Rings
This module provides the abstract base class Ring from which all rings in Sage (used to) derive, as well as a selection of more specific base classes.
Warning
Those classes, except maybe for the lowest ones like Ring, CommutativeRing, Algebra and CommutativeAlgebra, are being progressively deprecated in favor of the corresponding categories. which are more flexible, in particular with respect to multiple inheritance.
The class inheritance hierarchy is:
Subclasses of PrincipalIdealDomain are
Some aspects of this structure may seem strange, but this is an unfortunate consequence of the fact that Cython classes do not support multiple inheritance. Hence, for instance, Field cannot be a subclass of both NoetherianRing and PrincipalIdealDomain, although all fields are Noetherian PIDs.
(A distinct but equally awkward issue is that sometimes we may not know in advance whether or not a ring belongs in one of these classes; e.g. some orders in number fields are Dedekind domains, but others are not, and we still want to offer a unified interface, so orders are never instances of the DedekindDomain class.)
AUTHORS:
Bases: sage.rings.ring.Ring
Generic algebra
Return the characteristic of this algebra, which is the same as the characteristic of its base ring.
See objects with the base_ring attribute for additional examples. Here are some examples that explicitly use the Algebra class.
EXAMPLES:
sage: A = Algebra(ZZ); A
<type 'sage.rings.ring.Algebra'>
sage: A.characteristic()
0
sage: A = Algebra(GF(7^3, 'a'))
sage: A.characteristic()
7
Return True if the algebra has a standard involution and False otherwise. This algorithm follows Algorithm 2.10 from John Voight’s \(Identifying the Matrix Ring\). Currently the only type of algebra this will work for is a quaternion algebra. Though this function seems redundant, once algebras have more functionality, in particular have a method to construct a basis, this algorithm will have more general purpose.
EXAMPLES:
sage: B = QuaternionAlgebra(2)
sage: B.has_standard_involution()
True
sage: R.<x> = PolynomialRing(QQ)
sage: K.<u> = NumberField(x**2 - 2)
sage: A = QuaternionAlgebra(K,-2,5)
sage: A.has_standard_involution()
True
sage: L.<a,b> = FreeAlgebra(QQ,2)
sage: L.has_standard_involution()
Traceback (most recent call last):
...
NotImplementedError: has_standard_involution is not implemented for this algebra
Bases: sage.rings.ring.CommutativeRing
Generic commutative algebra
Return True since this algebra is commutative.
EXAMPLES:
Any commutative ring is a commutative algebra over itself:
sage: A = sage.rings.ring.CommutativeAlgebra
sage: A(ZZ).is_commutative()
True
sage: A(QQ).is_commutative()
True
Trying to create a commutative algebra over a non-commutative ring will result in a TypeError.
Bases: sage.rings.ring.Ring
Generic commutative ring.
Algebraically extends self by taking the quotient self[x] / (f(x)).
INPUT:
Note
Using this method on an algebraically complete field does not return this field; the construction self[x] / (f(x)) is done anyway.
EXAMPLES:
sage: R = QQ['x']
sage: y = polygen(R)
sage: R.extension(y^2 - 5, 'a')
Univariate Quotient Polynomial Ring in a over Univariate Polynomial Ring in x over Rational Field with modulus a^2 - 5
sage: P.<x> = PolynomialRing(GF(5))
sage: F.<a> = GF(5).extension(x^2 - 2)
sage: P.<t> = F[]
sage: R.<b> = F.extension(t^2 - a); R
Univariate Quotient Polynomial Ring in b over Finite Field in a of size 5^2 with modulus b^2 + 4*a
Return the fraction field of self.
EXAMPLES:
sage: R = Integers(389)['x,y']
sage: Frac(R)
Fraction Field of Multivariate Polynomial Ring in x, y over Ring of integers modulo 389
sage: R.fraction_field()
Fraction Field of Multivariate Polynomial Ring in x, y over Ring of integers modulo 389
INPUT:
OUTPUT:
The \(n\)-th power of the absolute arithmetic Frobenius endomorphism on this finite field.
