# Surfaces of revolution¶

AUTHORS:

• Oscar Gerardo Lazo Arjona (2010): initial version.
sage.plot.plot3d.revolution_plot3d.revolution_plot3d(curve, trange, phirange=None, parallel_axis='z', axis=(0, 0), print_vector=False, show_curve=False, **kwds)

Return a plot of a revolved curve.

There are three ways to call this function:

• revolution_plot3d(f,trange) where $$f$$ is a function located in the $$x z$$ plane.
• revolution_plot3d((f_x,f_z),trange) where $$(f_x,f_z)$$ is a parametric curve on the $$x z$$ plane.
• revolution_plot3d((f_x,f_y,f_z),trange) where $$(f_x,f_y,f_z)$$ can be any parametric curve.

INPUT:

• curve - A curve to be revolved, specified as a function, a 2-tuple or a 3-tuple.

• trange - A 3-tuple $$(t,t_{\min},t_{\max})$$ where t is the independent variable of the curve.

• phirange - A 2-tuple of the form $$(\phi_{\min},\phi_{\max})$$, (default $$(0,\pi)$$) that specifies the angle in which the curve is to be revolved.

• parallel_axis - A string (Either ‘x’, ‘y’, or ‘z’) that specifies the coordinate axis parallel to the revolution axis.

• axis - A 2-tuple that specifies the position of the revolution axis. If parallel is:

• ‘z’ - then axis is the point in which the revolution axis intersects the $$x y$$ plane.
• ‘x’ - then axis is the point in which the revolution axis intersects the $$y z$$ plane.
• ‘y’ - then axis is the point in which the revolution axis intersects the $$x z$$ plane.
• print_vector - If True, the parametrization of the surface of revolution will be printed.

• show_curve - If True, the curve will be displayed.

EXAMPLES:

Let’s revolve a simple function around different axes:

sage: u = var('u')
sage: f=u^2
sage: revolution_plot3d(f,(u,0,2),show_curve=True,opacity=0.7).show(aspect_ratio=(1,1,1))


If we move slightly the axis, we get a goblet-like surface:

sage: revolution_plot3d(f,(u,0,2),axis=(1,0.2),show_curve=True,opacity=0.5).show(aspect_ratio=(1,1,1))


A common problem in calculus books, find the volume within the following revolution solid:

sage: line=u
sage: parabola=u^2
sage: sur1=revolution_plot3d(line,(u,0,1),opacity=0.5,rgbcolor=(1,0.5,0),show_curve=True,parallel_axis='x')
sage: sur2=revolution_plot3d(parabola,(u,0,1),opacity=0.5,rgbcolor=(0,1,0),show_curve=True,parallel_axis='x')
sage: (sur1+sur2).show()


Now let’s revolve a parametrically defined circle. We can play with the topology of the surface by changing the axis, an axis in $$(0,0)$$ (as the previous one) will produce a sphere-like surface:

sage: u = var('u')
sage: circle=(cos(u),sin(u))
sage: revolution_plot3d(circle,(u,0,2*pi),axis=(0,0),show_curve=True,opacity=0.5).show(aspect_ratio=(1,1,1))


An axis on $$(0,y)$$ will produce a cylinder-like surface:

sage: revolution_plot3d(circle,(u,0,2*pi),axis=(0,2),show_curve=True,opacity=0.5).show(aspect_ratio=(1,1,1))


And any other axis will produce a torus-like surface:

sage: revolution_plot3d(circle,(u,0,2*pi),axis=(2,0),show_curve=True,opacity=0.5).show(aspect_ratio=(1,1,1))


Now, we can get another goblet-like surface by revolving a curve in 3d:

sage: u = var('u')
sage: curve=(u,cos(4*u),u^2)
sage: revolution_plot3d(curve,(u,0,2),show_curve=True,parallel_axis='z',axis=(1,.2),opacity=0.5).show(aspect_ratio=(1,1,1))


A curvy curve with only a quarter turn:

sage: u = var('u')
sage: curve=(sin(3*u),.8*cos(4*u),cos(u))
sage: revolution_plot3d(curve,(u,0,pi),(0,pi/2),show_curve=True,parallel_axis='z',opacity=0.5).show(aspect_ratio=(1,1,1),frame=False)


#### Previous topic

Parametric Surface

#### Next topic

Plotting 3D fields