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Abstract 

A graph is a key construct for expressing relationships among objects, such as the 

radio connectivity between nodes contained in an unmanned vehicle swarm. The study of 

such networks may include ranking nodes based on importance, for example, by applying 

the PageRank algorithm used in some search engines to order their query responses. The 

PageRank values correspond to a unique eigenvector typically computed by applying the 

power method, an iterative technique based on matrix multiplication. 

The first new result described herein is a lower bound on the execution time of the 

PageRank algorithm that is derived by applying standard assumptions to the scaling value 

and numerical precision used to determine the PageRank vector. The lower bound on the 

PageRank algorithm’s execution time also equals the time needed to compute the coarsest 

equitable partition, where that partition is the basis of all other results described herein. 

The second result establishes that nodes contained in the same block of a coarsest 

equitable partition must yield equal PageRank values. The third result is an algorithm that 

eliminates differences in the PageRank values of nodes contained in the same block if the 

PageRank values are computed using finite-precision arithmetic. The fourth result is an 

algorithm that reduces the time needed to find the PageRank vector by eliminating certain 

dot products when any block in the partition contains multiple vertices. The fifth result is 

an algorithm that further reduces the time required to obtain the PageRank vector of such 

graphs by applying the quotient matrix induced by the coarsest equitable partition. Each 

algorithm’s complexity is derived with respect to the number of blocks contained in the 

coarsest equitable partition and compared to the PageRank algorithm’s complexity. 
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These results further existing research in several ways. For instance, the practical 

lower bound on the PageRank algorithm’s execution time was previously only suggested 

using experimental results. The proof showing vertices contained in the same block of the 

coarsest equitable partition have equal PageRank values is based on relating dot products 

and Weisfeiler-Lehman stabilization, which is a much different approach than applied in 

an existing proof. The existing proof was also extended to show the quotient matrix could 

be used to reduce the PageRank algorithm’s execution time. However, its authors did not 

develop an algorithm or analyze its execution time bounds. Finally, these results motivate 

several avenues of future research related to graph isomorphism and linear algebra. 
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ON GRAPH ISOMORPHISM AND THE PAGERANK ALGORITHM
 

I. Introduction 

1.1. The PageRank Vector 
A graph is a useful construct for expressing relationships between a set of objects, 

such as the radio connectivity among nodes in an unmanned aerial vehicle (UAV) swarm. 

Some analysis tools use a measure of node centrality to rank a graph’s vertices, such as a 

UAV swarm’s nodes, by their relative importance. For instance, the PageRank algorithm 

is used in certain search engines to rank query responses [PBM+98]. 

The algorithm produces a unique eigenvector, the PageRank vector, whose entries 

equal the probability each node is visited by an object that randomly traverses the graph. 

The PageRank algorithm uses the PageRank vector, which is guaranteed to exist, to order 

a graph’s vertices, such as a UAV swarm’s nodes, according to their probability of being 

randomly visited. The results described in Chapters 3–5 reduce the time needed to obtain 

a swarm’s PageRank vector if the swarm contains nodes having equal PageRank values. 

In the context of UAV swarms, the PageRank vector can be used to identify where 

to inject a message to ensure it is efficiently disseminated among the swarm’s nodes by a 

rumor-routing protocol. In social network analysis, a PageRank vector can be used to find 

group members that are useful for efficiently spreading (mis)information. The PageRank 

vector can also be used to find roadblock locations for capturing fleeing suspects. A more 

sedate application determines which road intersections to avoid during a city’s rush hour. 

In general, the PageRank vector, which is computed by the PageRank algorithm, is useful 

for analyzing the probable behavior of some object traversing a network’s nodes, such as 

some (mis)information distributed by a rumor-routing protocol in a UAV swarm. 
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1.2. Research Motivation 
The PageRank vector often canonically orders the graph’s vertices. For example, 

the mansion graph shown in Figure 1(a) [CDR07] yields the PageRank vector shown in 

Table 1(a). Sorting the entries of this vector in descending order yields the vector listed in 

Table 1(b). The vertex ordering induced by the sorted vector is illustrated in Figure 1(b). 

The PageRank vector is unique up to graph isomorphism, where graphs are said to 

be isomorphs if their edges define equivalent relationships on their vertices. Since entries 

in the mansion graph’s PageRank vector are distinct, all mansion graph isomorphs induce 

the same vertex ordering, i.e., the canonical ordering shown in Table 1(b). For example, 

the isomorph shown in Figure 1(c) yields the sorted PageRank vector listed in Table 1(c), 

which is equivalent to the ordering listed in Table 1(b) and illustrated in Figure 1(b). 

e 

c d 

b 

a 

f 

e 

c d 

b 

a 

f 

d 

b c 

a 

e 

f 

(a) Mansion Graph (b) PageRank Order (c) Another Isomorph 

Figure 1. Mansion Graph [CDR07] 

Table 1. Mansion Graph’s PageRank Vector 

(a) PageRank Vector (b) PageRank Order (c) Isomorph’s Order 

a 0.126 

b 0.236 

c 0.195 

d 0.182 

e 0.180 

f 0.080 

0.236 b 
0.195 c 
0.182 d 
0.180 e 
0.126 a 
0.080 f 

0.236 a 
0.195 b 
0.182 c 
0.180 d 
0.126 e 
0.080 f 
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However, a PageRank vector may contain duplicate entries, which cannot induce 

a canonical ordering. The issue can be resolved in some applications, e.g., search engines, 

by sorting on other keys, such as the data’s original location. A second method is to order 

vertices of a canonical isomorph according to its PageRank vector. For instance, nauty is 

often used to determine such a canonical isomorph [McK81, McK04]. 

For example, the house graph shown in Figure 2(a) [Gol80, Gol04], which yields 

the PageRank vector listed in Table 2(a). The house graph’s canonical isomorph produced 

by nauty is listed in Figure 2(b) and yields the PageRank vector listed in Table 2(b). The 

vertex mapping, i j r s vi ,  labeled r, is mapped to the vertex v j ,→ ⇔ →  denotes vertex 

labeled s. The canonical isomorph induces the canonical ordering listed in Table 2(c) and 

depicted in Figure 2(c). The tie in PageRank value between vertices b and e, or similarly, 

vertices c and d, are broken by their relative order in the canonical isomorph. 

e 

c d 

b 

a 

e 

a b 

d 

c 

e 

a b 

d 

c 

(a) House Graph (b) Canonical Isomorph (c) PageRank Order 

Figure 2. House Graph [Gol80, Gol04] 

Table 2. House Graph’s PageRank Vector 

(a) House Graph (b) Canonical Isomorph (c) PageRank Order 

a 0.168 

b 0.244 

c 0.172 

d 0.172 

e 0.244 

1 3 a c→  ⇔  →  0.168 

2 4 b d→  ⇔  →  0.244 

3 1 c a→ ⇔  →  0.172 

4 2 d b→  ⇔  →  0.172 

5 5 e e→  ⇔  →  0.244 

0.244 d 
0.244 e 
0.172 a 
0.172 b 
0.168 c 
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1.3. Problem Statement 
The PageRank vector of many graphs, such as the mansion graph, contains unique 

entries and induces a canonical vertex ordering. In contrast, the PageRank vector of some 

graphs, such as the house graph, contains duplicate entries and cannot induce a canonical 

vertex ordering. However, graphs containing vertices that yield the same PageRank value 

suggest several methods of improving the PageRank algorithm’s performance. 

One avenue to improvement is yielded by the graph’s coarsest equitable partition, 

an invariant often used in applications that find canonical isomorphs, e.g., nauty. Vertices 

contained in the same block are adjacency-wise equivalent, or equitable, with respect to 

the vertices in other blocks and more importantly, appear to yield equal PageRank values. 

c d  , , }⎤For example, the house graph’s coarsest equitable partition is ⎡{ , } { a} , {b e  , which⎣ ⎦

is depicted using distinct shapes in Figure 3. The PageRank values yielded by the vertices 

contained in each block are [0.172, 0.168, 0.244 ,]  respectively, corresponding to Table 2. 

The first task is to show a relationship exists between PageRank values of vertices 

contained in the same block. If a relationship exists, an algorithm must be developed that 

ensures vertices contained in the same block, e.g., b and e, have equal PageRank values, 

within an arbitrary finite precision. The last task is to construct algorithms that reduce the 

execution time needed to compute the PageRank vector of such graphs. 

e 

c d 

b 

a 

Figure 3. House Graph’s 3-Block Coarsest Equitable Partition, ⎡{c d, } , {a} , {b e  }⎤,⎣ ⎦ 
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1.4. Research Goals 
The first goal is to obtain a lower bound on the PageRank algorithm’s complexity 

by applying recent work that determined its upper bound [HaK03]. The second goal is to 

establish a relationship between the coarsest equitable partition and the PageRank vector. 

The key insight is obtained by constructing a modified dot product process that performs 

1-D Weisfeiler-Lehman stabilization, which yields the coarsest equitable partition. Since 

PageRank values can be obtained by applying the power method, which is an iterated dot 

product process, vertices contained in the same block of the coarsest equitable partition 

must yield equal PageRank values. Another proof of the relationship between the coarsest 

equitable partition and PageRank vectors was developed by Boldi et al. [BLS+06]. 

The third goal is to exploit the relationship between the PageRank vector and the 

coarsest equitable partition to eliminate differences between PageRank values of vertices 

contained in the same block of the coarsest equitable partition, where such differences 

may occur if PageRank values are computed using finite numerical precision. The fourth, 

and most important, goal is to reduce the time needed to obtain the PageRank vector. The 

third and fourth goals are achieved by the three algorithms described in Chapters 4 and 5. 

The first algorithm described in Chapter 4, AverageRank, sets the PageRank value 

of every vertex to the average PageRank value of the vertices in its corresponding block. 

The second algorithm, ProductRank, reduces the time needed to find the PageRank vector 

by only computing a subset of the dot products defined in each power method iteration 

and ensures each block’s vertices have equal PageRank values. Hence, the ProductRank 

algorithm supersedes the AverageRank algorithm, since it computes the PageRank vector 

more efficiently if the graph’s coarsest equitable partition is non-discrete. 
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The third and most notable algorithm, QuotientRank, is described in Chapter 5. 

This algorithm obtains the PageRank vector by obtaining the dominant eigenvector of the 

quotient graph induced by the coarsest equitable partition. The quotient graph’s vertices 

correspond to a partition’s blocks and the edge weights denote the number of edges from 

any source block vertex to each destination block’s vertices [God93, GoR01, McK04]. 

For example, the house graph depicted in Figure 4(a) yields the coarsest equitable 

partition, ⎡{ } {c d  } ,{ , ⎤ ,a , ,  b e  }  which induces the quotient graph illustrated in Figure 4(b). ⎣ ⎦

Since vertex a is connected to vertices b and e, an edge of weight ‘2’ proceeds from block 

{a} b e}to block { , .  Similarly, vertices b and e are linked, as are vertices c and d, thus, a 

loop of weight ‘1’ is attached to blocks { , } c d} , }b e  and { , .  Every vertex in block {b e  is 

connected to a vertex in block {c d} ,,  thus, an edge of weight ‘1’ links these blocks. This 

quotient graph yields the same PageRank ordering illustrated in Table 2. 

Boldi et al. showed a quotient graph can reduce the time required to compute the 

PageRank vector, but did not construct or analyze any such method [BLS+06]. Another 

proof of that result is developed in Section 5.2. The remainder of Chapter 5 describes and 

analyzes the QuotientRank algorithm, which uses a certain quotient matrix to reduce the 

time needed to compute the PageRank vector. 

e 

c d 

b 

a 

{ }a 

1 

1 { },c d  

1 

2 

1 

{ },b e  

1 

(a) House Graph (b) Induced Quotient Graph 

Figure 4. House Graph and Its Induced Quotient Graph 
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1.5. Assumptions 
A common assumption, which is applied herein, is that each input graph is simple. 

That is, an undirected edge links two distinct vertices, and each vertex pair is linked by at 

most a single edge. For example, the house graph shown in Figure 4(a) is a simple graph. 

Conversely, the quotient graph induced by the graph’s coarsest equitable partition is often 

a weighted directed graph, as shown in Figure 4(b). The simple graph assumption is only 

applied for convenience—the results described herein can be generalized to other classes 

of graphs, such as directed graphs and weighted graphs. 

Another conventional assumption used herein is that an input graphs is connected. 

Thus, each vertex can be reached from any other vertex by traversing one or more edges. 

For example, the house graph is connected, since non-adjacent vertices can be reached by 

simply traversing two or more edges, e.g., a → → d or b → →c de .  Conversely, the 

graph depicted in Figure 5 is not connected, since it contains two connected components, 

a triangle and a square. 

f 
gb 

a 
c 

d e 

Figure 5. Non-Connected Graph 

If a graph contains n vertices, any permutation applied to the graph must contain n 

distinct elements, e.g., V ={a b c d e  , , ,  ,  } and φ = [3,2,1,4,5 . ]  Finally, any phrases such as 

“up to a permutation” or “up to isomorphism” means that the particular graph property is 

similarly permuted by a vertex permutation. For example, a PageRank vector is one such 

property, as reflected by the house graph isomorphs shown in Figure 2 and Table 2. 
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1.6. Overview 
The constructs presented in this chapter, such as the coarsest equitable partition 

and the quotient graph, are formally defined in Chapter 2, along with concepts such as the 

orbit partition. The next few sections describe the PageRank algorithm and its use of the 

power method. Chapter 2’s last section describes some related results, such as the work of 

Boldi et al., who independently established the relationship between the graph’s coarsest 

equitable partition and PageRank vector by constructing an alternate proof [BLS+06]. 

Chapter 3 begins by deriving a practical lower bound on the execution time of the 

PageRank algorithm. The remainder is devoted to establishing a relationship between the 

coarsest equitable partition and the PageRank vector. This relationship yields two simple 

methods described in Chapter 4 that improve the PageRank algorithm’s performance. The 

first, the AverageRank algorithm, eliminates PageRank value differences among vertices 

in the same block. The second, the ProductRank algorithm, decreases the time required to 

obtain a PageRank vector by computing a single PageRank value for each block. A more 

dramatic reduction is yielded by the QuotientRank algorithm described in Chapter 5, 

which lifts a PageRank vector from the quotient matrix and further extends [BLS+06]. 

As summarized in Chapter 6, these algorithms improve the PageRank algorithm’s 

performance if a graph’s coarsest equitable partition contains at least one block composed 

of multiple vertices. One section in Chapter 6 explores potential future research avenues. 

Some of these avenues include generalizing the proof relating a graph’s coarsest equitable 

partition and PageRank vector, constructing a graph library based on that generalization, 

and developing functions that improve the performance of additional linear algebra tasks 

using the techniques described in Chapters 3–5. 
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II. Background 

2.1. Ordering Nodes in Sensor Networks and Unmanned Vehicle Swarms 
A distributed sensor network (DSN) is a heterogeneous set of nodes for collecting 

data in a specified environment. Many proposed DSN applications, such as an earthquake 

detection network, may interact with infrastructure systems, e.g., moving elevators to the 

first floor [ElE04]. DSNs currently monitor glaciers [Gui05], animal species [SOP+04], 

and road traffic conditions [Tra07]. Some military applications include monitoring soldier 

health using (small!) ingested sensors or sensors sewn into uniforms [TBH+04], locating 

snipers using either fixed or helmet-mounted sensors [LNV+05, DBC+98] and detecting 

radiation [BMT+04]. 

An unmanned aerial vehicle (UAV) swarm is a heterogeneous network of mobile 

vehicles whose sensors can collect multi-dimensional data [IyB05, ZhG04]. UAV swarms 

may collaborate, e.g., by cooperatively searching a geographic area for objects matching 

some search criteria [MMP+06, Mor06, PBO03]. Related efforts include automated aerial 

refueling [Spi06], attacking targets using munitions deployed from an unmanned combat 

aerial vehicle (UCAV) [Cla00, JAU, OSD05, USA05], and decreasing payload weight by 

using more advanced sensors [Rig03]. 

A natural problem to consider involves ordering nodes based on some measure of 

st nd th relative importance. An attacker who knows the 1 ,  2  ,  …, n  most critical network node 

knows where to expend the most resources. Some related problems include finding nodes 

to facilitate spreading malicious data (in social networks, diseases or rumors), computing 

an optimal node polling order (traveling salesman), adding network services (upgrading), 

or sequencing nodes for transmission (logistics planning). 
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As described in Section 1.2, an ideal node ordering is canonical and independent 

of the node input order. Alternatively stated, if the graphs of two networks are isomorphs, 

st nd th the networks ideally yield the same 1 ,  2  ,  …, n  canonical node ordering. For example, 

a simple heuristic orders nodes based on their number of neighbors. The node linked to 

the greatest number of nodes is first, then the node linked to the second-most number of 

nodes, and so forth. However, since every node may have the same number of neighbors, 

such a node ordering is typically not canonical. Similarly, sorting the nodes based on their 

relative geographic positions also may not define a canonical ordering. Thus, more robust 

methods of ordering nodes are typically needed to obtain a canonical node ordering. 

One robust method of ordering a network’s nodes based on relative importance is 

the PageRank algorithm used in some search engines to order query responses, e.g., the 

web pages matching a user’s search criteria [PBM+98]. The PageRank algorithm perturbs 

the adjacency matrix corresponding to the original network such that the resulting matrix 

specifies the probability of visiting each node from any other node. The perturbed matrix 

satisfies the Perron-Frobenius theorem’s conditions. Therefore, the matrix yields a unique 

dominant eigenvector whose entries correspond to the probability of visiting each node. 