EXAMPLES:
sage: K.<u> = PowerSeriesRing(GF(5))
sage: Frob = K.frobenius_endomorphism(); Frob
Frobenius endomorphism x |--> x^5 of Power Series Ring in u over Finite Field of size 5
sage: Frob(u)
u^5
We can specify a power:
sage: f = K.frobenius_endomorphism(2); f
Frobenius endomorphism x |--> x^(5^2) of Power Series Ring in u over Finite Field of size 5
sage: f(1+u)
1 + u^25
Return the monoid of ideals of this ring.
EXAMPLES:
sage: ZZ.ideal_monoid()
Monoid of ideals of Integer Ring
sage: R.<x>=QQ[]; R.ideal_monoid()
Monoid of ideals of Univariate Polynomial Ring in x over Rational Field
Return True, since this ring is commutative.
EXAMPLES:
sage: QQ.is_commutative()
True
sage: ZpCA(7).is_commutative()
True
sage: A = QuaternionAlgebra(QQ, -1, -3, names=('i','j','k')); A
Quaternion Algebra (-1, -3) with base ring Rational Field
sage: A.is_commutative()
False
Return the Krull dimension of this commutative ring.
The Krull dimension is the length of the longest ascending chain of prime ideals.
TESTS:
krull_dimension is not implemented for generic commutative rings. Fields and PIDs, with Krull dimension equal to 0 and 1, respectively, have naive implementations of krull_dimension. Orders in number fields also have Krull dimension 1:
sage: R = CommutativeRing(ZZ)
sage: R.krull_dimension()
Traceback (most recent call last):
...
NotImplementedError
sage: QQ.krull_dimension()
0
sage: ZZ.krull_dimension()
1
sage: type(R); type(QQ); type(ZZ)
<type 'sage.rings.ring.CommutativeRing'>
<class 'sage.rings.rational_field.RationalField_with_category'>
<type 'sage.rings.integer_ring.IntegerRing_class'>
All orders in number fields have Krull dimension 1, including non-maximal orders:
sage: K.<i> = QuadraticField(-1)
sage: R = K.maximal_order(); R
Maximal Order in Number Field in i with defining polynomial x^2 + 1
sage: R.krull_dimension()
1
sage: R = K.order(2*i); R
Order in Number Field in i with defining polynomial x^2 + 1
sage: R.is_maximal()
False
sage: R.krull_dimension()
1
Bases: sage.rings.ring.IntegralDomain
Generic Dedekind domain class.
A Dedekind domain is a Noetherian integral domain of Krull dimension one that is integrally closed in its field of fractions.
This class is deprecated, and not actually used anywhere in the Sage code base. If you think you need it, please create a category DedekindDomains, move the code of this class there, and use it instead.
Return self since Dedekind domains are integrally closed.
EXAMPLES:
sage: K = NumberField(x^2 + 1, 's')
sage: OK = K.ring_of_integers()
sage: OK.integral_closure()
Maximal Order in Number Field in s with defining polynomial x^2 + 1
sage: OK.integral_closure() == OK
True
sage: QQ.integral_closure() == QQ
True
Return True since Dedekind domains are integrally closed.
EXAMPLES:
The following are examples of Dedekind domains (Noetherian integral domains of Krull dimension one that are integrally closed over its field of fractions).
sage: ZZ.is_integrally_closed()
True
sage: K = NumberField(x^2 + 1, 's')
sage: OK = K.ring_of_integers()
sage: OK.is_integrally_closed()
True
These, however, are not Dedekind domains:
sage: QQ.is_integrally_closed()
True
sage: S = ZZ[sqrt(5)]; S.is_integrally_closed()
False
sage: T.<x,y> = PolynomialRing(QQ,2); T
Multivariate Polynomial Ring in x, y over Rational Field
sage: T.is_integral_domain()
True
Return True since Dedekind domains are Noetherian.
EXAMPLES:
The integers, \(\ZZ\), and rings of integers of number fields are Dedekind domains:
sage: ZZ.is_noetherian()
True
sage: K = NumberField(x^2 + 1, 's')
sage: OK = K.ring_of_integers()
sage: OK.is_noetherian()
True
sage: QQ.is_noetherian()
True
Return 1 since Dedekind domains have Krull dimension 1.
