ in [1..30]]
sage: sum([cube((10*a,10*b,10*c), size=random()/3, color=(a,b,c)) for a,b,c in v])

Non-square cubes (boxes):

sage: cube(aspect_ratio=[1,1,1]).scale([1,2,3])
sage: cube(color=['red', 'blue', 'green'],aspect_ratio=[1,1,1]).scale([1,2,3])

And one that is colored:

sage: cube(color=['red', 'blue', 'green', 'black', 'white', 'orange'],                   aspect_ratio=[1,1,1]).scale([1,2,3])

A nice translucent color cube with a frame:

sage: c = cube(color=['red', 'blue', 'green'], frame=False, frame_thickness=2,                        frame_color='brown', opacity=0.8)
sage: c

A raytraced color cube with frame and transparency:

sage: c.show(viewer='tachyon')

This shows #11272 has been fixed:

sage: cube(center=(10, 10, 10), size=0.5).bounding_box()
((9.75, 9.75, 9.75), (10.25, 10.25, 10.25))

AUTHORS:

  • William Stein
sage.plot.plot3d.platonic.dodecahedron(center=(0, 0, 0), size=1, **kwds)

A dodecahedron.

INPUT:

  • center - (default: (0,0,0))
  • size - (default: 1)
  • color - a string that describes a color; this can also be a list of 3-tuples or strings length 6 or 3, in which case the faces (and oppositive faces) are colored.
  • opacity - (default: 1) if less than 1 then is transparent

EXAMPLES: A plain Dodecahedron:

sage: dodecahedron()

A translucent dodecahedron that contains a black sphere:

sage: dodecahedron(color='orange', opacity=0.8) + \
      sphere(size=0.5, color='black')

CONSTRUCTION: This is how we construct a dodecahedron. We let one point be \(Q = (0,1,0)\).

Now there are three points spaced equally on a circle around the north pole. The other requirement is that the angle between them be the angle of a pentagon, namely \(3\pi/5\). This is enough to determine them. Placing one on the \(xz\)-plane we have.

\(P_1 = \left(t, 0, \sqrt{1-t^2}\right)\)

\(P_2 = \left(-\frac{1}{2}t, \frac{\sqrt{3}}{2}t, \sqrt{1-t^2}\right)\)

\(P_3 = \left(-\frac{1}{2}t, \frac{\sqrt{3}}{2}t, \sqrt{1-t^2}\right)\)

Solving \(\frac{(P_1-Q) \cdot (P_2-Q)}{|P_1-Q||P_2-Q|} = \cos(3\pi/5)\) we get \(t = 2/3\).

Now we have 6 points \(R_1, ..., R_6\) to close the three top pentagons. These can be found by mirroring \(P_2\) and \(P_3\) by the \(yz\)-plane and rotating around the \(y\)-axis by the angle \(\theta\) from \(Q\) to \(P_1\). Note that \(\cos(\theta) = t = 2/3\) and so \(\sin(\theta) = \sqrt{5}/3\). Rotation gives us the other four.

Now we reflect through the origin for the bottom half.

AUTHORS:

  • Robert Bradshaw, William Stein
sage.plot.plot3d.platonic.icosahedron(center=(0, 0, 0), size=1, **kwds)

An icosahedron.

INPUT:

  • center - (default: (0,0,0))
  • size - (default: 1)
  • color - a string that describes a color; this can also be a list of 3-tuples or strings length 6 or 3, in which case the faces (and oppositive faces) are colored.
  • opacity - (default: 1) if less than 1 then is transparent

EXAMPLES:

sage: icosahedron()

Two icosahedrons at different positions of different sizes.

sage: icosahedron((-1/2,0,1), color='orange') + \
      icosahedron((2,0,1), size=1/2, aspect_ratio=[1,1,1])
sage.plot.plot3d.platonic.index_face_set(face_list, point_list, enclosed, **kwds)

Helper function that creates IndexFaceSet object for the tetrahedron, dodecahedron, and icosahedron.