The PageRank algorithm orders the nodes, e.g., the query responses, based on this 

eigenvector’s entries, which correspond to the stationary distribution of the Markov chain 

defined by the perturbed adjacency matrix. Thus, the PageRank algorithm finds a unique 

vector, the PageRank vector, where a node’s PageRank value also determines its position 

in the node ordering. This ordering corresponds to the order nodes are likely to be visited 

by an object that randomly selects the next node to visit, e.g., a user who randomly surfs 

web pages or message distributed using a rumor-routing protocol. 

10
 



 

 

 

 

 

 

 

 

In the context of an unmanned aerial vehicle (UAV) swarm, the PageRank vector 

can be used to determine where to inject a message in the swarm to ensure the message is 

quickly transmitted to each node by a rumor-routing protocol. For instance, the PageRank 

vector can identify which group members are likely to disseminate (mis)information most 

efficiently. It similarly can identify good roadblock locations to capture fleeing suspects. 

A more sedate application determines intersections to avoid during rush hour. In general, 

the PageRank algorithm is applicable to any scenario that requires assessing the probable 

behavior of an object traversing the nodes in some network. 

Certain networks, however, yield a PageRank vector containing duplicate entries, 

which cannot induce a canonical vertex ordering. This occurs most often in networks that 

are not randomly constructed, i.e., networks having some pattern of regularity among its 

links between nodes. The issue can be resolved in some applications, e.g., search engines, 

by sorting on additional keys, such as web page addresses. A second method, described in 

Section 1.2, is to apply an application that produces canonical isomorphs, e.g., nauty, and 

order the canonical isomorph’s nodes using its PageRank vector [McK81, McK04]. 

Networks containing nodes that yield equal PageRank values define an interesting 

duality. First, such networks motivate using application, such as nauty, to find a canonical 

PageRank vector. Second, if a non-canonical PageRank vector suffices, which is often the 

case, such graphs also simultaneously suggest methods for decreasing the time needed to 

obtain the PageRank vector. These latter methods also eliminate some numerical errors in 

the PageRank vector. The three algorithms constructed in Chapters 4 and 5 leverage these 

ideas to improve the PageRank algorithm’s performance if a network contains nodes that 

must have equal PageRank values. 
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2.2. Deciding Isomorphism: A Classic Graph-Theoretic Problem 

2.2.1. The Relationship to Canonical Vertex Ordering 
The results described herein are obtained by applying tools used in algorithms that 

decide graph isomorphism by finding a canonical vertex order, which induces a canonical 

isomorph. Deciding graph isomorphism involves deciding if the edge sets, E1  and E2 ,  of 

two graphs, G1  and G2 ,  define equivalent links on their respective vertex sets, V1  and V2. 

For example, Figure 6 depicts two isomorphs of the triangle graph. Since the triangle is a 

complete graph, where each pair of vertices is connected, every off-diagonal entry in the 

corresponding adjacency matrices equals ‘1’, as shown in Table 3. 

A naive method of deciding graph isomorphism is to compare each permutation of 

G1  with G2. For example, a triangle has = n V  ,  and the six n! 3!  permutations, where =

vertex permutations are Φ = {[abc] ,[acb ] ,[bac] ,[bca ] ,[cab ] ,[cba ]} . All permutations of 

G1  equal G2 ,  since triangles have one unique isomorph. The number of permutations, 

Φ ,  grows exponentially in proportion to V ,  thus, this approach is generally intractable. 

b c 

a 

b 

c 
a 

(a) G1,  The Triangle (b) G2,  Twisted Rope 


Figure 6. Two Graph Isomorphs: The Triangle and Twisted Rope 


Table 3. Two Adjacency Matrix Isomorphs: The Triangle and Twisted Rope 

(a) A1,  The Triangle (b) A2,  Twisted Rope 

a b c 
a 0 1 1 
b 1 0 1 
c 1 1 0 

a b c 
a 0 1 1 
b 1 0 1 
c 1 1 0 
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2.2.2. Graph Isomorphism Applications 
Exposure to the graph isomorphism problem, denoted GI, may infect researchers 

with the isomorphism “disease” [ReC77, Gat79]. The problem is important, since it is not 

known if GI is decidable in deterministic polynomial time on arbitrary graphs. However, 

GI is decidable in polynomial time for some graphs, e.g., trees [KrS98]. If GI defines a 

new complexity class, it would imply deterministic polynomial time problems, denoted P, 

are a proper subset of non-deterministic polynomial time problems, denoted NP. Hence, 

if GI defines a new complexity class, it also implies ≠ ,P NP  a significant result currently 

worth $1,000,000 to its discoverer(s) [CMI00]. 

A classic application of algorithms that decide GI is identifying chemical isomers, 

or compounds sharing the same formula but having different atomic structures [Fau98]. 

For example, two isomers of C H F  are shown in Figure 7, which contain two atoms of 2 2 2

carbon (C), fluorine (F), and hydrogen (H), and the edges denote chemical bonds [NIS]. 

Isomers are often stored in some canonical representation to simplify their comparison. 

Another application finds a subgraph within some larger graph, e.g., finding small 

circuits in large circuits [OEG+93]. Algorithms capable of deciding isomorphism can be 

used in optical character recognition (OCR) [WaG04], to compare files [Car03, BeC06], 

or to analyze social networks patterns, such as enemy communication routes [GCM06]. A 

novel application involves guiding a UAV to replace sensor network nodes [CHP+04]. 

H F F F 
C C C C 

H F H H 
(a) 1,1-Difluoroethene (b) 1,2-Difluoroethene 

Figure 7. Two Chemical Isomers: C H  F  2 2 2
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2.2.3. A Formal Definition 
A pair of graphs, G1  and G2 ,  are isomorphs if and only if a permutation, φ, exists 

satisfying (1), where for each edge in E1,  an equivalent edge exists in E2.  For example, 

applying the permutation, φ = [2,1,3, 4 , ]  to the square’s vertices illustrated in Figure 8(a) 

confirms the square is an isomorph of the hourglass shown in Figure 8(b). In other words, 

each graph contains four vertices, where each vertex is adjacent with two other vertices, 

such that the edges define a cycle graph of length four, denoted C4. 

∃φ (V1 ) =V2 s.t. 

G1 ≅ G2 ↔ ei {vr ,vs }∈E1 ∧ vr ∈V1 ∧ vs ∈V1, (1)∀ =  

{φ ( ) φ ( )} φ ( )  φ ( )∃ =e v , v ∈E ∧ v ∈V ∧ v ∈Vj r s 2 r 2 s 2 

b 

da 

c d c 

a b 

(a) G1,  The Square (b) G2 ,  The Hourglass 

Figure 8. Two Isomorphs: The Square and Hourglass 

Equivalently, two adjacency matrices, A1  and A2 ,  are isomorphs if and only if a 

permutation matrix, P, exists satisfying (2), where PT  denotes the matrix transpose, and 

‘ ⋅ ’ denotes matrix multiplication. A permutation matrix, P, is a row permutation, φ, of the 

identity matrix, I, a square matrix whose diagonal entries equal one that otherwise equals 

zero. Thus, the row permutation orders I’s rows based on the given permutation vector, φ. 

The transpose of the permutation matrix, P, denoted PT , is equivalent to applying φ as a 

column permutation to I, i.e., ordering I’s columns with respect to φ. 

A ≅ A ↔ ∃  P s.t. A = ⋅  ⋅  PTP A  (2)1 2 2 1 
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For example, the adjacency matrices of the square and hourglass graphs depicted 

in Figure 8 are listed in Table 4, where A1 ≠ A2. The identity matrix, denoted I4 ,  is 

listed in Table 5(a). The permutation matrix, P, and its associated transpose, PT ,  listed in 

Tables 5(b) and (c), are obtained by permuting rows and columns of I4  with respect to 

the permutation, φ = [2,1,3, 4 . ]  Multiplying A1  by P yields the matrix listed in Table 6(a) 

and multiplying the result by PT  yields the matrix listed in Table 6(b). Since the matrices 

shown in Tables 4(b) and 6(b) are equal, i.e., since A = ⋅ ⋅ T ,P A P  A ≅ A2.2 1 1 

Table 4. Two Isomorphs: The Adjacency Matrices of the Square and Hourglass 

(a) A1,  The Square (b) A2 ,  The Hourglass 

a b c d 
a 0 1 0 1 
b 1 0 1 0 
c 0 1 0 1 
d 1 0 1 0 

a b c d 
a 0 1 1 0 
b 1 0 0 1 
c 1 0 0 1 
d 0 1 1 0 

Table 5. Identity Matrix and Permutation Matrices for φ = [2,1,3,4 ] 
4 T 4(a) I4 ,  Identity Matrix (b) Rows, = [ ]  (c) Columns, P = I:, 2,1,3,4 [P I 2,1,3,4 ,: ] 

1 2 3 4 
1 1 0 0 0 
2 0 1 0 0 
3 0 0 1 0 
4 0 0 0 1 

a b c d 
b 0 1 0 0 
a 1 0 0 0 
c 0 0 1 0 
d 0 0 0 1 

b a c d 
a 0 1 0 0 
b 1 0 0 0 
c 0 0 1 0 
d 0 0 0 1 

Table 6. Establishing A = ⋅ ⋅ T A ≅ AP A  P  and2 1 1 2 

(a) ⋅ (b) A = ⋅ ⋅ TP A  P A P  1 2 1 

a b c d 
b 1 0 1 0 
a 0 1 0 1 
c 0 1 0 1 
d 1 0 1 0 

b a c d 
b 0 1 1 0 
a 1 0 0 1 
c 1 0 0 1 
d 0 1 1 0 
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−1 −1A permutation, φ, has a unique inverse, denoted φ , where φi = j if and only if 

φ j = i, i.e., φi
−1, equals the position, j, of element i in φ. For example, for φ = [3, 4, 2,1,5 , ]

−1 −1 −‘1’ is in position four, thus, φ1 = 4 and φ = [4,3,1, 2,5 . ] The composition of φ and φ 1

−1 −1is commutative and yields the identity permutation, hence, φ φ  =φ ( ) = [1, 2, …, n .( ) φ ] 

One method of obtaining φ−1  is to augment φ with the identity permutation, [1, 2, …, n], 

and sort entries in φ, yielding φ, as shown in Table 7, in Θ ⋅(n log n)  time [Knu97]. 

Table 7. Computing the Inverse Permutation 

(a) M = [φ, φi ] (b) T = lex_sort_columns (M ) (c) φ−1 = T:, 2 

2 1 5 3 4 
1 2 3 4 5 

1 2 3 4 5 
2 1 4 5 3 2 1 4 5 3 

Similarly, Pr  and Pc  are pair-wise inverses: finding Pr
T and Pc

T is equivalent to 

swapping φ’s entries and positions to obtain φ−1. Thus, permuting the rows of In by φ is 

equivalent to permuting columns by φ−1,  and vice versa. Thus, Iφ , :  = I
:, φ−1  and I:, φ = I

φ−1 , :
. 

5 5 T −For example, in Table 8, Pr = I = I [ = P . Thus, φ 1  can be determined by [5,2,1,3,4 , : ] :, 3,2,4,5,1 ] c 

enumerating the column or row heading of each ‘1’ contained in Pr  or Pc.  Finally, since 

−1 T T TP 2 , = ⋅  2.= P , if A ≅ A  then A  P A  ⋅P = P ⋅A ⋅P = A1 1 2 1 

Table 8. Computing Inverse Permutation Matrices 
5 5 T 5 5 T(a) P = I = I = P  (b) P = I = I = P5,2,1,3,4 , : [ [ 3,2,4,5,1 , : r [ ] :, 3,2,4,5,1 ] c c :, 5,2,1,3,4 ] [ ] r 

1 2 3 4 5 
5 0 0 0 0 1 
2 0 1 0 0 0 
1 1 0 0 0 0 
3 0 0 1 0 0 
4 0 0 0 1 0 

5 2 1 3 4 
1 0 0 1 0  0 
2 0 1 0 0  0 
3 0 0 0 1  0 
4 0 0 0 0  1 
5 1 0 0 0  0 
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2.2.4. Canonical Isomorphs 
A useful method of deciding graph isomorphism involves computing a canonical 

isomorph of each graph, since isomorphs yield identical canonical isomorphs [McK81]. 

For example, one method of assessing if the words, logarithm and algorithm, are relative 

permutations is to search for letters of logarithm in algorithm by searching for an ‘l’ in 

algorithm, then an ‘o’, a ‘g’, and so forth, in Θ(n2 )  time. A faster method compares the 

sorted letters in each word in Θ ⋅(n log n)  time. In fact, logarithm and algorithm yield the 

same canonical isomorph, aghilmort. 

Similarly, concatenating entries by column in the upper-right triangle of a graph’s 

adjacency matrix, A, yields a binary value, denoted num (A)  [KrS98]. For example, the 

adjacency matrices listed in Tables 9(a) and (b) are from distinct house graph isomorphs. 

The shaded upper-right triangle in each matrix necessarily also must yield distinct values, 

num ( ) =1010011101 = 669 num (A2 ) =1100110101 = 821 ,A  and  respectively. The 1  2  10  2 10  

minimum canonical isomorph (MCI), denoted Aω ,  is the isomorph yielding the smallest 

binary number with respect to all isomorphs. The house graph’s MCI, given its 60 unique 

isomorphs, is listed in Table 9(c), where num (Aω ) = 00110111012 = 22110  . 

Table 9. Three Isomorphs of the House Graph’s Adjacency Matrix 

(a) A1  (b) A2 (c) Aω , MCI 

a b c d e 
a 0 1 0 0 1 
b 1 0 1 0 1 
c 0 1 0 1 0 
d 0 0 1 0 1 
e 1 1 0 1 0 

a b c d e 
a 0 1 1 0 0 
b 1 0 0 1 1 
c 1 0 0 1 0 
d 0 1 1 0 1 
e 0 1 0 1 0

 a b c d e 
a 0 0 0 1 1 
b 0 0 1 0 1 
c 0 1  0 1 0 
d 1 0 1 0 1 
e 1 1 0 1 0 
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The canonical isomorph, Aω ,  of two graphs can be obtained separately, and then 

compared in Θ n2  time, e.g., in a chemical isomer database. If the graphs are large, a ( )

hash value of the canonical isomorphs, e.g., MD5, can be used to determine if two graphs 

could be isomorphs [GHK+03]. Synonyms for the graph’s canonical isomorph include its 

certificate, lexicographic leader, or signature [Rea72, BaL83]. 

Formally, two isomorphs, (A1 ) and (A2 ) ,  and their respective permutations, 
ω ω 

P  and ( )P ,  to some canonical isomorph, ,  share the relationships illustrated by ( )1 ω 2 ω 
Aω

the permutation triangle shown in Figure 9. The solid lines denote explicit relationships, 

(  ) ≅ A  and (  ) ≅ A , P P ,  respectively. The dashed line A A yielded by ( 1 ) and ( 2 )1 ω 2 ωω ω ω ω 

denotes the implicit relationship, (A1 ) ≅ (A2 ) , yielded by (A1 ) ≅ Aω ≅ A2 .( )  ω ω ω ω 

There are other canonical isomorphs exist, like the maximum canonical isomorph, 

but the canonical isomorph of choice is the MCI, if only for standardization [KrS98]. The 

MCI has many other useful properties. For example, the graph’s MCI also identifies the 

graph’s maximum independent set (MIS), or equivalently, the maximum clique (MC) of 

the graph’s complement [BaL83, KrS98]. 

ω 

ωA

1A 2A 

A1 
T = 2 ⋅ P TP ⋅ ⋅  P 2A = ( )1 ( )P1 Aω ( ) ⋅A2 ( )ω ω ω ω 

T def T 
= A ⋅ 1 ω 6 ( ) ( )  P2 ω

⋅ 
ω 

2 = P ⋅ P 
ω

A ( )P ⋅ ( )P T A ( ) ⋅A ( )1 1 ω ω P1 2  = P1 2 ω ω 2 

P 
def 

P 
ω 

T 

ω 
= ( ) ( )  ⋅ P2 16 1 2 

TA1 = P261 ⋅A2 ⋅P261 

= P ⋅ ⋅  PTA A2 162 1 162 

Figure 9. Canonical Isomorph’s Permutation Triangle 
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2.3. Vertex Partitions 
A common method for finding a graph’s canonical isomorph is based on pruning a 

search tree using the process described in Section 2.3.4. However, it is first necessary to 

define tools used in that search process, namely, certain specific disjoint vertex partitions. 

Vertex partitions can be constructed in many ways, where such partitions are used 

to prune the solution space of various problems, e.g., determining a canonical isomorph. 

For instance, a readily obtained vertex partition is the degree partition, in which vertices 

are grouped based on their number of immediate neighbors. For some graphs, the degree 

partition is an equitable partition, where vertices contained in each block have the same 

number of neighbors with respect to each of the partition’s blocks. Although the degree 

partition is often not equitable, it is often used as the seed partition to initialize the search 

for more refined vertex partitions, such as the coarsest equitable partition. 

If vertices are initially placed in the same block, the coarsest equitable partition is 

the most refined partition that can be obtained if the neighbors of every vertex are known. 

The coarsest equitable partition of some graphs corresponds to their orbit partition, which 

can be obtained using a pruning process similar to that used to find canonical isomorphs. 

However, the coarsest equitable partition can be computed in deterministic polynomial 

time whereas finding the orbit partition may require exponential time. 