EXAMPLES:
The following are examples of Dedekind domains (Noetherian integral domains of Krull dimension one that are integrally closed over its field of fractions):
sage: ZZ.krull_dimension()
1
sage: K = NumberField(x^2 + 1, 's')
sage: OK = K.ring_of_integers()
sage: OK.krull_dimension()
1
The following are not Dedekind domains but have a krull_dimension function:
sage: QQ.krull_dimension()
0
sage: T.<x,y> = PolynomialRing(QQ,2); T
Multivariate Polynomial Ring in x, y over Rational Field
sage: T.krull_dimension()
2
sage: U.<x,y,z> = PolynomialRing(ZZ,3); U
Multivariate Polynomial Ring in x, y, z over Integer Ring
sage: U.krull_dimension()
4
sage: K.<i> = QuadraticField(-1)
sage: R = K.order(2*i); R
Order in Number Field in i with defining polynomial x^2 + 1
sage: R.is_maximal()
False
sage: R.krull_dimension()
1
Bases: sage.rings.ring.PrincipalIdealDomain
Generic Euclidean domain class.
This class is deprecated. Please use the EuclideanDomains category instead.
Return an element of degree 1.
EXAMPLES:
sage: R.<x>=QQ[]
sage: R.parameter()
x
Bases: sage.rings.ring.PrincipalIdealDomain
Generic field
Return the algebraic closure of self.
Note
This is only implemented for certain classes of field.
EXAMPLES:
sage: K = PolynomialRing(QQ,'x').fraction_field(); K
Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: K.algebraic_closure()
Traceback (most recent call last):
...
NotImplementedError: Algebraic closures of general fields not implemented.
Return True if x divides y in this field (usually True in a field!). If coerce is True (the default), first coerce x and y into self.
EXAMPLES:
sage: QQ.divides(2, 3/4)
True
sage: QQ.divides(0, 5)
False
Return the fraction field of self.
EXAMPLES:
Since fields are their own field of fractions, we simply get the original field in return:
sage: QQ.fraction_field()
Rational Field
sage: RR.fraction_field()
Real Field with 53 bits of precision
sage: CC.fraction_field()
Complex Field with 53 bits of precision
sage: F = NumberField(x^2 + 1, 'i')
sage: F.fraction_field()
Number Field in i with defining polynomial x^2 + 1
Return the ideal generated by gens.
EXAMPLES:
sage: QQ.ideal(2)
Principal ideal (1) of Rational Field
sage: QQ.ideal(0)
Principal ideal (0) of Rational Field
Return this field, since fields are integrally closed in their fraction field.
EXAMPLES:
sage: QQ.integral_closure()
Rational Field
sage: Frac(ZZ['x,y']).integral_closure()
Fraction Field of Multivariate Polynomial Ring in x, y over Integer Ring
Return True since this is a field.
EXAMPLES:
sage: Frac(ZZ['x,y']).is_field()
True
Return True since fields are trivially integrally closed in their fraction field (since they are their own fraction field).
EXAMPLES:
sage: Frac(ZZ['x,y']).is_integrally_closed()
True
Return True since fields are Noetherian rings.
EXAMPLES:
sage: QQ.is_noetherian()
True
Return the Krull dimension of this field, which is 0.
EXAMPLES:
sage: QQ.krull_dimension()
0
sage: Frac(QQ['x,y']).krull_dimension()
0
Return the prime subfield of self.
EXAMPLES:
sage: k = GF(9, 'a')
sage: k.prime_subfield()
Finite Field of size 3
Bases: sage.rings.ring.CommutativeRing
Generic integral domain class.
This class is deprecated. Please use the sage.categories.integral_domains.IntegralDomains category instead.
Return True if this ring is a field.