INPUT:

  • face_list - list of faces, given explicitly from the solid invocation
  • point_list - list of points, given explicitly from the solid invocation
  • enclosed - boolean (default passed is always True for these solids)

TESTS:

Verify that these are working and passing on keywords:

sage: tetrahedron(center=(2,0,0),size=2,color='red')
sage: dodecahedron(center=(2,0,0),size=2,color='red')
sage: icosahedron(center=(2,0,0),size=2,color='red')
sage.plot.plot3d.platonic.octahedron(center=(0, 0, 0), size=1, **kwds)

Return an octahedron.

INPUT:

  • center - (default: (0,0,0))
  • size - (default: 1)
  • color - a string that describes a color; this can also be a list of 3-tuples or strings length 6 or 3, in which case the faces (and oppositive faces) are colored.
  • opacity - (default: 1) if less than 1 then is transparent

EXAMPLES:

sage: octahedron((1,4,3), color='orange') + \
             octahedron((0,2,1), size=2, opacity=0.6)
sage.plot.plot3d.platonic.prep(G, center, size, kwds)

Helper function that scales and translates the platonic solid, and passes extra keywords on.

INPUT:

  • center - 3-tuple indicating the center (default passed from index_face_set() is the origin \((0,0,0)\))
  • size - number indicating amount to scale by (default passed from index_face_set() is 1)
  • kwds - a dictionary of keywords, passed from solid invocation by index_face_set()

TESTS:

Verify that scaling and moving the center work together properly, and that keywords are passed (see Trac #10796):

sage: octahedron(center=(2,0,0),size=2,color='red')
sage.plot.plot3d.platonic.tetrahedron(center=(0, 0, 0), size=1, **kwds)

A 3d tetrahedron.

INPUT:

  • center - (default: (0,0,0))
  • size - (default: 1)
  • color - a word that describes a color
  • rgbcolor - (r,g,b) with r, g, b between 0 and 1 that describes a color
  • opacity - (default: 1) if less than 1 then is transparent

EXAMPLES: A default colored tetrahedron at the origin:

sage: tetrahedron()

A transparent green tetrahedron in front of a solid red one:

sage: tetrahedron(opacity=0.8, color='green') + tetrahedron((-2,1,0),color='red')

A translucent tetrahedron sharing space with a sphere:

sage: tetrahedron(color='yellow',opacity=0.7) + sphere(r=.5, color='red')

A big tetrahedron:

sage: tetrahedron(size=10)

A wide tetrahedron:

sage: tetrahedron(aspect_ratio=[1,1,1]).scale((4,4,1))

A red and blue tetrahedron touching noses:

sage: tetrahedron(color='red') + tetrahedron((0,0,-2)).scale([1,1,-1])

A Dodecahedral complex of 5 tetrahedrons (a more elaborate examples from Peter Jipsen):

sage: v=(sqrt(5.)/2-5/6, 5/6*sqrt(3.)-sqrt(15.)/2, sqrt(5.)/3)
sage: t=acos(sqrt(5.)/3)/2
sage: t1=tetrahedron(aspect_ratio=(1,1,1), opacity=0.5).rotateZ(t)
sage: t2=tetrahedron(color='red', opacity=0.5).rotateZ(t).rotate(v,2*pi/5)
sage: t3=tetrahedron(color='green', opacity=0.5).rotateZ(t).rotate(v,4*pi/5)
sage: t4=tetrahedron(color='yellow', opacity=0.5).rotateZ(t).rotate(v,6*pi/5)
sage: t5=tetrahedron(color='orange', opacity=0.5).rotateZ(t).rotate(v,8*pi/5)
sage: show(t1+t2+t3+t4+t5, frame=False, zoom=1.3)

AUTHORS:

  • Robert Bradshaw and William Stein

Previous topic

Plotting Functions

Next topic

Classes for Lines, Frames, Rulers, Spheres, Points, Dots, and Text

This Page