Significant attention is devoted to how a coarsest equitable partition is obtained to 

facilitate relating that partition to the dot product and PageRank vector. The relationships 

are established in Chapter 3 by relating the process of multiplying entries in a matrix row 

to sorting a row’s entries. The coarsest equitable partition and its induced quotient graph 

are leveraged in Chapters 4 and 5 to improve the PageRank algorithm’s performance. 
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Given an arbitrary graph, G ( , ,  a partition, B, is a set of blocks containing= V E ) 

1 v2 , n } thenvertices in V such that the union of the blocks equals V. Thus, if V = {v , ,… v , 

= {b b2 …, k }, where b ⊆V  and m
i = . A partition is proper if block pairs areB 1, ,  b i ∪ b V

i=1 

disjoint, i.e., bi ∩ =∅  bj , i ≠ j, where a disjoint union is denoted = 1 � b2 � "∪� =V b  ∪ ∪  bk B  . 

A unit partition contains one that equals V, where B = {V}. Given a partition, Bi , 

a refinement is an operation yielding some partition, Bi+1, where each block contained in 

a partition, B +  is a subset of some block in Bi . For example, if B ={{ , ,} {c d  , }},a b  theni 1 i

{a b} { } , {d}}  is a refinement of B  However, B = {{ , ,  ,  dB = { , ,  c i . a b c} { }} cannot bei+1 i+1 

a refinement of Bi , since block { , , } is not a subset of block { , } or block {c d, }.a b c a b

An ordered partition, denoted B = [ , ,…,b , induces a block order such thatb b  ]1 2 k 

the relative order of each block’s vertices is maintained in any future partition refinement. 

For example, if B = ⎡  a b, , ,  ⎤ , B = ⎡ , ,  d , c ⎦⎤  maintains the relative block i ⎣{ } {c d  }⎦ i+1 ⎣{a b} { } { } 

order with respect to block Bi .  However, Bi+1 = ⎡⎣{d} , {c} , { , }⎤a b  ⎦  does not maintain the 

block order with respect to block Bi , since block {a b} c d},  is located before block { ,  in 

block Bi .  Each partition is assumed to be proper, i.e., disjoint, and ordered. 

A discrete partition is maximally refined, where every block contains one vertex, 

e.g., B = ⎡{d} , {c} , {a} , {b}⎦⎤ . A discrete partition induces a vertex permutation that also i ⎣ 

induces isomorph of the input graph. Finding canonical discrete partitions is a key goal in 

many applications that produce canonical graph isomorphs, e.g., nauty [McK81]. 
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The maximal set of ordered vertex partitions yields a partition tree. The root node 

is the coarsest possible partition, the unit partition, where each descendant is a refinement 

of its ancestor partition. Partitions along a path in this search tree retain vertices in their 

block-relative order. Every leaf node is an ordered discrete partition, where the number of 

leaf partitions corresponds to the number of vertex permutations, V !. 

For example, the unit partition of a 3-vertex graph is ⎡{a b c, ,  }⎤ , the root node of⎣ ⎦

the corresponding partition tree shown in Figure 10. The root node’s descendants are the 

smallest possible refinements of the graph’s unit partition, where the blocks are ordered 

by the number of vertices contained in each block. The leaves are the discrete partitions 

corresponding to the six possible vertex permutations of a 3-vertex graph. For instance, 

⎡{a} , {b} , {c}⎦⎤ and ⎡{c} , {b} , {a}⎤⎦  correspond to the permutations, [1, 2,3]  and [3, 2,1 , ]⎣ ⎣ 

respectively. The performance yielded by nauty, and most methods, that find a canonical 

isomorph, is obtained by dramatically pruning the number of nodes in the vertex partition 

tree using information yielded by the graph’s edges. 

{ }, ,a b c⎡ ⎤⎣ ⎦ 

⎡ a , ,b c  ⎤ ⎡ b , , ⎤ ⎡ c , , ⎤⎣{ } { }⎦ ⎣{ } { a c  }⎦ ⎣{ } {a b  }⎦ 

⎡ b , a , c ⎤ ⎡ b , c , a ⎤⎣{ } { } { }⎦ ⎣{ } { } { }⎦ 

⎡ a , b , c ⎤ ⎡ a , c , b ⎤ ⎡ c , a , b ⎤ ⎡ c , b , a ⎤⎣{ } { } { }⎦ ⎣{ } { } { }⎦ ⎣{ } { } { }⎦ ⎣{ } { } { }⎦ 
Figure 10. Vertex Partition Tree of an Arbitrary 3-Vertex Graph 
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2.3.1. The Degree Partition 
There are many methods exist for pruning an arbitrary graph’s partition tree. One 

method is to group vertices by their degrees, or number of neighbors, denoted deg (vr ) , 

. The degree sequence is anwhere v V , e = v ,v }∈E, and deg (v = vr ∩ ei , i ≤ Er ∈ i { r s r ) 

example of a graph invariant, i.e., isomorphs have the same degree sequence. Similarly, 

isomorphs contain an equal number of vertices and edges, i.e., V1 = V2 and = .E1 E2 

Thus, one method of checking if two graphs may be isomorphs is to compare the 

number of vertices and edges each graph contains and their degree sequences. Formally, 

an invariant is a property, ψ ,  isomorphs must share, for instance, V1 = V2 and =E1 E2 

if G1 ≅ G2.  Conversely, a complete, or sufficient, invariant is an invariant that completely 

decides graph isomorphism, such as a canonical isomorph. 

The degree sequence is often used to determine two graphs cannot be isomorphs. 

For example, the house graph and the complete graph, K5 ,  shown in Figure 11 cannot be 

isomorphs, since they yield two different degree sequences, [2,2,2,3,3]  and [4,4,4,4,4 , ]

respectively. The house graph and K5  similarly have distinct degree partitions, which are 

{ , ,  } , {b e  , ⎤ ⎡{a b c d  e  , , ,  ,  ⎤ ,  respectively. ⎡ a c d  }⎦  and }⎣ ⎣ ⎦

eb 

a 

e 

c d 

b 

a 

c d 

(a) G1,  House Graph (b) G2 = K5
 

Figure 11. Two Graphs Yielding Different Degree Sequences
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However, certain non-isomorphic graphs yield identical sorted degree sequences. 

For example, the house graph and the complete bipartite graph, K2,3 ,  shown in Figure 12 

yield the same sorted degree sequence, [2,2,2,3,3 ,]  which yield the degree partitions, 

a c d  }⎦  and ⎡ c d e  a b  ,  respectively. However, simple visual inspection ⎡{ , ,  } , {b e  , ⎤ { , ,  } , { , }⎤⎣ ⎣ ⎦

reveals these two graphs are not isomorphs. Two non-isomorphic graphs having the same 

value with respect to an arbitrary invariant are said to be a devil’s pair [Ros00]. Thus, the 

house graph and K2,3  are a devil’s pair with respect to the sorted degree sequence. 

Degree sequences have a more elementary shortcoming. Ideally, a graph invariant 

uniquely labels each vertex and induces a canonical vertex ordering. However, if V ≥ 2, 

it is impossible to uniquely label the vertices using the degree sequence, since at least two 

vertices have equal degrees. First, a connected graph on n ≥ 2 vertices has a degree range 

of [1, n −1 . ]  By the pigeonhole principle, at least two vertices must have the same degree, 

since the range only contains n −1  distinct values, whereas the graph contains n vertices. 

Therefore, at least one block in the degree partition contains two or more vertices, which 

precludes obtaining a discrete partition that induces a canonical vertex ordering. A similar 

approach generalizes this proof to disconnected graphs. 

e 

c d 

b 

a 

e 

c d 

b 

a 

(a) G1,  House Graph (b) G2 = K2,3 
  

Figure 12. Devil’s Pair for the Sorted Degree Sequence
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2.3.2. The Equitable Partitions 
An equitable partition is an extension of the degree partition, since every vertex 

contained in the same block of an equitable partition yields the same degree. However, an 

equitable partition adds the criterion that vertices in the same block have an equal number 

of neighbors with respect to any block in the partition, including their own block. Thus, 

an equitable partition extends the concept of vertex degrees to block degrees, where given 

an equitable partition, B, and an arbitrary pair of blocks, b b, ∈S,  each vertex contained i j 

in bi  has an equal number of neighbors contained in bj ,  and vice versa. 

Given an arbitrary graph, G ( , ) , a partition, B, is determined to be equitable = V E

by applying the vertex neighborhood, denoted N v  , ∈( ) where v V  and N v  = deg (v). 

The neighborhood of an arbitrary vertex, v, is its set of adjacent vertices, where [KrS98] 

{ V : , . (3) 

( )  

N v( ) = u ∈ {u v  }∈E} 

b b2 b ] ≤ ≤  =Therefore, an arbitrary partition, B = [ 1, ,…, k , 1  k n, where n V  ,  is equitable 

with respect to G, if for all i and j, 1 ≤ i j, ≤ k, and for all , ∈bi ,u v  

N u  ∩b = N (v)∩bj . (4) 

Given two vertices, u and v, contained in an arbitrary block, bi , u and v have the 

same number of neighbors in any block, bj , including the case, i = j.  However, vertices 

u and v do not have to share the same neighbors in each block, only the same number of 

neighbors. The number of neighbors may differ across blocks, i.e., it is not required that 

N u( )∩bj 

( ) j 

= N ( )∩ ku b , j ≠ k or N v( )∩bj = N v( )∩bk , j ≠ k. Thus, it is acceptable 

if N u  ∩b ≠ N u  ∩b and N v  ∩b ≠ N v  ∩b .( )  j ( )  k ( ) j ( ) k 
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For example, the house graph shown in Figure 13(a) yields the ordered partition, 

⎡{a c d  , ,  } , { , ⎤ . This partition is not equitable, since vertices c and d are each adjacentb e  }⎣ ⎦ 

to one vertex in block { , ,  whereas vertex a is a neighbor of both vertices contained in b e}

block {b e} A second reason this partition is not equitable is that block { , , }, . a c d  contains 

two adjacent vertices, c and d, whereas vertex a is not adjacent to any vertex contained in 

block { , , } Thus, the vertices contained in the block, {a c d  } ,  do not share an equala c d  . , ,

number of neighbors with respect to any of the blocks contained in this partition. 

Conversely, the graph, K2,3 ,  depicted in Figure 13(b) yields the degree partition, 

, a b  }⎡{c d e  , ,  } { , ⎤ . This partition is equitable, since the vertices in each block are adjacent ⎣ ⎦ 

to all vertices in the other block, but none of the vertices in their own block. The graph, 

K5 ,  shown in Figure 13(c) similarly yields the equitable degree partition, { , , ,  ,  }⎡ a b c d e ⎤ .⎣ ⎦ 

The graph, K5 ,  is 4-regular, where vertices in a k-regular graph have k neighbors. 

Thus, the degree partition of an arbitrary k-regular graph is also equitable. Moreover, the 

degree partition of an arbitrary k-regular graph equals its unit partition. However, the unit 

and degree partition of most graphs are not equitable, e.g., the house graph. 

e 

c d 

b 

a b 

c e 

a 

d 

e 

c d 

b 

a 

(a) G1,  House Graph (b) G2 = K2,3  (c) G3 = K5 

Figure 13. Exploring Equitable Partitions 

25
 



 

  
 

 

 

 

   

2.3.3. The Coarsest Equitable Partition 
Fortunately, given an arbitrary graph and an arbitrary initial partition, a specific 

equitable partition is always guaranteed to exist. The coarsest equitable partition is the 

most refined partition that can be obtained using only the information that is derived from 

the neighbors of each vertex. The coarsest equitable partition is a key tool used to prune 

the partition tree while finding a canonical isomorph. For instance, on nearly all random 

graphs, the coarsest equitable partition is a discrete partition. Thus, the coarsest equitable 

partition of most random graphs prunes the partition tree to a single leaf, which induces a 

canonical vertex ordering. The results described in Chapters 3–5 establish the PageRank 

vector can be obtained more efficiently if the coarsest equitable partition is non-discrete, 

i.e., contains blocks composed of multiple vertices. 

For example, the mansion graph shown in Figure 14(a) yields the discrete coarsest 

equitable partition, ⎡{b} , { f } , {c} , {e} , {d} , {a}⎤ , and induces the canonical vertex order⎣ ⎦

illustrated in Figure 14(b). Conversely, the house graph shown in Figure 14(c) yields the 

⎡ , } { } { ,  which cannot induce a canonical order. coarsest equitable partition, {c d  , a , b e  , }⎤⎣ ⎦

The results described in Chapters 4 and 5 improve the PageRank algorithm’s performance 

on graphs whose coarsest equitable partition is non-discrete, such as the house graph. 

e 

c d 

b 

a 

f 

e 

c d 

b 

a 

f 

e 

c d 

b 

a 

(a) G1,  Mansion Graph (b) Canonical Ordering of G1  (c) G2 ,  House Graph 

Figure 14. Coarsest Equitable Partitions and Canonical Orderings 
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2.3.3.1. A Formal Method 
The method described in this section for finding the coarsest equitable partition is 

derived from the definition of an equitable partition (4) and restated here for convenience. 

Given some partition, B = [ 1, ,2 …,bk ],1  k n, a partition is equitable with respect to b b  ≤ ≤  

an arbitrary graph, G ( , ) ,  if for all i and j, 1 ≤ i j, ≤ k, and for all u v, ∈b= V E i ,  [KrS98] 

N u  b  = N v  b  , (5)( )∩ j ( )∩ j 

and ( ) .N u  denotes a set containing the neighbors of vertex uwhere n V=

A simple method of satisfying this definition and computing the coarsest equitable 

partition is to proceed as follows. Given an arbitrary partition, such as the unit partition, 

select an arbitrary block in the partition containing two or more vertices. Then, select the 

first vertex in the block and identify the number of neighbors of that vertex relative to all 

blocks in the partition. Repeat this process for all vertices contained in the block. Vertices 

yielding the same number of neighbors with respect to every block, or identical sorted 

block degree sequences, are split into unique blocks. If the selected block cannot be split, 

repeat the process for all blocks containing multiple vertices until some block splits. A 

split block is ordered with respect to the vertex degree and block size in either ascending 

or descending order. If none of the blocks split after some iteration of this process, the 

vertex partition has stabilized to the coarsest equitable partition (5). 

This naive partition refinement algorithm’s execution time has an upper bound of 

3 =Ο( )n ,  where n V  [KaS83, PaT87]. If a graph is stored as a set of adjacency lists, the 

algorithm’s upper bound is Ο(m n , where m = E .  This algorithm’s key contribution is ⋅ ) 

as an easily described method of finding the graph’s coarsest equitable partition. 
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For example, the unit partition yielded by the house graph shown in Figure 15(a) 

is ⎡{a b c d e, , ,  ,  }⎤ . Thus, the first block containing more than one vertex is the unit block, ⎣ ⎦ 

{a b c d e  , , } .  Three vertices, { , , }  are adjacent to two vertices in block { , , ,  , }, ,  a c d  , a b c d e  , 

whereas two vertices, {b e}  are adjacent to two vertices in block { , , ,  , }, , a b c d e  .  Thus, the 

refined partition yielded by this step, after ordering by the vertex degree and the number 

of elements contained in the resulting blocks, is ⎡⎣{a c d  , ,  } { , }⎤⎦ The degree partition is, b e  . 

illustrated using unique shapes in the graph shown in Figure 15(b). 

Another iteration must be performed to assess if the current partition is stable. The 

first block, { , , }a c d  ,  contains multiple vertices where vertex a contains zero neighbors in 

block { , , , .  Conversely, vertices c and d each have a c d} and two neighbors in block {b e}

one neighbor in block { , , } and one neighbor in block {b e}a c d  ,	 , . Thus, a new partition is 

obtained, ⎡ a , ,c d  , b e  , ⎤ ,  as shown using unique shapes in Figure 15(c). Performing ⎣{ } { } { }⎦

a third iteration confirms the partition is stable, i.e., no more block refinement will occur. 

⎣ a } { , }⎦⎤Hence, the house graph’s coarsest equitable partition is ⎡{ } , ,{c d  , b e  . 

e 

c d 

b 

a 

e 

c d 

b 

a 

e 

c d 

b 

a 

(a) House Graph	 (b) Degree Partition (c) Coarsest Equitable Partition 

⎣{ }⎦ ⎣{ , ,  } { , }⎦ ⎣{ } {c d  } {b e  }⎤⎦⎡ a b c d e, , ,  ,  ⎤ ⎡ a c d  , b e  ⎤ ⎡ a , ,  , ,  

Figure 15. Method 1: Finding the House Graph’s Coarsest Equitable Partition 
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2.3.3.2. A Fast Method 
More efficient methods exist for computing the coarsest equitable partition, e.g., 

the algorithm described by Cardon and Crochemore [CaC82]. Paige and Tarjan suggested 

a simpler algorithm [PaT87] described more extensively by Kreher and Stinson [KrS98]. 

2The method’s upper bound is Ο(n ⋅ log n and reduces to Ο( m n) ⋅ log n) if a graph is) ( + 

stored in sparse form, where n V=  and m = E  [BLS+06]. The key data structures are: 

• the current vertex partition, B, 
• a test vertex set, U, 
• a test block set, S, and 
• a block set, Z, 

where Z is ordered on the number of vertices in a test block, s S , that are neighbors ofi ∈

⊆ , is said to 

be equitable after the potential test block set, S, has been emptied. 