EXAMPLES:
sage: GF(7).is_field()
True
The following examples have their own is_field implementations:
sage: ZZ.is_field(); QQ.is_field()
False
True
sage: R.<x> = PolynomialRing(QQ); R.is_field()
False
An example where we raise a NotImplementedError:
sage: R = IntegralDomain(ZZ)
sage: R.is_field()
Traceback (most recent call last):
...
NotImplementedError
Return True, since this ring is an integral domain.
(This is a naive implementation for objects with type IntegralDomain)
EXAMPLES:
sage: ZZ.is_integral_domain(); QQ.is_integral_domain(); ZZ[x].is_integral_domain()
True
True
True
sage: R = ZZ.quotient(ZZ.ideal(10)); R.is_integral_domain()
False
Return True if this ring is integrally closed in its field of fractions; otherwise return False.
When no algorithm is implemented for this, then this function raises a NotImplementedError.
Note that is_integrally_closed has a naive implementation in fields. For every field \(F\), \(F\) is its own field of fractions, hence every element of \(F\) is integral over \(F\).
EXAMPLES:
sage: ZZ.is_integrally_closed()
True
sage: QQ.is_integrally_closed()
True
sage: QQbar.is_integrally_closed()
True
sage: GF(5).is_integrally_closed()
True
sage: Z5 = Integers(5); Z5
Ring of integers modulo 5
sage: Z5.is_integrally_closed()
Traceback (most recent call last):
...
AttributeError: 'IntegerModRing_generic_with_category' object has no attribute 'is_integrally_closed'
Bases: sage.rings.ring.CommutativeRing
Generic Noetherian ring class.
A Noetherian ring is a commutative ring in which every ideal is finitely generated.
This class is deprecated, and not actually used anywhere in the Sage code base. If you think you need it, please create a category NoetherianRings, move the code of this class there, and use it instead.
Return True since this ring is Noetherian.
EXAMPLES:
sage: ZZ.is_noetherian()
True
sage: QQ.is_noetherian()
True
sage: R.<x> = PolynomialRing(QQ)
sage: R.is_noetherian()
True
Bases: sage.rings.ring.IntegralDomain
Generic principal ideal domain.
This class is deprecated. Please use the PrincipalIdealDomains category instead.
Return the trivial group, since the class group of a PID is trivial.
EXAMPLES:
sage: QQ.class_group()
Trivial Abelian group
Return the content of \(x\) and \(y\), i.e. the unique element \(c\) of self such that \(x/c\) and \(y/c\) are coprime and integral.
EXAMPLES:
sage: QQ.content(ZZ(42), ZZ(48)); type(QQ.content(ZZ(42), ZZ(48)))
6
<type 'sage.rings.rational.Rational'>
sage: QQ.content(1/2, 1/3)
1/6
sage: factor(1/2); factor(1/3); factor(1/6)
2^-1
3^-1
2^-1 * 3^-1
sage: a = (2*3)/(7*11); b = (13*17)/(19*23)
sage: factor(a); factor(b); factor(QQ.content(a,b))
2 * 3 * 7^-1 * 11^-1
13 * 17 * 19^-1 * 23^-1
7^-1 * 11^-1 * 19^-1 * 23^-1
Note the changes to the second entry:
sage: c = (2*3)/(7*11); d = (13*17)/(7*19*23)
sage: factor(c); factor(d); factor(QQ.content(c,d))
2 * 3 * 7^-1 * 11^-1
7^-1 * 13 * 17 * 19^-1 * 23^-1
7^-1 * 11^-1 * 19^-1 * 23^-1
sage: e = (2*3)/(7*11); f = (13*17)/(7^3*19*23)
sage: factor(e); factor(f); factor(QQ.content(e,f))
2 * 3 * 7^-1 * 11^-1
7^-3 * 13 * 17 * 19^-1 * 23^-1
7^-3 * 11^-1 * 19^-1 * 23^-1
Return the greatest common divisor of x and y, as elements of self.
