
ACM SIGSAM Bulletin, Vol 39, No. 2, June 2005 Timely Communication

SAGE: System for Algebra and Geometry Experimentation∗

William Stein
University of California at San Diego

wstein@ucsd.edu

David Joyner
Mathematics Department, US Naval Academy

wdj@usna.edu

SAGE is a framework for number theory, algebra, and geometry computation that is initially
being designed for computing with elliptic curves and modular forms. The current implementation
is primarily due to William Stein. It is open source and freely available under the terms of the
GNU General Public License (GPL).

SAGE is a Python library with a customized interpreter. It is written in Python, C++, and C
(via Pyrex). Python is an open source object-oriented interpreted language, with a large number
of libraries, e.g., for numerical analysis, which are available to users of SAGE. Python can also be
accessed in library mode from C/C++ programs.

SAGE will provide a unified interface to several important open source libraries, including John
Cremona’s MWRANK library for computing with elliptic curves, the PARI library for number
theory, and Shoup’s number theory library NTL. There is also a tentative plan to incorporate an
interface to SINGULAR (for commutative algebra) and GAP (for group theory).

The design of SAGE is heavily influenced by the carefully thought out and mature class structure
of the closed source computer algebra program MAGMA. When possible, classes have similar names,
constructors, and print representations as in MAGMA, and similar functions are available. However,
SAGE is not meant to be an exact clone of MAGMA.

The main longterm goals for SAGE:

• Efficient: Be very fast—comparable to or faster than anything else available. This is very
difficult, since many systems are closed source, algorithms are sometimes not published, and
finding fast algorithms is often extremely difficult (years of work, Ph.D. theses, luck, etc.).

• Free and open source: The source code must be freely available and readable, so users can
understand what the system is really doing and more easily extend it. Just as mathematicians
gain a deeper understanding of a theorem by carefully reading or at least skimming the proof,
people who do computations should be able to understand how the calculations work by
reading documented source code.

• Easy to compile: SAGE should be relatively easy to compile from source for Linux and OS X
users. This provides more flexibility in modifying the system.

∗This material is based upon work supported by the NSF under Grant No.0400386.

61



SAGE: System for Algebra and Geometry Experimentation Timely Communication

• Comprehensive: Implement enough algorithms to be really useful.

• Tools: Provide robust interfaces to some of the functionality of PARI, GAP, GMP, SINGU-
LAR, MWRANK, and NTL. These are all are GPL’d and SAGE provides (or will provide) a
unified interface for using them.

• Cross-platform: SAGE runs under Linux, OS X, Windows (cygwin). (Solaris is not supported
yet.)

• Well documented: Reference manual, API reference with examples for every function, and an
extensive tutorial.

• Extensible: Be able to define new data types or derive from builtin types, and make code
written in your favorite language (including C/C++) part of the system.

• User friendly: The hope is to eventually attain a high level of user support. (The GAP Forum
email list is an ideal example of the support it is hoped that SAGE can attain.)

As mentioned above, SAGE runs on many platforms and operating systems (Windows, Mac
OS X, FreeBSD, and Linux—both 32-bit and 64-bit). Moreover, it can be downloaded both as a
“binary” and as source code that you compile yourself. You can download SAGE, an installation
guide and a tutorial, from its webpage http://sage.sourceforge.net. The windows version has
an easy installer and the linux compilation is very straightforward if you have the tools (make,
gcc, etc.). Although SAGE uses Python and PARI and other packages, keep in mind that it is
not necessary to have this software preinstalled on your computer. The installation of SAGE is
really designed to be relatively painless, but if you have any problems, please ask. Moreover, if
you have installed SAGE once, upgrading to the newest version is especially easy with the “make
web-update” command (this is described on the website given above and assumes you have wget
installed and an internet connection).

In this brief space, we only give one example of SAGE. Here is an example of computing with
an elliptic curve. The EllipticCurve command has several forms:

• EllipticCurve([a1,a2,a3,a4,a6]): Elliptic curve y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

where the ai’s are coerced into the parent of the first element. If all are integers, they are
coerced into the rational numbers.

• EllipticCurve([a4,a6]): Same as above, but a1 = a2 = a3 = 0.

• EllipticCurve(label): Returns the elliptic curve over Q from the Cremona database with
the given label. The label is a string, such as "11A" or "37B2".

• EllipticCurve(R, [a1,a2,a3,a4,a6]): Create the elliptic curve over a ring R with given
ai’s as above.

Some examples using this command:

62



Stein, Joyner

sage: EllipticCurve([0,0,1,-1,0])

Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

sage: EllipticCurve([GF(5)(0),0,1,-1,0])

Elliptic Curve defined by y^2 + y = x^3 - x over Finite field of size 5

sage: EllipticCurve(GF(5), [0, 0,1,-1,0])

Elliptic Curve defined by y^2 + y = x^3 - x over Finite field of size 5

Here GF(5)(0) denotes the zero element of the field with 5 elements. As indicated above, the last
two commands are essentially equivalent.

The elliptic curves over the complex numbers (denoted CC in SAGE) are parameterized by the
j-invariant. SAGE can compute these j-invariants:

sage: E = EllipticCurve([CC(0),0,1,-1,0])

sage: E

Elliptic Curve defined by y^2 + y = x^3 - x over Complex Field

sage: E.j_invariant()

2988.97297297297297297

Obviously x = y = 0 is a point on the elliptic curve E : y2 + y = x3− x. To create this point in
SAGE type E([0,0]). SAGE can add points on such an elliptic curve (recall elliptic curves support
an additive group structure where the “point at infinity” is the zero element and three co-linear
points on the curve add to zero):

sage: E = EllipticCurve([0,0,1,-1,0])

sage: E

y^2 + y = x^3 - x

sage: P = E([0,0])

sage: 10*P

(161/16, -2065/64)

sage: 20*P

(683916417/264517696, -18784454671297/4302115807744)

Finally, SAGE can use the Cremona database for elliptic curves1.

sage: for E in curves(prime_range(100)):

...: print "%s\t%s"%(E.cremona_label(), E.rank())

...:

11A1 0

11A2 0

11A3 0

17A1 0

1All these commands have been tested using the 6-2-2005 version of SAGE with the Cremona database
db-elliptic-curves-0.3. However, only the commands in the “for loop” require the database, which must be
installed separately (as explained on the SAGE website). Note also that the curves command name may change to
elliptic curves in a future version of SAGE.

63



SAGE: System for Algebra and Geometry Experimentation Timely Communication

17A2 0

17A3 0

17A4 0

19A1 0

19A2 0

19A3 0

37A1 1

37B1 0

37B2 0

37B3 0

43A1 1

53A1 1

61A1 1

67A1 0

73A1 0

73A2 0

79A1 1

83A1 1

89A1 1

89B1 0

89B2 0

This is just a quick illustration of the many elliptic curve computations that SAGE can already
do. For further examples (using linear algebra, modular forms, and so on), please see the SAGE
tutorial.

SAGE is in an early stage of development, but is actively growing, and is already usable. There
is a SAGE discussion board, bug-tracker, and wish list. If you are interested in using such a system,
or in contributing in any way to its development, please visit http://sage.sourceforge.net or
email William Stein at wstein@ucsd.edu.

64