The algorithm listed in Figure 16 is a commented variant of Kreher and Stinson’s 

method [KrS98]. The unit partitions for B and S are created on lines 2–4. The main loop 

is entered on line 5 and iterates until the test block set, S, is empty. A test block, s S, is 

vertices contained in blocks of the partition, B, where s U .  The partition, B

∈

selected on line 7 and its vertices are checked for validity on line 9 by assessing if s U .⊆ 

If all vertices in s are valid, they are compared to each non-discrete block, b B, bii ∈ > 1.  

The number of vertices in s adjacent to the vertices in block bi  are stored in the 

block set, Z, as shown on lines 14–21. If Z contains two or more disjoint sub-blocks of 

block b , i.e., if {z ∈ Z : z ≠  ∅  } ≥ 2,  block bi  is subsequently replaced by those i j=1,2, …n−1 j 

sub-blocks, z j=1,2, …n−1 ∈ Z : z j ≠ ∅  ,  on lines 24 and 25. The sets of potential test blocks, S, 

and valid test vertices, U, are updated on lines 7–10 and lines 26–29. 
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1. findCoarsestPartition (G n),
2. # create initial unit partitions 
3. B ←{1, 2, …, n} 
4. S ← ⎡{1, 2, …, n}⎤⎣ ⎦ 
5. while S ≠ ∅  
6. # remove arbitrary unprocessed test block, s 
7. s ← S1 

8. S ← − sS 
9. if s U⊆ 

10. U ← − sU 
11. # initialize tracking sets for number of neighbors in block 
12. Z = [z , ,…, z ,z ] z =∅1 2 n−1 j 

13. # iterate over blocks in current partition 
14. foreach block b i ∈B, bi, >1 
15. # iterate over each vertex in current block, bi ∈B 
16. foreach vertex v ∈bi , bi, >1 
17. # compute number of neighbors of v in test block, s 

getNeighborhood (v)∩ s18. d = 

19. # assign v  to vertex set, zd , with same number of neighbors 
20. zd = ∪  d vz 
21. end foreach 
22. # if block list, Z , contains multiple non-empty blocks, update 

23. if {z ∈Z : z ≠ ∅} >1j=1,2, …,n−1 j 

24. # replace old block, bi ,  with neighbor-degree ordered blocks in Z 
⎡b b  i− 1 b ,…,25. B = 1, ,2 …,b 1, z1, z2 ,…, zn− , i+1,bi+2 bk B  

⎤ , z ≠ ∅j=⎣ ⎦ 
26. # append blocks in neighbor lists, Z , to potential block list, S 
27. S S= ∪ Z 
28. # append vertices in neighbor lists, Z , to valid vertex list, U 
29. 1,2, , 1 ,i n jU U  z  Z  z= −= ∪  ∈  … ≠ ∅ 

30. end if 
31. end for 
32. end if 
33. end while 
34.  return B 
35. end findCoarsestPartition
 

Figure 16. Method 2: Fast Algorithm for Finding Equitable Partitions [PaT87, KrS98] 
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Applying the algorithm to the house graph illustrated in Figure 17 yields the data 

structures listed in Table 10, where the vertex set, U, is not listed, since each block placed 

in S is valid. The final refinement occurs when bi = b e  and s = , ,{ , } {a c d  } ,  which again 

shows the house graph’s coarsest equitable partition is ⎡⎣{a} { } { , }⎤⎦, ,c d  , b e  . 

e 

c d 

b 

a 

e 

c d 

b 

a 

e 

c d 

b 

a 

(a) House Graph	 (b) Iteration 1 (c) Coarsest Equitable Partition 

⎣{ }⎦ ⎣{ , ,  } { , }⎤⎦ ⎣{ } {c d  } {b e  }⎤⎦⎡ a b c d e, , ,  ,  ⎤ ⎡ a c d  , b e  ⎡ a , ,  , ,  

Figure 17. Method 2: Finding the House Graph’s Coarsest Equitable Partition 

Table 10. Method 2: Finding the House Graph’s Coarsest Equitable Partition 

i ib B s S Z 

1 { }, ,  ,  ,a b c d e  { }, ,  ,  ,⎡ a b c d e ⎤⎣ ⎦ 
{ }, ,  ,  ,a b c d e  { }, ,  ,  ,⎡ a b c d e ⎤⎣ ⎦ 

{ } 
{ } 

2 , , 

3 , 

a c d  

b e  

=⎡ ⎤ 
⎢ ⎥ 

=⎢ ⎥⎣ ⎦ 

2 { }, ,a c d  { } { }, ,  ,  ,a c d  b e  ⎡ ⎤⎣ ⎦ 
{ }, ,a c d  

{ } { }, ,  ,  ,a c d  b e  ⎡ ⎤⎣ ⎦ 
{ } 
{ } 

0 

2 , 

a 

c d  

=⎡ ⎤ 
⎢ ⎥ 

=⎢ ⎥⎣ ⎦ 

3 { , }b e  { } { } { }, ,  ,  ,a  c d  b e  ⎡ ⎤⎣ ⎦ { } { } { }, ,  ,  ,b e  a  c d  ⎡ ⎤⎣ ⎦ { }2 ,b e=⎡ ⎤⎣ ⎦ 

4 { },c d  
{ , }b e  { } { }c d  ⎡ ⎤a , ,

{ }1 ,c d=⎡ ⎤⎣ ⎦ 

5 { , }b e  
⎣ ⎦ 

{ }0 ,b e=⎡ ⎤⎣ ⎦ 

6 { },c d  
{ } { } { }c d  b e  ⎡ ⎤a { }a { }⎡ c d  ⎤ 

{ }0 ,c d=⎡ ⎤⎣ ⎦ 

7 { , }b e  
, ,  ,  ,⎣ ⎦ ,⎣ ⎦ 

{ }2 ,b e=⎡ ⎤⎣ ⎦ 

8 { },c d  
{ }c d  [ ] 

{ }1 ,c d=⎡ ⎤⎣ ⎦ 

9 { , }b e  
,

{ }1 ,b e=⎡ ⎤⎣ ⎦ 
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2.3.3.3. A Facile Method 
The third and final algorithm for computing a graph’s coarsest equitable partition, 

1-dimensional (1-D) Weisfeiler-Lehman stabilization, has been repeatedly discovered and 

is described most extensively by Weisfeiler and Lehman [Wei76, ReC77, CFI92, Bas02]. 

This stabilization method can also be used in many contexts, e.g., 1-D Weisfeiler-Lehman 

stabilization is used in Chapter 3 to establish vertices contained in the same block of the 

graph’s coarsest equitable partition must have equal PageRank values. 

All vertices are first labeled by its degree, as shown on line 3 in Figure 18. These 

labels are augmented with their sorted neighbor labels and replaced by shorter labels to 

conserve memory, as shown on lines 9–11. The labeling process iterates until the labels 

are unchanged with respect to consecutive iterations, i.e., if the old partition, S, equals the 

new partition, B, on line 7. The stabilized partition, B, is the coarsest equitable partition. 

1. findCoarsestPartition (G n),
2. # initialize labels to vertex degrees and partition 
3. Zr ← deg (v  v V  r ) , r ∈ 

4. B ← ⎡  {1, 2, …, n}⎤⎣ ⎦ 
5. S ←∅  

6. # iterate until sorted vertex labels stabilize 
7. while S B≠ 

←8. S B
9. Z ← Zr , sort  ({ s : ( r , )∈E})⎤ r 

⎡ Z  v v  s⎣ ⎦ 
10. Z ← getUniqueLabels (Z )r r 

11. Bi { r : r = }← v Z  i
12. end while 

13.  return B 
14. end findCoarsestPartition 

Figure 18. Method 3: 1-D Weisfeiler-Lehman Stabilization 
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For example, the house graph yields the degree labels and neighbor labels shown 

in Figures 19(a) and (b), respectively. Shorter unique identifier labels are assigned to each 

vertex, as shown in Figure 19(c). In this example, no more partition refinement occurs if 

the vertex labels are augmented with the sorted neighbor labels, as shown in Figure 19(d). 

Repeating the process only yields replicates of the graphs shown in Figures 19(c) and (d). 

Thus, the house graph’s coarsest equitable partition is ⎡{c d, ,  a , b e  , ⎤ .⎣ } { } { }⎦ 

3 

2 2 

3 

2 

3,2,2,3 

2,2,3 2,2,3 

3,2,2,3 

2,3,3 

3 

1 1 

3 

2 

3,1,2,3 

1,1,3 1,1,3 

3,1,2,3 

2,3,3 

(a) Degree Labels (b) Adjacent Labels (c) Shorter Labels (d) Stable Labels 

Figure 19. Method 3: 1-D Weisfeiler-Lehman Stabilization Example 

Hence, 1-D Weisfeiler-Lehman stabilization refines the unit partition to the degree 

partition, as depicted in Figures 20(a) and (b), respectively. Sorting the adjacent labels of 

every vertex and appropriately assigning distinct labels until stabilization occurs produces 

the coarsest equitable partition, e.g., ⎡{ , } , { a} , {b e  }⎤ ,c d  ,  as illustrated in Figure 20(c). ⎣	 ⎦

e 

c d 

b 

a 

e 

c d 

b 

a 

e 

c d 

b 

a 

(a) House Graph	 (b) Degree Partition (c) Coarsest Equitable Partition 

⎡{a b c d e} { } { , } { } { } {b e  }, , ,  ,  ⎤ ⎡ a c d  , ,  ,  b e  ⎤ ⎡ c d, , a , , ⎤⎣ ⎦ ⎣ ⎦ ⎣	 ⎦ 

Figure 20. Method 3: Finding the House Graph’s Coarsest Equitable Partition 
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1-D Weisfeiler-Lehman stabilization can also be readily illustrated using matrices. 

For example, the adjacency matrix of the house graph is depicted in Table 11(a). Sorting 

the entries by row, from left to right, yields the matrix shown in Table 11(b). Assigning a 

shorter, but similarly unique, label to each of the sorted rows yields the labels shown in 

Table 12(a), where these labels correspond to the degree partition. Repeating the process 

using these shorter labels yields the matrices shown in Tables 12(b) and (c), respectively. 

Repeating the process yields the matrices listed in Tables 12(d)–(f ) and future iterations 

c d  , , }⎤also yield the same partition, i.e., the coarsest equitable partition, ⎡{ , } {a} , {b e  .⎣ ⎦ 

Table 11. The House Graph’s Adjacency and Sorted Degree Matrices 

(b) sort ( A)(a) A 

a b c d e 
a 0 1 0 0 1 
b 1 0 1 0 1 
c 0 1 0 1 0 
d 0 0 1 0 1 
e 1 1 0 1 0 

sorted left to right 
a 0 0 0 1  1 
b 0 0 1 1  1 
c 0 0 0 1  1 
d 0 0 0 1  1 
e 0 0 1 1  1 

Table 12. Method 3: 1-D Weisfeiler-Lehman Stabilization of the House Graph 

(a) Degree Labels (b) Sorted Labels I (c) Shorter Labels I 

a 1 

b 2 

c 1 

d 1 

e 2 

c 1 1 2 

d 1 1 2 

a 1 2 2 

b 2 1 1 2 

e 2 1 1 2 

c 1 

d 1 

a 2 

b 3 

e 3 

(d) Unique Labels (e) Sorted Labels II (f ) Shorter Labels II 

a 2 

b 3 

c 1 

d 1 

e 3 

c 1 1 3 

d 1 1 3 

a 2 3 3 

b 3 1 2 3 

e 3 1 2 3 

c 1 

d 1 

a 2 

b 3 

e 3 
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The coarsest equitable partition is unique up to a block permutation. For example, 

applying the methods described in Sections 2.3.3.1 or 2.3.3.2 to the house graph yields 

⎡{ } , ,{c d  } ,{ , }⎦ . Blocks { } ,a  b e  ⎤ a  and {c d}  exchange positions if 1-D Weisfeiler-Lehman ⎣ 

stabilization is applied, yielding ⎡{ , } ,{ } ,{ , }⎦ . To avoid this issue, the same method c d  a b e  ⎤⎣ 

should be used to compute the coarsest equitable partition throughout an application. 

Each iteration of 1-D Weisfeiler-Lehman stabilization requires sorting n vectors of 

length n and finding shorter labels for each vector, where each step is Ο(n2 ⋅ log n). Since 

up to log 2 n
2  iterations are required to achieve stabilization, e.g., for path graphs [Bas02], 

the upper bound is Ο n2 ⋅ log n ⋅ log n2 . This bound reduces to Ο  ⋅ ⋅  log n ⋅ log n  if a ( ) (d n  2 ) 

graph is stored using adjacency lists, where d = max (deg (vi )) [Bas02]. 

The method described in Section 2.3.3.2 for finding a coarsest equitable partition 

is more efficient, since its upper bound is merely Ο(n2 ⋅ log n).  Thus, Weisfeiler-Lehman 

2 2 2 22 ⋅ ⋅  n log stabilization is slower by a factor of ( n log ⋅ n ) (n ⋅ log n) = ⋅2 log n = ⋅4 log n 

with respect to the more efficient method. However, 1-D Weisfeiler-Lehman stabilization 

is simpler to describe and easier to implement correctly [PaT87]. 

Moreover, the similarity between performing 1-D Weisfeiler-Lehman stabilization 

and performing matrix multiplication yields the proof contained in Chapter 3 establishing 

a relationship between the coarsest equitable partition and dot product. Finally, the proof 

yields three progressively sophisticated methods of improving the PageRank algorithm’s 

performance, as described in Chapters 4 and 5. These methods improve certain numerical 

properties of the PageRank vector and the latter two methods reduce execution time. 
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2.3.4. The Orbit Partition 
The orbit partition is obtained by separating the graph’s set of permutations into 

two disjoint classes: isomorphisms and automorphisms. An isomorphism is a permutation 

yielding a distinct isomorph, where one or more edges receive new labels. Conversely, an 

automorphism is a permutation yielding the original graph, i.e., edges retain their original 

label. If an isomorphism is applied, the associated adjacency matrices are different, but if 

an automorphism is applied, the adjacency matrices are identical. 

For example, applying the permutation, φ1 = [2,1,3, 4 , ]  to the square illustrated in 

Figure 21(a) yields the isomorph shown in Figure 21(b), which is also unique, since some 

a d ,edges receive different labels, e.g., edges { , } and {b d} ,  respectively. Conversely, the 

automorphism illustrated in Figure 21(b) yields an isomorph with the same edge labels. 

The same effect is observed in Table 13, where the square’s and the isomorph’s adjacency 

matrices differ, but the square’s and the automorph’s adjacency matrices are identical. 

a bd cd b 

b ac dc a 

(a) The Square, G (b) An Isomorph of G (c) An Automorph of G 

φ1 = [2,1,3, 4 ] φ2 = [3, 4,1, 2 ] 
Figure 21. Isomorph and Automorph of the Square 


Table 13. Isomorph and Automorph of the Square 


(a) A (b) A1 =φ[2,1,3,4 ] (A) (c) A2 =φ[3,4,1,2 ] ( )A

 a b c d 
a 0 1 0 1 
b 1 0 1 0 
c 0 1 0 1 
d 1 0 1 0 

b a c  d 
b 0 1 1 0 
a 1 0 0 1 
c 1 0 0 1 
d 0 1 1 0 

c d a b 
c 0 1 0 1 
d 1 0 1 0 
a 0 1 0 1 
b 1 0 1 0 
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All graphs yield the trivial automorphism, or identity permutation, φ = [1, 2, …, n] . 

Most automorphisms send some vertices to another, albeit logically equivalent, position. 

If an arbitrary vertex, u, is sent to another vertex, v, by some number of automorphisms, 

an equal number of automorphisms send v to u, where such vertices are in the same orbit. 

The orbit partition is the disjoint equitable vertex partition listing the graph’s orbits. 

The orbit partition equals or is more refined than the coarsest equitable partition. 

For example, the house graph’s coarsest equitable and orbit partition are equal, as shown 

in Figure 22. Conversely, the coarsest equitable partition of the cuneane graph shown in 

Figure 23(a) [TiK99, StT99] contains a single block, ⎡{ , ,  h ⎤ ,  but its orbit partition a b  …,⎣ }⎦ 

contains three blocks, { , ,  d e  , } , {b c  , f g  ⎤ ,  as shown in Figure 23(b). ⎡ a h} { , , }⎣	 ⎦

e 

c d 

b 

a 

Figure 22. House Graph’s Coarsest Equitable and Orbit Partition, {c d, } , {a} , {b e  }⎤⎡ ,⎣	 ⎦ 

b 
f 

e 

c 

d 

b 
a 

f 

g 
h 

a 

h gc 

d e 

(a) Coarsest Equitable Partition	 (b) Orbit Partition
 

⎡{a b, ,…, h} ⎡{a h} { , } , { , , , }
⎤	 , ,  d e  b c  f g  ⎤⎣ ⎦	 ⎣ ⎦ 

Figure 23. Cuneane Graph’s Distinct Coarsest Equitable and Orbit Partitions 
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2.3.4.1. Vertex Individualization and Arbitrary Partition Stabilization 
Finding the orbit partition involves applying many techniques, especially if the 

coarsest equitable partition is not discrete, i.e., contains one or more blocks composed of 

multiple vertices. The individualization process involves splitting a non-discrete block 

and assigning a single vertex to its own block, where one or more blocks are successively 

split each possible way. Since the partition induced by applying individualization may not 

be equitable, the method used to compute the initial coarsest equitable partition is applied 

to the individualized partition, thus yielding a more refined and equitable partition. 