EXAMPLES:
The integers are a principal ideal domain and hence a GCD domain:
sage: ZZ.gcd(42, 48)
6
sage: 42.factor(); 48.factor()
2 * 3 * 7
2^4 * 3
sage: ZZ.gcd(2^4*7^2*11, 2^3*11*13)
88
sage: 88.factor()
2^3 * 11
In a field, any nonzero element is a GCD of any nonempty set of nonzero elements. In previous versions, Sage used to return 1 in the case of the rational field. However, since trac ticket #10771, the rational field is considered as the fraction field of the integer ring. For the fraction field of an integral domain that provides both GCD and LCM, it is possible to pick a GCD that is compatible with the GCD of the base ring:
sage: QQ.gcd(ZZ(42), ZZ(48)); type(QQ.gcd(ZZ(42), ZZ(48)))
6
<type 'sage.rings.rational.Rational'>
sage: QQ.gcd(1/2, 1/3)
1/6
Polynomial rings over fields are GCD domains as well. Here is a simple example over the ring of polynomials over the rationals as well as over an extension ring. Note that gcd requires x and y to be coercible:
sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = NumberField(x^2 - 2, 'a')
sage: f = (x - a)*(x + a); g = (x - a)*(x^2 - 2)
sage: print f; print g
x^2 - 2
x^3 - a*x^2 - 2*x + 2*a
sage: f in R
True
sage: g in R
False
sage: R.gcd(f,g)
Traceback (most recent call last):
...
TypeError: Unable to coerce 2*a to a rational
sage: R.base_extend(S).gcd(f,g)
x^2 - 2
sage: R.base_extend(S).gcd(f, (x - a)*(x^2 - 3))
x - a
Every principal ideal domain is noetherian, so we return True.
EXAMPLES:
sage: Zp(5).is_noetherian()
True
Bases: sage.structure.parent_gens.ParentWithGens
Generic ring class.
TESTS:
This is to test against the bug fixed in trac ticket #9138:
sage: R.<x> = QQ[]
sage: R.sum([x,x])
2*x
sage: R.<x,y> = ZZ[]
sage: R.sum([x,y])
x + y
sage: TestSuite(QQ['x']).run(verbose=True)
running ._test_additive_associativity() . . . pass
running ._test_an_element() . . . pass
running ._test_associativity() . . . pass
running ._test_category() . . . pass
running ._test_characteristic() . . . pass
running ._test_distributivity() . . . pass
running ._test_elements() . . .
Running the test suite of self.an_element()
running ._test_category() . . . pass
running ._test_eq() . . . pass
running ._test_nonzero_equal() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_pickling() . . . pass
pass
running ._test_elements_eq_reflexive() . . . pass
running ._test_elements_eq_symmetric() . . . pass
running ._test_elements_eq_transitive() . . . pass
running ._test_elements_neq() . . . pass
running ._test_eq() . . . pass
running ._test_not_implemented_methods() . . . pass
running ._test_one() . . . pass
running ._test_pickling() . . . pass
running ._test_prod() . . . pass
running ._test_some_elements() . . . pass
running ._test_zero() . . . pass
sage: TestSuite(QQ['x','y']).run()
sage: TestSuite(ZZ['x','y']).run()
sage: TestSuite(ZZ['x','y']['t']).run()
Test agaings another bug fixed in trac ticket #9944:
sage: QQ['x'].category()
Join of Category of euclidean domains and Category of commutative algebras over Rational Field
sage: QQ['x','y'].category()
Join of Category of unique factorization domains and Category of commutative algebras over Rational Field
sage: PolynomialRing(MatrixSpace(QQ,2),'x').category()
Category of algebras over Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: PolynomialRing(SteenrodAlgebra(2),'x').category()
Category of algebras over mod 2 Steenrod algebra, milnor basis
TESTS::
sage: Zp(7)._repr_option('element_is_atomic')
False
sage: QQ._repr_option('element_is_atomic')
True
sage: CDF._repr_option('element_is_atomic')
False
EXAMPLES:
sage: QQ.base_extend(GF(7))
Traceback (most recent call last):
...
TypeError: no base extension defined
sage: ZZ.base_extend(GF(7))
Finite Field of size 7
Return the cardinality of the underlying set.
OUTPUT:
Either an integer or +Infinity.
EXAMPLES:
sage: Integers(7).cardinality()
7
sage: QQ.cardinality()
+Infinity
Return the category to which this ring belongs.