For example, applying Weisfeiler-Lehman stabilization to the house graph yields 

the coarsest equitable partition, ⎡⎣{ , } , { a} , {b e  }⎤⎦ ,c d  ,  shown in Figure 24. Two blocks are 

not discrete, thus, one or more block’s vertices are individualized. For example, splitting 

block {b e  by individualizing vertex b induces the partition shown in Figure 25(a). This , }

partition is not equitable, since block { , }c d  contains a vertex, c, adjacent to one vertex in 

block {b} ,  namely, vertex b, whereas vertex d is not also adjacent to vertex b. Applying 

1-D Weisfeiler-Lehman stabilization to the partition obtained by individualizing vertex b 

yields the discrete and equitable partition shown in Figure 25(b). The other three potential 

vertex individualizations are shown in Figures 25(c)–(h). 

e 

c d 

b 

a 

, a ,Figure 24. House Graph’s Coarsest Equitable Partition, ⎡{c d, } { } , {b e  }⎤⎣ ⎦ 
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e 

c d 

b 

a 

(a) Individualizing b 

{ , } , {a} , {b} , {e}⎤⎡ c d⎣ ⎦ 

a 

e 

c d 

b 

(c) Individualizing c 

⎡{c} , {d} , {a} , {b e  , }⎤⎣ ⎦ 

a 

e

c 

b 

d 

(e) Individualizing d 

⎡{d} , {c} , {a} , {b e  , }⎤⎣ ⎦ 

e 

c d 

b 

a 

(g) Individualizing e 

⎡{ , } , {a} , {e} , { }⎤c d  b⎣ ⎦ 

a 

b e 

c d 

(b) Equitable Partition 

⎡{c} , { d} , { a} , {b} , {e}⎤⎣ ⎦ 

a 

b e

dc 

(d) Equitable Partition 

⎡{c} , { d} , { a} , {b} , {e}⎤⎣ ⎦ 

a 

e 

c

b 

d 

(f ) Equitable Partition 

⎡{c} , { d} , { a} , {e} , {b}⎤⎣ ⎦ 

a 

b e 

dc 

(h) Equitable Partition 

⎡{d} , {c} , {a} , {e} , {b}⎤⎣ ⎦ 

Figure 25. Refining to Equitable Partitions after Vertex Individualization 
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2.3.4.2. Computing the Orbit Partition 
Many methods have been described for determining graph isomorphism on some 

graphs [CoG70, Rea72, BES80, BaL83]. Many algorithms have also been developed that 

decide isomorphism for arbitrary graphs [CFS+04, BeE96] and many more are frequently 

proposed [KuS07, JuK07]. The traditional application used to decide graph isomorphism, 

nauty [McK04], is often used to provide a performance baseline to assess new algorithms 

that decide graph isomorphism. The key tools applied in nauty [McK81] are extensively 

described by Babai [Bab95], Kocay [Koc96], and Kreher and Stinson [KrS98]. In nauty, 

the key goal is to find a canonical isomorph, and in so doing, find the orbit partition. 

Applications that are similar to nauty, such as nice [Mil07], perform a depth-first 

search of a graph’s vertex partition tree to identify a canonical isomorph. However, many 

methods are used to dramatically prune this partition tree. For example, the house graph 

contains five vertices, thus, its original partition tree contains 5! =120  leaves. Applying 

the coarsest equitable partition and vertex individualization yields the pruned 4-leaf tree 

shown in Figure 26, where the equitable partitions are boxed. Since individualizing block 

{ , }  yields discrete partitions, it is not necessary to individualize block {b e}c d , .

⎡ a b c d  e  Unit Partition ⎣{ , , ,  ,  }⎦⎤ 

c d  , b e  }Coarsest Equitable Partition ⎡{ , ,} {a} { , ⎤⎣ ⎦ 

Individualize Vertices ‘c’ and ‘d’
 
⎣{ } , {d} , {a} , { , }⎦⎤ (non-equitable) ⎣{d} , {c} , {a} , { , }⎦
⎡ c  b e  ⎡ b e  ⎤ 

Induced Discrete Partitions
 

⎣{ } { } { } { } { }⎦ (equitable) ⎣{ } { } { } { } { }⎦
⎡ c , d , a , b , e ⎤ ⎡ d , c , a , e , b ⎤ 

Figure 26. House Graph’s Vertex Partition Tree (Equitable Partitions Boxed) 

40
 



 

 

 

  

 

 

  

 

 

 

 

 

 

The next technique prunes the partition tree by comparing partial permutations, 

which compares the binary value induced by the partition’s leading discrete blocks. That 

method extends the concept of retaining the minimum discovered isomorph described in 

Section 2.2.4. For example, the house graph and its corresponding adjacency matrix are 

shown in Figure 27 and Table 14(a), respectively. 

Individualizing the two vertices, c and d, as shown in Figure 26 yields the two 

non-equitable partitions, ⎡⎣{c} , {d} , {a}, {b e  }⎤ ⎡⎣{d} , {c}, {a} , { , }, ⎦ and b e  ⎦⎤ ,  respectively. 

The leading discrete blocks in each partition is ⎡{c} , {d} , {a}⎦⎤ and ⎡{d} , {c} , {a}⎦⎤ ,  thus ⎣ ⎣ 

inducing the partial permutations, [3, 4,1] and [4,3,1 ,]  respectively. The resulting partial 

isomorphs are shown in Tables 14(b) and (c), respectively. Since the upper-right triangles 

in both matrices are identical, neither branch can be eliminated in this example, thus, both 

branches of the pruned vertex partition tree must be traversed. 

eb 

a 

c d 

Figure 27. House Graph 


Table 14. Partial Permutations of the House Graph’s Adjacency Matrix
 

(a) A 
] ( )(b) A1 =φ[3,4,1 ] (A) (c) A2 =φ[4,3,1 A 

a b c d e 
a 0 1 0 0 1 
b 1 0 1 0 1 
c 0 1 0 1 0 
d 0 0 1 0 1 
e 1 1 0 1 0 

c d a 
c 0 1 0 
d 1 0 0 
a 0 0 0 

d c a 
d 0 1 0 
c 1 0 0 
a 0 0 0 
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Since individualizing vertex c or d does not yield a discrete partition in the vertex 

partition tree shown in Figure 26, both leaves are further refined. The first leaf is obtained 

by individualizing vertex c and refining to the coarsest equitable partition, which yields 

⎡{c}, {d}, {a}, {b}, {e}⎤⎦  and induces the permutation, φ = [3, 4,1, 2,5 . ]  Similarly, the leaf ⎣ 

obtained by individualizing vertex d and refining to a coarsest equitable partition yields 

⎡{d}, {c}, {a}, {e}, {b}⎦⎤  and induces the permutation, φ = [4,3,1,5, 2 . ] Concatenating the⎣ 

entries contained in the first isomorph’s upper-right triangle’s columns yields the binary 

value, 1001010111 = 599 ,  where the other isomorph also yields 1001010111 = 599 ,2 10  2 10  

Since both isomorphs yield the same binary value, these isomorphs are automorphs. 

In this example, the leaves that remain in the pruned vertex partition tree induce 

permutations that are also automorphisms. Alternatively stated, each leaf, or, permutation, 

yields the same isomorph, which is designated as the house graph’s canonical isomorph. 

In sum, applying the coarsest equitable partition, individualization, and selection of the 

minimum remaining isomorph reduced the search space for canonical isomorph of the 

house graph from 5! =120  potential permutations (leaves) to two permutations (leaves). 

However, the techniques applied thus far have not addressed computing the orbit partition 

while conducting this depth-first search. 

Table 15. House Graph Isomorphs 

A φ ] (A)(a) A1 =φ[3,4,1,2,5 ] ( )  (b) A2 = [4,3,1,5,2 

c d a b e 
c 0 1 0 1 0 
d 1 0 0 0 1 
a 0 0 0 1 1 
b 1 0 1 0 1 
e 0 1 1 1 0 

d c a e b 
d 0 1 0 1 0 
c 1 0 0 0 1 
a 0 0 0 1 1 
e 1 0 1 0 1 
b 0 1 1 1  0 
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The last technique that is used to prune the partition tree yields the orbit partition. 

However, this technique is the most complex method applied, and similarly, it is the most 

difficult to implement correctly. Recalling the previous example, it was observed that the 

permutations induced by the leaves remaining in the partition tree illustrated in Figure 26 

yield the same isomorph of the house graph, i.e., they are relative automorphisms. 

The first leaf contains the discrete vertex partition, ⎡⎣{c} , {d} , {a} , {b} , {e}⎤⎦ , thus 

inducing the permutation, φ = [3, 4,1, 2,5 . ]  Similarly, the second leaf contains the discrete 

partition, ⎡{d} , {c} , {a} , {e} , {b}⎤ ,  inducing the permutation, φ = [4,3,1,5, 2 . ]  Inspection ⎣ ⎦

reveals the fundamental difference between the two permutations is the position exchange 

with respect to vertices c and d, or similarly, vertices b and e. Thus, vertices c and d are 

located in the same orbit and vertices b and e are located in the same orbit. Conversely, 

vertex a is not located in the orbit of any other vertex, thus, it is the only vertex contained 

in its block of the house graph’s coarsest equitable partition. Therefore, the house graph’s 

orbit partition is ⎡⎣{ , } , {a} , {b e  }⎤⎦ .c d  , 

The management of such automorphisms may enable pruning several branches in 

the partition tree, although that it is not true in this example. The use of such group theory 

machinery, e.g., orbits, stabilizers, the automorphism group, the Orbit-Stabilizer theorem, 

and the Schreier-Sims algorithm, are applied in methods that use automorphisms to prune 

the vertex partition tree [KrS98, Hof82, Mar02, Ser02]. However, even after applying all 

three tools of pruning the partition tree: coarsest equitable partitions, partial permutations, 

and automorphisms, applications similar in design to nauty still require exponential time 

to find the orbit partition or a canonical isomorph of certain graphs [Miy96]. 
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2.3.4.3. Easy, Hard, and In-Between Graphs 
A rigorous method of classifying an arbitrary graph with respect to the difficulty it 

causes algorithms that decide graph isomorphism, such as nauty, is not known to exist. 

However, various subjective notions of measuring relative graph difficulty are often used. 

For instance, almost every random graph is considered an easy graph, since the coarsest 

equitable partition of almost all random graphs is discrete. Alternatively stated, applying 

the coarsest equitable partition to an arbitrary random graph prunes its partition tree from 

2having n! leaves to a single leaf, yielding a canonical isomorph in Ο(n ⋅ log n)  time. 

In contrast, the coarsest equitable partition of a non-trivial graph contains at least 

one block composed of multiple vertices, i.e., a non-discrete partition. In the extreme, the 

coarsest equitable partition may only contain one block, i.e., it is the unit partition. Thus, 

an arbitrary graph yields a coarsest equitable partition that is a discrete, non-discrete, or 

unit partition, e.g., the graphs illustrated in Figures 28(a)–(c), respectively. The methods 

described herein for improving the PageRank algorithm’s performance can be applied to 

graphs whose coarsest equitable partition is non-discrete, e.g., the house or cuneane graph 

shown in Figures 28(b) and (c), respectively. 

e 

c d 

b 

a 

z 

e 

c d 

b 

a 

e 

c 

d 

b 
a 

f 

g 
h 

(a) Mansion Graph (b) House Graph (c) Cuneane Graph 
(discrete partition) (non-discrete partition) (unit partition) 

⎣{b} ,{ f } ,{c} ,{e} ,{d} ,{a}⎦⎤ ⎣⎡{c d, } , { a} , {b e  }⎦⎤ ⎣⎡{a b  …, }⎦⎡ , , ,  h ⎤ 

Figure 28. Easy, Medium, and Hard: Discrete, Non-Discrete and Unit Partitions 
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2.3.5. Induced Quotient Graphs and Matrices 
An equitable partition, such as the coarsest equitable partition and orbit partition, 

are closely related to the eigenvalues and eigenvectors of the graph’s adjacency matrix. 

The concept of an equitable partition was first defined by Schwenk in the context of this 

relationship [Sch74], and not its usage as a tool for pruning search trees in algorithms that 

decide graph isomorphism. Sachs defined the equivalent graph divisors concept, as noted 

by Cvetković, Rowlinson and Simić [CRS97]. As its origin suggests, equitable partitions 

can be used to explore a graph’s eigensystem. In particular, if some equitable partition is 

non-discrete, portions of a graph’s eigensystem can be explored more efficiently using the 

quotient graph induced by the equitable partition [Hae95, God93, GoR01]. 

In simple terms, an equitable partition divides the eigenvalues, or equivalently, the 

characteristic polynomial, of the graph’s adjacency matrix. The quotient graph induced by 

the equitable partition also defines an adjacency matrix whose eigenvalues are a subset of 

the eigenvalues yielded by the graph’s adjacency matrix. This relationship also illustrates 

a graph can possess regular structure and that vertices can be mapped to some eigenvalue 

or eigenvector entry. This idea has also been used as the basis of algorithms that decide 

graph isomorphism [CRS97, HZL05]. 

The quotient graph induced by an arbitrary equitable partition, e.g., the coarsest 

equitable partition or orbit partition of an arbitrary graph, replaces the vertices contained 

in a given block of the partition with one vertex in the quotient graph. The edges between 

the vertices in the quotient graph correspond to the number of neighbors contained in the 

destination block with respect to each source block vertex. Quotient graphs often contain 

weighted edges, directed edges, and loops, i.e., they typically are not simple graphs. 

45
 



 

  

 

  
 

 
 

 

 

 

  
 

 

 

For example, the house graph shown in Figure 29(a) yields the coarsest equitable 

partition, ⎡{ } {c d  } ,{ } ,  which is depicted using unique shapes in Figure 29(b). The a , ,  b e  , ⎤⎣ ⎦

partition contains three blocks, thus, the quotient graph contains three vertices, where one 

vertex corresponds to each block contained in the partition, as shown in Figure 29(c) and 

reflected in the corresponding adjacency and quotient matrices listed in Table 16. 

Vertices c and d are each connected to one vertex in block { , ,  thus, an edge ofb e}

weight ‘1’, or a 1-edge, links block { , } to block { , }  and vice versa. Vertices c and dc d b e

are connected to each other, as are vertices b and e, thus, a 1-loop is attached to blocks 

{c d} and { , .  Since vertex a is connected to both vertices contained in block {b e}, b e} , ,

a 2-edge links block {a}  to block { , .  Finally, a 1-edge connects block {b eb e} , }  to block 

{a} ,  since vertices b and e each have one neighbor contained in block {a} ,  namely, a. 

e 

c d 

b 

a 

e 

c d 

b 

a 

{ }a

1 

1 { },c d  

1 

2 

1 

{ },b e  

1 

(a) House Graph (b) Coarsest Partition (c) Induced Quotient Graph 

Figure 29. House Graph’s Induced Quotient Graph 

Table 16. House Graph’s Induced Quotient Matrix 

(a) A (b) Q 

a b c d e 
a 0 1 0 0 1 
b 1 0 1 0 1 
c 0 1 0 1 0 
d 0 0 1 0 1 
e 1 1 0 1 0 

destination 
{a} {b, e} {c, d} 

source 
{a} 0 1 0 

{b, e} 2 1 1 

{c, d} 0 1 1 
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2.3.5.1. Interlacing Eigenvalues 
Given an arbitrary matrix, M, and similarly arbitrary partition, B, the eigenvalues 

of the induced quotient matrix, Q, interlace M’s eigenvalues. That is, given an arbitrary 

,Mn nmatrix, ,  and an arbitrary partition, B, containing m blocks and the induced quotient 

Qm m, i th i thmatrix, , Q’s  eigenvalue is less than or equal to M’s eigenvalue and greater 

than or equal to M’s (n m i)th− −  eigenvalue, i.e., 

λ i M ≤ λ Q ≤ λi M , ≤ λ . (6)n m− + ( )  i ( ) ( ) λi i+1 

However, if the partition, B, used to construct Q is an equitable partition, e.g., the 

coarsest equitable partition, Q’s eigenvalues are a subset of M’s eigenvalues. Thus, given 

an arbitrary eigenvalue of Q, denoted λi (Q) ,  there exists some corresponding value, j, 

such that λ Q = λ j M .  In certain sources, this restricted version is called interlacing; i ( )  ( )

whereas generalized interlacing permits B to be non-equitable. 

For example, the eigenvalues of the house graph and the quotient graph induced 

by its coarsest equitable partition, ⎡{ } {c d  }, { , }⎦ ,  are listed in Tables 17(a) and (b), a , ,  b e  ⎤⎣ 

respectively. Since this partition is equitable, the quotient graph’s eigenvalues are a subset 

of the house graph’s eigenvalues, as shown in Table 17. 

Table 17. House Graph’s and Its Induced Quotient Graph’s Eigenvalues 

(a) λ, House Graph (b) λ, Induced Quotient Graph 

i iλ 

1 2.4812 

2 0.6889 

3 0.0000 

4 -1.1701 

5 -2.0000 

i iλ 

1 2.4812 

2 0.6889 

3 -1.1701 
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2.3.5.2. Lifting Eigenvectors 
Some eigenvectors of M can be lifted from eigenvectors of the quotient matrix, Q. 

This relationship is based on the characteristic matrix, B, the incidence matrix derived 

from the vertex partition, B, used to induce the quotient matrix, Q. Rows in B correspond 

to rows and columns in a source matrix, M, and columns in B correspond to blocks in B. 

For example, the house graph’s coarsest equitable partition yields the 5 3  characteristic×

matrix, or block matrix, listed in Table 18. 

The characteristic matrix, B, is the basis of several identities with respect to the 

original and quotient graphs. The first elementary result is 

N B= T ⋅B , (7) 

where N is the diagonal matrix reflecting the number of vertices contained in the blocks 

of the associated coarsest equitable partition, as shown in Table 19(a). Since N is simply a 

N−1diagonal matrix containing non-zero diagonal entries, its matrix inverse, , is obtained 

by simply reciprocating N’s diagonal entries, as shown in Table 19(b). 

Table 18. Block Matrix, B, of the House Graph’s Coarsest Equitable Partition 

{a} {b, e} {c, d} 
a 1 0 0 
b 0 1 0 
c 0 0 1 
d 0 0 1 
e 0 1 0 

Table 19. Block Matrix, N, of the House Graph’s Coarsest Equitable Partition 
T −1 −1(a) = ⋅ , i i, =∑Bi i  , (b) N Ni i, = 1 Ni i, N B B N  , 

{a} {b, e} {c, d} 
{a} 1 0 0 

{b, e} 0 2 0 

{c, d} 0 0 2 

{a} {b, e} {c, d} 
{a} 1 0 0 

{b, e} 0 1/2 0 

{c, d} 0 0 1/2 
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More notably, it further can be shown that [God93, GoR01] 

⋅ = ⋅A B  B Q . (8) 

By left-multiplying each side with , TB  it can also be shown that † ,= ⋅ ⋅Q B  A B  since 

T T⋅ ⋅ =  ⋅ ⋅  B A B  B  B Q  

(  ) (  )  
(  )  

1 

1 

T T 

T T 

− 

− 

⋅ =  ⋅  ⋅  ⋅  ⋅  

⋅  ⋅  ⋅ ⋅ =  

A B  B  B  B  B  Q  

B B  B  A B  
(9) 

† ,⋅ ⋅ =  B A B  Q

1−† † T Twhere B  denotes the pseudo-inverse of B, i.e., B = (B B  ) ⋅B . Given an eigenvalue,⋅ 

λi ,  and an eigenvector, ri ≠ 0, of the quotient graph, Q, yielded by an equitable partition 

of A, it can be shown that [Hae95] 

A B r  B Q r  λ B r ,⋅ ⋅ = ⋅ ⋅ =  ⋅ ⋅ (10)i i i i 

where substituting x = ⋅ A B r  λ B r yields λ x .B r in ⋅ ⋅ =  ⋅ ⋅ A x⋅ = ⋅i i i i i i i i 

Thus, this identity lifts the quotient matrix eigenvector, ri ,  to some eigenvector of 

the adjacency matrix, i B ri .  Quotient matrices may be smaller than the input matrix, x = ⋅

thus, lifting can accelerate finding eigenvectors. For example, the quotient matrix induced 

by the house graph’s coarsest equitable partition yields the dominant eigenvector listed in 

Table 20(a). Lifting yields the house graph’s dominant eigenvector listed in Table 20(b). 

Table 20. Lifting a Dominant Eigenvector of the House Graph 

(a) ri  (b) xi = ⋅ iB r  

1− ⋅N N ⋅Q 

{a} 0.5555 

{b, e} 0.6892 

{c, d} 0.4653 

a 0.5555 

b 0.6892 

c 0.4653 

d 0.4653 

e 0.6892 
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2.3.5.3. Interlacing, Lifting, Arbitrary Matrices and Arbitrary Partitions 
Thus, an arbitrary matrix, M, and partition, B, of M’s rows and columns yields the 

† T Tblock matrix, B, and the quotient matrix, = ⋅  ⋅ =  (B ⋅B 
−1 
⋅  ⋅ ⋅  .Q B M B  ) B  M B  Moreover, 

Q’s eigenvalues interlace M’s eigenvalues, since Q’s eigenvalues are strictly contained in 

the intervals bounded by M’s eigenvalues, i.e., 

λ ( )M ≤ λ (Q) ≤ λ (M) , ≤ λ , (11) n m i  − +  i i λi i+1 

where Q is an k k×  matrix, M is an n n×  matrix, k n b k≤ ,  and = = B . If an arbitrary 

partition, B, is simply an equitable partition, such as M’s coarsest equitable partition, Q’s 

eigenvalues are a subset of M’s eigenvalues, i.e., given 1 i k  j n,≤ ≤  and 1 ≤ ≤  

λi (Q) = λ j (M) . (12) 

If B is equitable, given some arbitrary eigenvalue of Q, λi (Q) , and an eigenvalue 

of M, λ ( )M , such that λ ( ) = λ (M) ,  an eigenvector, ,  associated with λ Q ,Q ri ( ) isj i j i

related to eigenvector, x j , associated with λ j (M) by the relationship, 

x j = B r  ⋅ i . (13) 

The quotient matrix, = † M B,Q B  ⋅ ⋅  equals M’s corresponding average row sums, 

i.e., Qi j  =∑M  where B = b b, ,…,b u b , v b ,  , ≤  and k n, u ,v [ 1 2 k ], ∈ i ∈ j i j  k ≤  [Hae95]. If 

B is equitable, the summation, Q = Mu ,  simplifies to Qi j  = z , ⋅Mu w, such thati j, ∑ ,v , i j  , 

u b , w b , u w, ∈E, and z , ∈ ∈ { } = N u  b ,  the number of r’s neighbors contained ( )∩ ji j i j  

in block bj  [Hae95]. Therefore, if B is an equitable partition, a summation of as many as 

n values can be reduced to a single multiplication operation. 
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2.4. A Brief Interlude: Eigen Decomposition Applications in Graph Theory 
Eigen decomposition is the basis of several fundamental results in graph theory. A 

classic example is that the number of components in the graph, denoted ( )  equals the κ G ,

multiplicity of ‘0’ in the eigenvalues of the graph’s Laplacian matrix, denoted L, where 

(∑ i Lκ ( )G = λ ( ) ≡ 0)  [Chu94]. The Laplacian is constructed by subtracting the graph’s 

adjacency matrix, A, from its degree matrix, D, where D = deg ( ) thus L D Ai i, vi , = − . 

Some recent results are based on applying the signless Laplacian, L D= + A  [HaS04]. 

The eigen decomposition is used to partition graphs, e.g., mapping related parallel 

tasks to some pool of processors [HeL93, GuM95, Got03]. Another application provides 

solutions to the traveling salesman problem [Moh04]. Eigenvalues are also used to find 

the rate at which a graph’s stationary distribution is reached, e.g., to assess data structure 

resiliency [AsW05] or determine how quickly the PageRank vector converges [HaK03]. 

A beautiful application uses eigenvectors as vertex coordinates [Kor05]. For example, the 

drawing of the Buckminsterfullerene molecule, C60, or buckyball, illustrated in Figure 30 

is based on three eigenvectors of the buckyball’s signless Laplacian. 

Figure 30. 3-D Buckyball Drawing Based on Its Signless Laplacian’s Eigenvectors 
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2.5. The PageRank Algorithm 
Another significant application of the eigen decomposition to graph theory is the 

PageRank algorithm used in certain search engines to order query responses, such as the 

web pages matching a user’s search criteria [PBM+98]. For example, the mansion graph 

shown in Figure 31(a) yields the PageRank vector listed in Table 21(a), which is a unique 

eigenvector that always exists, as described in this section. Sorting the PageRank vector’s 

entries yields the vector listed in Table 21(b), which is reflected in Figure 31(b). 

The PageRank vector is unique up to isomorphism. Since every entry contained in 

the mansion graph’s PageRank vector is distinct, every mansion graph isomorph yields a 

vertex ordering equivalent to the vertex ordering shown in Table 21(b). For example, the 

isomorph shown in Figure 31(c) yields the sorted PageRank vector shown in Table 21(c), 

which is equivalent to the ordering shown in Table 21(b) and reflected in Figure 31(b). 

e 

c d 

b 

a 

f 

e 

c d 

b 

a 

f 

d 

b c 

a 

e 

f 

(a) Mansion Graph (b) PageRank Order (c) Another Isomorph 

Figure 31. Mansion Graph 

Table 21. Mansion Graph’s PageRank Vector 

(a) PageRank Vector (b) PageRank Order (c) Isomorph’s Order 

a 0.126 
b 0.236 

c 0.195 

d 0.182 

e 0.180 

f 0.080 

0.236 b 
0.195 c 
0.182 d 
0.180 e 
0.126 a 
0.080 f 

0.236 a 
0.195 b 
0.182 c 
0.180 d 
0.126 e 
0.080 f 
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Conversely, if the PageRank vector contains duplicate entries, it cannot induce a 

canonical ordering. That issue can be resolved in some applications, e.g., search engines, 

by sorting on more keys, e.g., web page addresses. Alternatively, ties in PageRank value 

can be broken by the vertex order in a canonical isomorph produced by applications such 

as nauty (cf. Sections 1.2 and 2.3.4.2). 

For example, the house graph depicted in Figure 32(a) yields the PageRank vector 

listed in Table 22(a). The house graph’s canonical isomorph yielded by nauty is shown in 

Figure 32(b) and corresponds to applying the permutation, [3, 4,1, 2,5 ,]  where the vertex 

→ ⇔ →  denotes vertex vi , v j ,mapping, i j r s  labeled r, is mapped to vertex  labeled s. 

The two graphs are isomorphs, thus, their PageRank vectors are also related by the same 

vertex permutation, as reflected in Tables 22(a) and (b), where the canonical isomorph 

induces the canonical vertex ordering listed in Table 22(c) and shown in Figure 32(c). 

e 

c d 

b 

a 

e 

a b 

d 

c 

e 

a b 

d 

c 

(a) House Graph (b) Canonical Isomorph (c) PageRank Order 

Figure 32. House Graph 


Table 22. House Graph’s PageRank Vector 


(a) House Graph (b) Canonical Isomorph (c) PageRank Order 

a 0.168 

b 0.244 

c 0.172 

d 0.172 

e 0.244 

1 3 a c→  ⇔  →  0.168 

2 4 b d→  ⇔  →  0.244 

3 1 c a→ ⇔  →  0.172 

4 2 d b→  ⇔  →  0.172 

5 5 e e→  ⇔  →  0.244 

0.244 d 
0.244 e 
0.172 a 
0.172 b 
0.168 c 
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However, finding a canonical isomorph of certain graphs may require exponential 

time [Miy96]. Access to a canonical isomorph also does not reduce any numerical errors 

in the PageRank vector if the vector is obtained using standard finite-precision arithmetic, 

e.g., as is specified in the IEEE 754 standard [ISB85]. The three algorithms described in 

Chapters 4 and 5 eliminate a certain class of numerical errors that may be present in the 

PageRank vector. More importantly, two of these algorithms dramatically reduce the time 

needed to compute the PageRank vector of certain graphs. 

To obtain this vertex order, the PageRank algorithm perturbs the adjacency matrix 

and builds a strictly positive stochastic matrix in which each entry reflects the probability 

of visiting a vertex from another vertex. Assuming the probabilities are independent, each 

entry reflects the probability of transitioning between states in a Markov chain. Applying 

the Perron-Frobenius and Perron theorems establishes the matrix must yield the dominant 

eigenvalue, one. Normalizing the unique and associated dominant eigenvector yields the 

Markov chain’s stationary distribution, where an entry reflects the probability of visiting 

some vertex, e.g., nodes in a UAV swarm [PBM+98, LaM03, LaM06, PSC05]. 

Thus, the eigenvector orders a graph’s vertices based on PageRank values yielded 

by its perturbed adjacency matrix. PageRank values are unique up to isomorphism, i.e., 

vertices have the same PageRank value across all input graph isomorphs. Hence, vertices 

contained in the same block of the orbit partition also must have equal PageRank values. 

In other words, given vertices u and v such that a set of automorphisms maps u → v  and 

an equal number maps u → v,  the vertices, u and v, must have equal PageRank values. 

The proof developed in Section 3.4 shows the same result holds for the coarsest equitable 

partition, i.e., vertices contained in the same block must have equal PageRank values. 
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2.5.1. Computing the PageRank Perturbation 
The first step in obtaining the PageRank vector is to perturb the adjacency matrix, 

A, to obtain a positive column-stochastic matrix, S, i.e., Si j, 0, i j  and S:, j 1, j.> ∀ , ∑ = ∀  

The PageRank perturbation applies the degree matrix, D, used to obtain several stochastic 

perturbations [Sin64, SiK67, HZL05], where Di i, , equals the degree of vertex vi ,  i.e., 

⎧0 i ≠ j
D , = ⎨

⎪ . (14)i j  deg ( ) = deg v = A i = j⎪∑Ai,: = vi ( )j ∑ :, j⎩

If A is an adjacency matrix of a connected graph, D’s diagonal entries are strictly 

non-zero. Hence, its inverse, denoted D−1, is found by reciprocating D’s diagonal entries, 

−1i.e., Di i, =1 Di i, , ∀i.  For example, the house graph’s adjacency matrix shown in Table 23 

yields the degree and inverse matrices listed in Table 24. D’s diagonal entries correspond 

⎡ , ,  ,to the graph’s vertex degree partition, which for the house graph is {a c d  }, {b e  }⎤ .⎣ ⎦ 

Table 23. House Graph’s Adjacency Matrix, A 

a b c d e 
a 0 1 0 0 1 

b 1 0 1 0 1 

c 0 1 0 1 0 

d 0 0 1 0 1 

e 1 1 0 1 0 

Table 24. House Graph’s Degree Matrix and Degree Matrix Inverse 

(a) D (b) D−1 

a b c d e 
a 2 0 0 0 0 

b 0 3 0 0 0 

c 0 0 2 0 0 

d 0 0 0 2 0 

e 0 0 0 0 3 

a b c d e 
a 1/2 0 0 0 0 

b 0 1/3 0 0 0 

c 0 0 1/2 0 0 

d 0 0 0 1/2 0 

e 0 0 0 0 1/3 
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A row-stochastic matrix, S, is a non-negative matrix whose rows each sum to one, 

i.e., ∑Si,: = 1.  Given an arbitrary adjacency matrix, A, and its degree matrix, D, obtained 

by summing A’s rows, a row-stochastic matrix, S, can be obtained by computing 

= −1 ⋅ (15)S D  A . 

A column-stochastic matrix, S, is a non-negative matrix whose columns sum to 

one, i.e., ∑S:, j =1.  Thus, summing A’s columns to obtain a degree matrix, D enables 

constructing a column-stochastic matrix, S, by inverting the multiplication order, where 

S A= ⋅ D−1 . (16) 

For example, applying the row-stochastic perturbation, (15), to the adjacency and 

degree matrices enumerated in Tables 23 and 24, respectively, yields the row-stochastic 

matrix listed in Table 25. Conversely, applying the column-stochastic perturbation, (16), 

to these same matrices yields the column-stochastic matrix listed in Table 26. 

Table 25. A Row-Stochastic Matrix, ∑S (i,:) = 1 

0.0 0.5 0.0 0.0 0.5 

1 
0.3 0.0 0.3 0.0 0.3 
0.0 0.5 0.0 0.5 0.0 
0.0 0.0 0.5 0.0 0.5 

0.3 0.3 0.0 0.3 0.0 

0.6 1.3 0.8 0.8 1.3 ∑ 

Table 26. A Column-Stochastic Matrix, ∑S(:, j ) = 1 

0.0 0.3 0.0 0.0 0.3 0.6 
0.5 0.0 0.5 0.0 0.3 1.3 
0.0 0.3 0.0 0.5 0.0 0.8 
0.0 0.0 0.5 0.0 0.3 0.8 
0.5 0.3 0.0 0.5 0.0 1.3 

1 ∑ 
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The perturbation applied in the PageRank algorithm modifies the original column-

stochastic perturbation, (16), by applying a scaling factor, α ∈[0.0,1.0 , ]  and a shifting 

factor, ( )1−α n where n V ,  the number of vertices. The stochastic PageRank matrix , =

perturbation, or scaled and shifted modification of (16), is 

S α A D 1 (1 α )= ⋅ ⋅ − + −  n , (17) 

where A and D denote a graph’s adjacency and degree matrices, respectively [PBM+98] 

and 1−α is denoted δ, yielding S = ⋅ ⋅D−1α A +δ n . If α =1, the PageRank perturbation 

reduces to the column-stochastic perturbation (16), = ⋅D−1.  In essence, decreasing α,S A

and thus increasing δ, causes S’s entries to be less dependent on the value of A’s entries. 

In the opposite extreme, if α = 0, δ =1 and S , =1 ,n ∀i j  ., The PageRank algorithm’s i j  

developers suggest a scaling, or damping factor of α = 0.85, hence δ = 0.15  [PBM+98]. 

For example, the adjacency matrix of the house graph listed in Table 23 yields the 

degree and inverse matrices listed in Table 24. Applying the PageRank perturbation, (17), 

to these matrices, where α = 0.85 and δ = 0.15,  yields the column-stochastic matrix, i.e., 

the PageRank matrix, listed in Table 27. As this example demonstrates, all of the columns 

in the PageRank matrix sum to one, whereas its rows typically do not sum to one. 

Table 27. House Graph’s PageRank Matrix, S, α = 0.85 

a b c d e 
a 0.0300 0.3133 0.0300 0.0300 0.3133 0.7167 

b 0.4550 0.0300 0.4550 0.0300 0.4550 1.2833 

c 0.0300 0.3133 0.0300 0.4550 0.0300 0.8583 

d 0.0300 0.0300 0.4550 0.0300 0.4550 0.8583 

e 0.4550 0.3133 0.0300 0.4550 0.0300 1.2833 

1 ∑ 
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Applying the scaling and shifting modifications, α and δ, to the column-stochastic 

perturbation, (16), satisfies two objectives. First, the perturbation satisfies the assumption 

that any vertex, or web page, can be randomly visited. This assumption is often called the 

random surfer model [LaM03]. Moreover, the column-stochastic PageRank matrix, S, is a 

primitive matrix, where a matrix, M, is primitive: 

1. if M is irreducible and M contains one or more positive diagonal entries, 
2. or equivalently, if and only if Mk > 0 for some k > 0. 