Note
This method exists because sometimes a ring is its own base ring. During initialisation of a ring \(R\), it may be checked whether the base ring (hence, the ring itself) is a ring. Hence, it is necessary that R.category() tells that R is a ring, even before its category is properly initialised.
EXAMPLES:
sage: FreeAlgebra(QQ, 3, 'x').category() # todo: use a ring which is not an algebra!
Category of algebras with basis over Rational Field
Since a quotient of the integers is its own base ring, and during initialisation of a ring it is tested whether the base ring belongs to the category of rings, the following is an indirect test that the category() method of rings returns the category of rings even before the initialisation was successful:
sage: I = Integers(15)
sage: I.base_ring() is I
True
sage: I.category()
Join of Category of commutative rings and Category of subquotients
of monoids and Category of quotients of semigroups and Category of
finite enumerated sets
Return the ideal defined by x, i.e., generated by x.
INPUT:
EXAMPLES:
sage: R.<x,y> = QQ[]
sage: R.ideal(x,y)
Ideal (x, y) of Multivariate Polynomial Ring in x, y over Rational Field
sage: R.ideal(x+y^2)
Ideal (y^2 + x) of Multivariate Polynomial Ring in x, y over Rational Field
sage: R.ideal( [x^3,y^3+x^3] )
Ideal (x^3, x^3 + y^3) of Multivariate Polynomial Ring in x, y over Rational Field
Here is an example over a non-commutative ring:
sage: A = SteenrodAlgebra(2)
sage: A.ideal(A.1,A.2^2)
Twosided Ideal (Sq(2), Sq(2,2)) of mod 2 Steenrod algebra, milnor basis
sage: A.ideal(A.1,A.2^2,side='left')
Left Ideal (Sq(2), Sq(2,2)) of mod 2 Steenrod algebra, milnor basis
TESTS:
Make sure that trac ticket #11139 is fixed:
sage: R.<x> = QQ[]
sage: R.ideal([])
Principal ideal (0) of Univariate Polynomial Ring in x over Rational Field
sage: R.ideal(())
Principal ideal (0) of Univariate Polynomial Ring in x over Rational Field
sage: R.ideal()
Principal ideal (0) of Univariate Polynomial Ring in x over Rational Field
Return the monoid of ideals of this ring.
EXAMPLES:
sage: F.<x,y,z> = FreeAlgebra(ZZ, 3)
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: Q = sage.rings.ring.Ring.quotient(F,I)
sage: Q.ideal_monoid()
Monoid of ideals of Quotient of Free Algebra on 3 generators (x, y, z) over Integer Ring by the ideal (x*y + y*z, x^2 + x*y - y*x - y^2)
sage: F.<x,y,z> = FreeAlgebra(ZZ, implementation='letterplace')
sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
sage: Q = F.quo(I)
sage: Q.ideal_monoid()
Monoid of ideals of Quotient of Free Associative Unital Algebra on 3 generators (x, y, z) over Integer Ring by the ideal (x*y + y*z, x*x + x*y - y*x - y*y)
Return True if this ring is commutative.
EXAMPLES:
sage: QQ.is_commutative()
True
sage: QQ['x,y,z'].is_commutative()
True
sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -1,-1)
sage: Q.is_commutative()
False
Return True if elements of this ring are represented exactly, i.e., there is no precision loss when doing arithmetic.
Note
This defaults to True, so even if it does return True you have no guarantee (unless the ring has properly overloaded this).
EXAMPLES:
sage: QQ.is_exact() # indirect doctest
True
sage: ZZ.is_exact()
True
sage: Qp(7).is_exact()
False
sage: Zp(7, type='capped-abs').is_exact()
False
Return True if this ring is a field.
INPUT:
ALGORITHM:
If the parameter proof is set to True, the returned value is correct but the method might throw an error. Otherwise, if it is set to False, the method returns True if it can establish that self is a field and False otherwise.