The PageRank perturbation, and more specifically, the shifting factor, δ n , forces every 

entry in S to be strictly positive, i.e., each entry is strictly positive, where Sk > ∀ >  0.0, k 

The PageRank matrix, S, is also irreducible, where an arbitrary matrix, M, is irreducible 

if given any permutation matrix, P, the matrix, M, does not yield an isomorph such that 

⎡X Y⎤P M⋅ ⋅P = , (18)⎢ ⎥0 Z⎣ ⎦ 

where X, Y, and Z are square matrices. The PageRank matrix, S, is irreducible since each 

entry is strictly positive, i.e., S is constructed such that none of its entries equal zero. 

An arbitrary PageRank matrix, S, is irreducible and satisfies the Perron-Frobenius 

theorem’s conditions [LaM06]. Moreover, S is also a primitive matrix and satisfies the 

conditions of the Perron theorem, which is a more powerful theorem [LaM06]. Applying 

either theorem shows that the PageRank matrix, S, yields a positive eigenvalue associated 

with an eigenvector unique up to isomorphism and scaling, where eigenvectors are often 

not unique. However, applying the Perron theorem establishes it is the unique dominant 

eigenvalue, i.e., the eigenvalue having the largest magnitude. Similarly, the eigenvector is 

the unique dominant eigenvector defining the graph’s stationary distribution. 
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A primitive, irreducible, and stochastic PageRank matrix, S, reflects the transition 

probabilities between pairs of states in an aperiodic Markov chain, a memoryless random 

process where the probability of entering the next state only depends on the current state. 

In an aperiodic Markov chain, any state may be entered during any transition, a property 

satisfied by S being irreducible and primitive [LaM06]. S is constant after the PageRank 

perturbation (16) is applied, i.e., all of S’s transition probabilities remain constant, thus, S 

represents a stationary Markov chain. Therefore, S yields a unique stationary probability 

distribution, x j , where for all i, x = ⋅ ,S x  and there exists some value, j, such that i+1 i 

x j = S x⋅ j . (19) 

Given that the PageRank matrix, S, is primitive, irreducible, and stochastic, where 

S represents the transition probabilities of a stationary aperiodic Markov chain, it can be 

shown that its dominant eigenvalue equals one [LaM06]. More importantly, the dominant 

eigenvector, x, reflects the stationary distribution of a memoryless random process, or the 

unique probability a random surfer visits each vertex. This stationary result is guaranteed 

by the delta shift value, δ, which ensures each vertex has a nominal probability of being 

visited. Alternatively stated, applying the additive delta shift value, δ, ensures each vertex 

can be reached from any other vertex, or in the context of a Markov chain, that any state 

can be randomly reached from any other state. 

Finally, and most significantly, the unique dominant eigenvector, x, produced by 

the PageRank matrix, S, is unique up to graph isomorphism. Thus, an arbitrary vertex, vi , 

has the associated PageRank value, xi ,  with respect to any permutation matrix, P, where 

P A P  ⋅ ⋅ T ↔ P S P  T ↔ P x . (20) 
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2.5.2. Computing the PageRank Vector 
2.5.2.1. Power Method Iteration 

There are many ways to find the PageRank vector, e.g., by applying MATLAB’s 

‘eig’ function for finding eigen decompositions. Another method is the power method, 

where PageRank matrix, S, is multiplied by the current PageRank vector, xi ,  yielding the 

revised estimate of the PageRank vector, xi+1  [LaM06]. The vector, xi+1,  is normalized 

by applying an arbitrary norm, e.g., xi+1 ← x x = x ∑xi+1 . Thus, each iterationi+1 i+1 i+11 

simply requires computing a normalized dot product, where 

x ← S x  ⋅ , (21)i+1 i 

followed by 

∑xi+1 . (22)x ← xi+1 i+1 

The initial entries in x can equal an arbitrary value, such that x1 ( )i ∈[0.0,1.0 ] and 

∑x1 =1, e.g., x1 = 1n,1 n . The power method terminates after some number of iterations 

is performed or some numerical tolerance, τ, is obtained, e.g., ∑ x − x <τ τ, ≥ 0.  Thei+1 i 

i thpower method derives its name from the observation the iteration can be expressed by 

i ththe product of the power of S, denoted Si ,  and the initialization vector, x0 ,  where 

[S x  0 ] ⎡ S x  ⎤x1 ← ⋅  ⎣∑ ⋅ 0 ⎦ 
x ← ⋅  [  ]  ⎡ S x  ⋅ ⎤ =  ⋅ ⋅  ⎡S ( )  S x  ⎤ ⎡ S ( )  S x  2 S x  1 ⎣∑ 1 ⎦ ⎣ 0 ⎦ ⎣∑ ⋅ ⋅ 0 ⎦⎤ (23)
#

← ⋅  ⎡∑Si ⋅x0 ⎤ .xi ⎣⎡S
i x0 ⎤⎦ ⎣ ⎦ 

Finally, S’s left eigenvector, y,  is obtained by computing y i+1 ← yT
i ⋅S, followed by the 

requisite normalization, y i+1 ← y i+1 ∑y i+1 . 
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2.5.2.2. Expected Number of Power Method Iterations 
The upper bound on the number of power method iterations required to obtain the 

PageRank vector, x, to some precision τ, e.g., τ < 0.001,  is based on the convergence rate, 

the rate that ct → 0  for some value c. The value, c, is bounded by the magnitude ratio of 

. S is a stochastic matrix, therefore, S’s two most dominant eigenvalues, i.e., c ≤ λ2 λ1 

λ1 =1,  which yields c ≤ λ2 .  It has also been shown that the second dominant eigenvalue 

≤α  [HaK03]. Since ct ≤τ , the upperis bounded by the scaling value, α, thus, c ≤ λ2 

bound on the number of power method iterations, t, needed to obtain the PageRank vector 

using floating-point arithmetic computed in some base, b, is [GoV88, HaK03, LaM06] 

log τ log τ log τb b bt ≤ ≤ ≤ → t ≤ log τ ≤ log α τ . (24)Sλ2 ( )log b c logb log bαSλ2 ( )  

For example, if a PageRank vector is found using binary floating-point arithmetic, 

b = 2.  Assuming α = 0.85 and τ ≤ 0.001, 

τ log 10 0.001 2log b log 0.001 t ≤ log S τ ≤ log τ = = = = 42.5043. (25)λ2 ( )  α log α log 0.85 log 0.85 b 10 2 

Therefore, performing 43 power method iterations ensures the PageRank vector is correct 

to three decimal digits, or equivalently, approximately ten bits. 

For many graphs, log 2 n  power method iterations often appears to yield sufficient 

precision in the PageRank vector [PBM+98]. However, a formal lower bound has not yet 

been established on the number of iterations required to obtain the required precision, τ. 

As shown in Section 3.2, assuming τ ≤1 n and α ≥ 0.5,  a practical lower bound on the 

log n tnumber of necessary power method iterations, t, is log 2 n,  i.e., 2 ≤ . 
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2.5.3. PageRank: An Algorithm for Ranking Vertices 
The PageRank algorithm consists of two key steps, applying a perturbation to the 

graph’s adjacency matrix that yields a strictly positive stochastic matrix and determining 

the dominant eigenvector of the stochastic matrix by computing an iterated dot product. 

The eigenvector’s entries correspond to the probability the corresponding vertices will be 

visited by an object that randomly selects its destination. The entire PageRank algorithm 

is listed in Figure 33, where the stochastic PageRank perturbation is applied on lines 2–6. 

Since the power method terminates based on the numerical differences with respect to the 

last eigenvector estimate, the two vectors, s and x, are initialized on lines 8 and 9, along 

with an iteration counter, z, on line 10. 

The power method loop is entered on line 12 and the eigenvector estimate, x, is 

copied to the vector, s, on line 14. The eigenvector is revised on line 16, where = ⋅ .x S x  

Normalizing by the column sum norm on line 16, or 1-norm, x
1 
, ensures x sums to one, 

i.e., that x is a probability distribution. The norm choice is arbitrary, e.g., the Euclidean, 

or spectral norm, x ,  could be used. The power method terminates after the tolerance, τ,
2 

is obtained and the upper bound on the number of power method iterations is t = log α τ . 

The PageRank perturbation requires Θ(n2 )  time, where n V= , since each entry 

in A is scaled and shifted. Given a tolerance, τ, and scaling factor, α, the lower and upper 

2 2bounds on the power method’s complexity are Ω(n ⋅ log n) , and Ο(n t⋅ ) ,  respectively, 

where t = log α τ .  If the graph is stored using sparse matrices, the lower and upper bounds 

can be reduced to Ω  ⋅(m log n) and Ο(m t⋅ ) ,  respectively, where m = E ,  the number of 

edges contained in the graph. 
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A common modification of the PageRank algorithm uses a personalization vector, 

v, containing user-specified probabilities. A potential application is “to decrease the effect 

of spamming done by the so-called link farms” [LaM06]. The personalization vector, v, is 

used to modify the perturbation on line 6 in Figure 33, which becomes [LaM03, LaM06] 

1  1,  n= ⋅ ⋅α A D  − (1 ) 1 .S + −  ⋅ ⋅  α v

1. getPageRank (A, n, α ,τ ) 
2. # construct degree matrix 

3. d ←∑n Ai :,ii=1 

4. D ← diag (d) 
5. # apply PageRank perturbation 
6. S ← ⋅ ⋅α A D  −1 (1 α )+ −  n 

7. #  initialize vectors and counter 
n,18. ←x 1  n 
n,19. ←s 0  

10. z ← 0 

11. #  iterate power method 
12. while ( s x >τ )−

2 

13. #  save PageRank vector 
14. s ← x 

15. #  update PageRank vector 
16. ← ⋅xx S

17. #  normalize PageRank vector 
18. x ← x ∑x 

19. #  increment loop counter 
20. z ← z +1 
21.  end while 

22. return x 
23. end PageRank 

(26) 


Figure 33. PageRank: An Algorithm for Ordering Vertices [PBM+98] 
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The following example applies the PageRank algorithm to the paw graph shown 

in Figure 34 [Wes01]. The corresponding adjacency, degree, and inverse degree matrices 

are listed in Tables 28(a)–(c), respectively. The perturbation on lines 2–5 yields the graph 

shown in Figure 35, where edges created by the perturbation are depicted as dotted lines 

and the corresponding perturbed matrix is listed in Table 28(d). The initial PageRank and 

history vectors, x0 = 14,1 4 and s0 = 04,1 ,  are shown in Tables 29(a) and (b), respectively. 

The revised vectors produced by executing the first power method iteration are shown in 

Tables 29(c) and (d), respectively. The normalization step performed on line 17 does not 

change x in this particular example. 

d 

cb 

a 

Figure 34. Paw Graph [Wes01] 

cb 

d 

a 

0.46 

0.04 0.04 

0.32 

0.04 0.04 

0.04 

0.04 

0.32 0.89 

0.46 

0.32 

0.46 

Figure 35. Applying the PageRank Perturbation to the Paw Graph, α = 0.85 
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Table 28. Paw Graph’s Adjacency and PageRank Matrices, α = 0.85 

(a) A (b) D (c) D−1 

a b c d 
a 0 1 1 1 

b 1 0 1 0 

c 1 1 0 0 

d 1 0 0 0 

a b c d 
a 3 0 0 0 

b 0 2 0 0 

c 0 0 2 0 

d 0 0 0 1 

a b c d 
a 1/3 0 0 0 

b 0 1/2 0 0 

c 0 0 1/2 0 

d 0 0 0 1 

(d) S α A D  1 + −  1= ⋅ ⋅ − ( α ) n , α = 0.85 

source  
a b c d 

destination 

a 0.04 0.46 0.46 0.89 1.85 

b 0.32 0.04 0.46 0.04 0.86 

c 0.32 0.46 0.04 0.04 0.86 

d 0.32 0.04 0.04 0.04 0.43 

1 ∑ 

The next iteration yields the PageRank vectors listed in Tables 29(e) and (f ). The 

power method does not converge to four decimal places until the 20th  iteration, as shown 

in the PageRank vector listed in Table 29(h), where ⎡⎢log 
2 ( ) 0.0001⎤ = 20.λ S =0.6194 ⎥ 

Table 29. Paw Graph’s PageRank Vector, α = 0.85 

(a) x0  (b) s0  (c) s = x  (d) x = ⋅S x  1 0 1 0 

a 0.25 
b 0.25 
c 0.25 
d 0.25 

a 0.4625 
b 0.2146 
c 0.2146 
d 0.1083 

a 0.25 
b 0.25 
c 0.25 
d 0.25 

a 0 
b 0 
c 0 
d 0 

(e) s = x  (f ) x = ⋅ (g) s = x  (h) x = ⋅S x S x  2 1 2 1 ∞ ∞ ∞ ∞ 

a 0.4625 
b 0.2146 
c 0.2146 
d 0.1083 

a 0.3120 
b 0.2597 
c 0.2597 
d 0.1685 

a 0.3667 
b 0.2459 
c 0.2459 
d 0.1414 

a 0.3667 
b 0.2459 
c 0.2459 
d 0.1414 
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The PageRank vector yielded by the paw graph for α = 0.85 corresponds to the 

weighted graph shown in Figure 36(a). Vertices b and c have the same PageRank value, 

0.2459, which is illustrated in Figure 36(b) using a shaded overlay. The PageRank values 

of these two vertices preclude obtaining a canonical vertex order, where the most refined 

vertex order induced by this PageRank vector is illustrated in Figure 37(a). 

The paw graph’s canonical isomorph produced by nauty lists vertex b before c. 

Therefore, the tie between their PageRank values, 0.2459, is broken by sorting on their 

PageRank values, followed by their order in the canonical isomorph. Thus, the canonical 

isomorph induces the canonical vertex order shown in Figure 37(b). However, as noted in 

Section 2.3.4.2, determining a graph’s canonical isomorph may require exponential time. 

For such graphs, a non-canonical vertex order, e.g., the order illustrated in Figure 37(a), 

may be the best that can be obtained. 

0.2459 0.2459 

0.1414 

0.3667 

0.2459 0.2459 

0.1414 

0.3667 

0.2459 0.2459 

0.1414 

0.3667 

0.2459 0.2459 

0.1414 

0.3667 

(a) PageRank Values (b) PageRank Partition 

Figure 36. Paw Graph’s PageRank Vector, α = 0.85 

(a) PageRank Order (b) Canonical Order 

Figure 37. Paw Graph’s PageRank Ordering, α = 0.85 
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As described at the end of Section 2.5.1, the PageRank vector is also unique up to 

graph isomorphism. Thus, a vertex, vi , that receives the PageRank value, xi ,  receives the 

same PageRank value after applying an arbitrary permutation matrix, P, i.e., 

P A P  ⋅ ⋅ T ↔ P S P  T ↔ P x . (27) 

Thus, two vertices contained in the same block of the orbit partition must yield 

equal PageRank values. For example, the paw graph’s orbit partition is ⎡{d , ,b c  , a ⎤ ,⎣ } {	 } { }⎦ 

where each block’s vertices yield the unique PageRank value, [0.1414, 0.2459, 0.3667 , ]

respectively. The paw graph’s orbit partition is the same as its coarsest equitable partition, 

up to a block permutation. For example, applying 1–D Weisfeiler-Lehman stabilization to 

the paw graph yields the coarsest equitable partition, ⎡{ } , ,b c  ,{a . 

The orbit partition does not always coincide with the coarsest equitable partition. 

For example, the cuneane graph yields the coarsest equitable partition and orbit partition 

illustrated in Figures 38(a) and (b), respectively. Additionally, each vertex yields the same 

PageRank value, 0.1250. Thus, in this example, applying the coarsest equitable partition 

suffices to identify which vertices must have equal PageRank values. 

⎣ d {	 } }⎤⎦ 

e 

c 

d 

b 
a 

f 

g 
h 

a 

h 
f 

b 

gc 

d e 

(a) Coarsest Equitable Partition	 (b) Orbit Partition 

⎡{a b, ,…, h}⎤ ⎡{a h} { , } , { , , , }, ,  d e  b c f g  ⎤⎣ ⎦	 ⎣ ⎦ 

Figure 38. Cuneane Graph’s Coarsest Equitable and Orbit Partitions 
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2.6. Observations about Equitable Vertices and PageRank Values 
Vertices contained in the same block of the orbit and coarsest equitable partitions 

yield equal PageRank values. However, finite-precision arithmetic limitations may cause 

vertices contained in the same block of these partitions to have unequal PageRank values. 

The algorithms described in Chapters 4 and 5 ensure vertices contained in the same block 

of these partitions have equal PageRank values. Moreover, two of the methods reduce the 

time needed to find the PageRank vector if the coarsest equitable partition is non-discrete. 

Conversely, none of the algorithms improve the PageRank algorithm’s performance if the 

graph’s coarsest equitable partition is discrete. 

⎡ , } { } { ,For example, the house graph’s coarsest equitable partition, {c d  , a , b e, }⎤⎣ ⎦ 

which is non-discrete, is illustrated in Figure 39(a). The PageRank values yielded by the 

block’s vertices are [0.172, 0.168, 0.244 ,]  respectively. The most non-discrete coarsest 

equitable partition occurs if all vertices are contained in one block, i.e., the unit partition. 