EXAMPLES:
sage: QQ.is_field()
True
sage: GF(9,'a').is_field()
True
sage: ZZ.is_field()
False
sage: QQ['x'].is_field()
False
sage: Frac(QQ['x']).is_field()
True
This illustrates the use of the proof parameter:
sage: R.<a,b> = QQ[]
sage: S.<x,y> = R.quo((b^3))
sage: S.is_field(proof = True)
Traceback (most recent call last):
...
NotImplementedError
sage: S.is_field(proof = False)
False
Return True if this ring is finite.
EXAMPLES:
sage: QQ.is_finite()
False
sage: GF(2^10,'a').is_finite()
True
sage: R.<x> = GF(7)[]
sage: R.is_finite()
False
sage: S.<y> = R.quo(x^2+1)
sage: S.is_finite()
True
Return True if this ring is an integral domain.
INPUT:
ALGORITHM:
If the parameter proof is set to True, the returned value is correct but the method might throw an error. Otherwise, if it is set to False, the method returns True if it can establish that self is an integral domain and False otherwise.
EXAMPLES:
sage: QQ.is_integral_domain()
True
sage: ZZ.is_integral_domain()
True
sage: ZZ['x,y,z'].is_integral_domain()
True
sage: Integers(8).is_integral_domain()
False
sage: Zp(7).is_integral_domain()
True
sage: Qp(7).is_integral_domain()
True
sage: R.<a,b> = QQ[]
sage: S.<x,y> = R.quo((b^3))
sage: S.is_integral_domain()
False
This illustrates the use of the proof parameter:
sage: R.<a,b> = ZZ[]
sage: S.<x,y> = R.quo((b^3))
sage: S.is_integral_domain(proof = True)
Traceback (most recent call last):
...
NotImplementedError
sage: S.is_integral_domain(proof = False)
False
TESTS:
Make sure trac ticket #10481 is fixed:
sage: var(x)
x
sage: R.<a>=ZZ[x].quo(x^2)
sage: R.fraction_field()
Traceback (most recent call last):
...
NotImplementedError
sage: R.is_integral_domain()
Traceback (most recent call last):
...
NotImplementedError
Return True if this ring is Noetherian.
EXAMPLES:
sage: QQ.is_noetherian()
True
sage: ZZ.is_noetherian()
True
Return True if this ring is one of the prime fields \(\QQ\) or \(\GF{p}\).
EXAMPLES:
sage: QQ.is_prime_field()
True
sage: GF(3).is_prime_field()
True
sage: GF(9,'a').is_prime_field()
False
sage: ZZ.is_prime_field()
False
sage: QQ['x'].is_prime_field()
False
sage: Qp(19).is_prime_field()
False
Return True since self is a ring.
EXAMPLES:
sage: QQ.is_ring()
True
Return True if the canonical map from self to other is injective.
Raises a NotImplementedError if not known.
EXAMPLES:
sage: ZZ.is_subring(QQ)
True
sage: ZZ.is_subring(GF(19))
False
Return the one element of this ring (cached), if it exists.
EXAMPLES:
sage: ZZ.one_element()
1
sage: QQ.one_element()
1
sage: QQ['x'].one_element()
1
The result is cached:
sage: ZZ.one_element() is ZZ.one_element()
True
Return the one element of this ring (cached), if it exists.
EXAMPLES:
sage: ZZ.one_element()
1
sage: QQ.one_element()
1
sage: QQ['x'].one_element()
1
The result is cached:
sage: ZZ.one_element() is ZZ.one_element()
True
The number of elements of self.
EXAMPLES:
sage: GF(19).order()
19
sage: QQ.order()
+Infinity
Return the principal ideal generated by gen.
EXAMPLES:
sage: R.<x,y> = ZZ[]
sage: R.principal_ideal(x+2*y)
Ideal (x + 2*y) of Multivariate Polynomial Ring in x, y over Integer Ring
Create the quotient of \(R\) by the ideal \(I\). This is a synonym for quotient()
EXAMPLES:
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: S.<a,b> = R.quo((x^2, y))
sage: S
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2, y)
sage: S.gens()
(a, 0)
sage: a == b
False
Create the quotient of this ring by a twosided ideal I.
INPUT:
EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ)
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: S = R.quotient(I, 'a')
sage: S.gens()
(a,)
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: S.<a,b> = R.quotient((x^2, y))
sage: S
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2, y)
sage: S.gens()
(a, 0)
sage: a == b
False
Return the quotient of self by the ideal \(I\) of self. (Synonym for self.quotient(I).)
INPUT:
OUTPUT:
EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ)
sage: I = R.ideal([4 + 3*x + x^2, 1 + x^2])
sage: S = R.quotient_ring(I, 'a')
sage: S.gens()
(a,)
sage: R.<x,y> = PolynomialRing(QQ,2)
sage: S.<a,b> = R.quotient_ring((x^2, y))
sage: S
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (x^2, y)
sage: S.gens()
(a, 0)
sage: a == b
False
Return a random integer coerced into this ring, where the integer is chosen uniformly from the interval [-bound,bound].
INPUT:
ALGORITHM:
Uses Python’s randint.
TESTS:
The following example returns a NotImplementedError since the generic ring class __call__ function returns a NotImplementedError. Note that sage.rings.ring.Ring.random_element performs a call in the generic ring class by a random integer:
sage: R = sage.rings.ring.Ring(ZZ); R
<type 'sage.rings.ring.Ring'>
sage: R.random_element()
Traceback (most recent call last):
...
NotImplementedError
Return the unit ideal of this ring.
EXAMPLES:
sage: Zp(7).unit_ideal()
Principal ideal (1 + O(7^20)) of 7-adic Ring with capped relative precision 20
Return the zero element of this ring (cached).
EXAMPLES:
sage: ZZ.zero_element()
0
sage: QQ.zero_element()
0
sage: QQ['x'].zero_element()
0
The result is cached:
sage: ZZ.zero_element() is ZZ.zero_element()
True
Return the zero element of this ring (cached).
EXAMPLES:
sage: ZZ.zero_element()
0
sage: QQ.zero_element()
0
sage: QQ['x'].zero_element()
0
The result is cached:
sage: ZZ.zero_element() is ZZ.zero_element()
True
Return the zero ideal of this ring (cached).
EXAMPLES:
sage: ZZ.zero_ideal()
Principal ideal (0) of Integer Ring
sage: QQ.zero_ideal()
Principal ideal (0) of Rational Field
sage: QQ['x'].zero_ideal()
Principal ideal (0) of Univariate Polynomial Ring in x over Rational Field
The result is cached:
sage: ZZ.zero_ideal() is ZZ.zero_ideal()
True
Return an n-th root of unity in self if there is one, or raise an ArithmeticError otherwise.
INPUT:
OUTPUT:
Element of self of finite order
EXAMPLES:
sage: QQ.zeta()
-1
sage: QQ.zeta(1)
1
sage: CyclotomicField(6).zeta()
zeta6
sage: CyclotomicField(3).zeta()
zeta3
sage: CyclotomicField(3).zeta().multiplicative_order()
3
sage: a = GF(7).zeta(); a
3
sage: a.multiplicative_order()
6
sage: a = GF(49,'z').zeta(); a
z
sage: a.multiplicative_order()
48
sage: a = GF(49,'z').zeta(2); a
6
sage: a.multiplicative_order()
2
sage: QQ.zeta(3)
Traceback (most recent call last):
...
ValueError: no n-th root of unity in rational field
sage: Zp(7, prec=8).zeta()
3 + 4*7 + 6*7^2 + 3*7^3 + 2*7^5 + 6*7^6 + 2*7^7 + O(7^8)
Return the order of the distinguished root of unity in self.
EXAMPLES:
sage: CyclotomicField(19).zeta_order()
38
sage: GF(19).zeta_order()
18
sage: GF(5^3,'a').zeta_order()
124
sage: Zp(7, prec=8).zeta_order()
6
Return True if x is a ring.
EXAMPLES:
sage: from sage.rings.ring import is_Ring
sage: is_Ring(ZZ)
True
sage: MS = MatrixSpace(QQ,2)
sage: is_Ring(MS)
True