Such partitions are yielded by all k-regular graphs, in which every vertex has k neighbors. 

For example, the coarsest equitable partition of the 4-regular octahedron graph shown in 

Figure 39(b) is ⎡{ , , ,  , ,  }⎤ and each vertex has the PageRank value, 1 6  = 0.16.a b c d e  f  ⎦⎣ 

e 

c d 

b 

a 
ef 

cb

d

a

cb 

d 

a 

(a) House Graph, {c d, } , {a} , {b e}⎤ ⎡ a b c d e  f, , ,  , ,  }⎡ , (b) Octahedron Graph, { ⎤⎣ ⎦ ⎣ ⎦ 

Figure 39. Coarsest Equitable Partitions of the House and Octahedron Graphs 
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Since the coarsest equitable partition of a k-regular graph contains one block, such 

graphs yields the maximum performance gain with respect to the algorithms described in 

Chapters 4 and 5. Although k-regular graphs are trivial for the PageRank algorithm, since 

each vertex has the same PageRank value, they have many important uses. For instance, 

k-regular graphs are used to assess applications such as nauty, since finding the canonical 

isomorph of some k-regular graphs may cause such applications to need exponential time. 

Some more interesting graph families with respect to the PageRank algorithm and 

the results described in Chapters 3–5 are trees and grid graphs. For instance, many trees 

and grid graphs often yield a coarsest equitable partition containing blocks composed of 

multiple vertices. For example, the 9-vertex random tree shown in Figure 40(a) yields the 

coarsest equitable partition, {a c g i  , , ,  ,  b h} , {d , , e ⎤ ×⎡ } { , f } { } . The 3 3  grid graph shown⎣ ⎦

in Figure 40(b) yields a non-discrete coarsest equitable partition containing three blocks, 

⎡{a c g i  , ,  ,  } , { , , f h  ,b d  , } {e}⎤ .⎣ ⎦ 

c 

d 

e 

b 

a 

f 

g 

h 

i 

c 

d 

eb 

a 

f 

g 

h 

i 

(a) 9-Vertex Tree (b) 3 3×  Grid Graph 

Figure 40. Two Graphs Yielding a Non-Discrete Coarsest Equitable Partition 
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2.7. Known Results 
The PageRank algorithm is one of many methods that use eigenvector centrality 

to determine relative vertex importance. The HITS algorithm orders responses using the 

dominant eigenvector of two matrices [LaM06]. Recent social network research relaxes 

an equitable partition’s definition to determine if results similar to those described herein 

can be obtained on larger graphs [BrL04, Ler05]. The mansion graph has also been used 

to define an “almost equitable partition” and its relationship to the Laplacian eigenvectors 

of a graph (cf. Figure 1 and Section 2.4) [CDR07]. 

The work of Boldi et al. is most directly related to the results described herein, 

since they first showed that vertices contained in the same block of the coarsest equitable 

partition have equal PageRank values [BLS+06]. The earlier proof uses tools drawn from 

category theory, the minimum base and its associated fibrations, which correspond to the 

coarsest equitable partition and its associated blocks, respectively. That proof establishes 

a Markov chain’s limit distribution is constant within fibrations, i.e., the PageRank vector 

is constant within blocks. 

Boldi et al. also show, in the proof accompanying their Theorem 9 [BLS+06], that 

the PageRank vector can be lifted from the quotient matrix using techniques described in 

Section 2.3.5. They suggest applying this theorem would reduce the time required to find 

PageRank vectors, but do not define such a method or analyze its performance. However, 

they do construct an algorithm for finding the coarsest equitable partition that minimizes 

memory usage. Their last result describes graphs based on European web pages that yield 

a non-discrete coarsest equitable partition. That result suggests the PageRank algorithm’s 

performance can be improved on at least some web graphs. 
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2.8. Summary 
Section 2.1 introduced an application of the PageRank algorithm to UAV swarms, 

determining which nodes are the most beneficial for injecting misinformation assumed to 

be randomly propagated in the network. That section also explored similar applications in 

social networks, e.g., finding members that facilitate spreading rumor or diseases. 

The remainder of Chapter 2 defines tools applied in Chapters 3–5 to improve the 

PageRank algorithm’s performance if two or more nodes yield equal PageRank values. 

Section 2.2 explores deciding graph isomorphism, where graphs are said to be isomorphs 

if they define equivalent edges up to a vertex permutation. Section 2.3 defines key vertex 

partitions commonly used to help decide graph isomorphism, such as equitable partitions. 

The coarsest equitable partition is the most refined partition found if every vertex 

is placed in one block and the only operations used are the sorting and comparison of any 

adjacent vertex labels, e.g., as done in 1-D Weisfeiler-Lehman stabilization. The quotient 

graph (matrix) induced by a partition is defined in Section 2.3.5. The eigenvector of a key 

quotient matrix is used to obtain the most notable results herein, as shown in Chapter 5. 

Section 2.4 describes some notable results that apply a graph’s eigenvalues and its 

eigenvectors. Section 2.5 defines the PageRank algorithm that orders vertices by applying 

a certain eigenvector. The algorithm ensures the eigenvector exists by first perturbing the 

adjacency matrix to obtain a positive stochastic matrix that defines a Markov chain. The 

dominant eigenvector of that matrix represents the Markov chain’s stationary distribution. 

The eigenvector can be obtained using the power method, an iterated dot product process. 

The results described in Chapters 3–5 improve the PageRank algorithm’s performance by 

decreasing the number and size of the dot products computed by the power method. 
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III. Establishing Equitable Equivalency 

3.1. Overview 
A practical lower bound on the PageRank algorithm’s execution time is developed 

in Section 3.2. This result is derived by applying two assumptions related to the scaling 

value, α, and required precision, τ. Combining these assumptions with recent results that 

determined the upper bound on the PageRank algorithm’s complexity [HaK03] yields the 

lower bound. The existing upper bound and the new practical lower bound are essentially 

derived by applying a known bound on the number of power method iterations [GoV88], 

which is based on the two dominant eigenvalues of the PageRank matrix, S. 

The material in Section 3.3 highlights the similarity between the dot product and 

1-D Weisfeiler-Lehman stabilization. In particular, the coarsest equitable partition yielded 

by applying 1-D Weisfeiler-Lehman stabilization is identical to the partition yielded by a 

process based on the dot products, as illustrated by the example provided in Section 3.3.1. 

This method of finding the coarsest equitable partition is listed in Section 3.3.2 and has 

the same complexity bounds as 1-D Weisfeiler-Lehman stabilization. Its key contribution 

is to highlight the relationship between the coarsest equitable partition and dot product. 

More precisely, the proof constructed in Section 3.4.1 shows vertices contained in 

the same block of the coarsest equitable partition must yield equal iterated dot products. 

Such vertices also must have equal PageRank values, as established in Section 3.4.2 and 

considered further in Section 3.4.3. This relationship between a graph’s coarsest equitable 

partition and its PageRank values was previously and independently shown after applying 

different techniques [BLS+06]. The relationship’s potential impact on the execution time 

needed to compute the dot product and PageRank vectors is explored in Section 3.4.4. 
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3.2. Lower Bound on the Expected Number of Power Method Iterations 
Before exploring the relationship between the coarsest equitable partition and the 

PageRank vector, it is useful to determine a lower bound on the number of power method 

iterations needed to obtain sufficient numerical precision in the PageRank vector, x. The 

practical upper bound on the number of iterations, denoted t, is (cf. Section 2.5.2.2) 

log b τt ≤ log τ ≤ log α τ = . (28)Sλ2 ( )  log bα 

The PageRank algorithm’s developers report log 2 n  iterations often suffices, and 

this behavior has been reported by other researchers [PBM+98, ANT+02]. However, no 

theoretical derivations about t’s lower bound are known. Applying three key assumptions 

does yield a practical lower bound on the number of power method iterations. 

The key assumption is α ≥ 0.5,  where the range, α ∈[0.5,1.0 , ]  also includes the 

default scaling factor, α = 0.85. The second assumption is b = 2, where the upper bound, 

log b τ log bα , is independent of any base, b. The third assumption is τ ≤1 ,  the largest n 

tolerance that can potentially yield n distinct PageRank values. 

Theorem 1 Assuming α ≥ 0.5  and b = 2, the practical lower bound on 
the number of power method iterations, t, to ensure τ ≤  is log 2 n.

Proof Assuming α ≥ 0.5, b = 2, and τ ≤1 ,n substitution yields 

log b τ 2 ( n) ( n)log 1  log 1  
log α τ = = = 2 = − log 2 ( )  1 = log n t  . ∎n 2 ≤ 

log bα log 2 ( )  −10.5 

Thus, combining the existing upper bound and the new practical lower bound, the 

number of power method iterations, t, needed to compute the PageRank vector, x, are 

log 2 n t log ≤ ≤ τ ≤ log α τ . (29)Sλ2 ( )  

1 n 
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3.3. Motivating Equitable Dot Products and PageRank Values 
The fundamental objective of this section is to motivate the techniques applied in 

the proofs constructed in Section 3.4. The proof of Theorem 2 shows vertices contained 

in the same block of a graph’s coarsest equitable partition must yield equal dot products. 

The proof of Theorem 3 shows vertices contained in the same block of a graph’s coarsest 

equitable partition must yield equal PageRank values. Hence, such vertices are equitable 

with respect to iterated dot products and PageRank values. 

There are several equivalent methods of finding the coarsest equitable partition, 

where each method yields the same coarsest equitable partition up to a block permutation. 

For instance, three methods of computing the coarsest equitable partition are described in 

Section 2.3.3. However, neither the method based on the partition’s formal definition that 

is described in Section 2.3.3.1, nor the most efficient method known of determining the 

partition described in Section 2.3.3.2 implicitly suggest a matrix dot product equivalency. 

Fortunately, 1-D Weisfeiler-Lehman stabilization, as described in Section 2.3.3.3, yields 

such an equivalency. Moreover, that method yields a parallel processing implementation 

of computing the coarsest equitable partition, since rows can be sorted independently. 

The link between the coarsest equitable partition and dot product is predicated on 

observing 1-D Weisfeiler-Lehman stabilization sorts each matrix row and the dot product 

multiplies each matrix row by a vector. Appropriately substituting prime numbers yields a 

method that uses a modified dot product to perform 1-D Weisfeiler-Lehman stabilization. 

The method is described by example in Section 3.3.1 and formally listed in Section 3.3.2. 

The algorithm’s key contribution is to motivate the proofs given in Section 3.4 that show 

vertices in the same block must have equal dot products and PageRank values. 
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3.3.1. From Weisfeiler-Lehman Stabilization to Iterated Dot Products 
This section contains an example illustrating how to obtain the coarsest equitable 

partition using dot products. For example, the house graph’s coarsest equitable partition is 

{ , } , {a} , { , }⎤ ,  if computed using 1-D Weisfeiler-Lehman stabilization. Iterated dot ⎡ c d  b e⎣ ⎦ 

products can be modified to yield the same partition. 

First, multiplying the house graph’s adjacency matrix listed in Table 30(a) with 

the ones vector listed in Table 30(b) yields the dot product vector listed in Table 30(c). 

Multiplying the house graph’s adjacency matrix with that vector yields the vector listed in 

Table 30(d), where the entries associated with vertices b and e equal 7. Closer inspection 

reveals the corresponding summed intermediate products, 1 2  0  3  1 2  0  2  1  3  ⋅ + ⋅ + ⋅ + ⋅ + ⋅  and 

1 2 1 3  0 2  1 2  0 3,⋅ + ⋅ + ⋅ + ⋅ + ⋅  respectively. Sorting the summed intermediate products yields 

the same sorted intermediate products, 0 2  0  3  1  2  1  2  1  3.  ⋅ + ⋅ + ⋅ + ⋅ + ⋅  

Similarly, multiplying the house graph’s adjacency matrix with the vector listed in 

Table 30(d) yields the vector listed in Table 30(e), where vertices b and e yield the same 

sorted products, 0 5 0 7 1 5 1 6 1 7 18, ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =  i.e., no further vertex refinement occurs. 

Thus, the house graph’s coarsest equitable partition appears to be ⎡{ , } , { }, { , }c d  a b e  ⎤ .⎣ ⎦ 

Table 30. Iterated Dot Products of the House Graph’s Adjacency Matrix 

(a) A 5,1 (c) x  A x  (d) x  A x  (e) x = ⋅(b) x0 = 1 1 = ⋅ 0 2 = ⋅ 1 3 A x  2 

a b c d e 
a 0 1 0 0 1 

b 1 0 1 0 1 

c 0 1 0 1 0 

d 0 0 1 0 1 

e 1 1 0 1 0 

a 1 

b 1 

c 1 

d 1 

e 1 

a 2 

b 3 

c 2 

d 2 

e 3 

a 6 

b 7 

c 5 

d 5 

e 7 

a 14 

b 18 

c 12 

d 12 

e 18 
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The vector shown in Tables 30(d) and (e) coincide with the house graph’s coarsest 

equitable partition, ⎡{ , } , {a}, { , }⎦⎤ .  Vertices b and e yield 18, where vertices yieldingc d  b e  ⎣ 

the same dot product are contained in the same block of the coarsest equitable partition. 

However, it is erroneous to conclude iterated dot products of a graph’s adjacency matrix 

must coincide with the coarsest equitable partition. In fact, a counter-example is obtained 

in the next step in the example, which is based on prime number substitution. 

Before proceeding, it is worth noting the key goal is to show vertices contained in 

the same block of the coarsest equitable partition yield equal dot products. The example 

motivates this result by suitably modifying the iterated dot product process to show that 

the dot product could be used, albeit inefficiently, to find the coarsest equitable partition. 

The first change substitutes all dot product entries with prime numbers. This step 

eliminates a key problem in finding the coarsest equitable partition using the dot product, 

namely, that two sets may yield equal products although each set contains distinct values. 

For example, the distinct sets, {6,6} and { } ⋅ = ⋅ =  4 9 4,9 ,  yield the equal product, 6 6 36. 

However, appropriately substituting distinct prime numbers often suffices to distinguish 

such sets, e.g., applying the substitution, [4,6,9 ]→ [2,3,5 ,] ⋅ ≠ ⋅2  5.  yields 3 3  

For instance, substituting the ‘1’s vector listed in Table 31(a) with a seed vector of 

‘2’s yields the seed vector listed in Table 31(b). Multiplying the house graph’s adjacency 

matrix with the ‘2’s seed vector yields the vector listed in Table 31(c). Replacing the ‘4’s 

with ‘2’s and ‘6’s with ‘3’s yields the vector shown in Table 31(d). Iterating that process 

yields the vectors shown in Tables 31(e)–(l), where the stabilization cycle is detected by 

comparing Tables 31(f )–(h) with Tables 31(j)–(l). 
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The vector listed in Table 31(f ), [3, 5, 2, 2, 5 ,]  corresponds with the house graph’s 

coarsest equitable partition, ⎡⎣{ , } {a}, { }⎤ . ]c d  , b e  , ⎦  However, the product, [10,10, 7, 7,10 , 

listed in Table 31(g) does not also correspond with the house graph’s coarsest equitable 

partition. Thus, applying prime number substitution to each vector fails to yield a process 

equivalent to performing 1-D Weisfeiler-Lehman stabilization. More precisely, applying 

prime number to each vector resolves equal product issues, e.g., 6 6 4 9 3 3 2 5, ⋅ = ⋅ → ⋅ ≠ ⋅  

but does not resolve equal summed prime products, e.g., 2 3  2  7  2 5  2 5⋅ + ⋅ = ⋅ + ⋅ =  20.  

Table 31. Iterated Prime Dot Products of the House Graph’s Adjacency Matrix 

A x  (a) x0 = 15,1 (b) x1 = getPrimes (x0 ) (c) x2 = ⋅ 1 (d) x3 = getPrimes (x2 ) 

a 1 

b 1 

c 1 

d 1 

e 1 

a 2 

b 3 

c 2 

d 2 

e 3 

a 4 

b 6 

c 4 

d 4 

e 6 

a 2 

b 2 

c 2 

d 2 

e 2 

A x  A x  (e) x4 = ⋅ 3 (f ) x5 = getPrimes (x4 ) (g) x6 = ⋅ 5 (h) x7 = getPrimes (x6 ) 

a 6 

b 7 

c 5 

d 5 

e 7 

a 3 

b 3 

c 2 

d 2 

e 3 

a 10 

b 10 

c 7 

d 7 

e 10 

a 3 

b 5 

c 2 

d 2 

e 5 

A x  (k) A x  x(i) x8 = ⋅ 7 ( j) x9 = getPrimes (x8 ) x10 = ⋅ 9 (l) x11 = getPrimes ( )  10 

a 6 

b 8 

c 5 

d 5 

e 8 

a 3 

b 5 

c 2 

d 2 

e 5 

a 10 

b 10 

c 7 

d 7 

e 10 

a 3 

b 3 

c 2 

d 2 

e 3 
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Entry uniqueness is improved by multiplying rows and columns in the adjacency 

matrix with the prime number vector yielded after the most recent iteration. This change 

first constructs the temporary matrix, T D A D, where D = diag (xi ) ,= ⋅ ⋅  and substitutes 

x = ⋅x for x = ⋅x  For example, the house graph’s initial iteration is shown in T A .i+1 i i+1 i 

Table 32. Subsequently multiplying the house graph’s adjacency matrix with the diagonal 

matrix, D, listed in Table 32(d), yields the temporary matrix, T, listed in Table 33(a). 

The next iteration yields the vector listed in Table 33(c), where the resulting prime 

numbers precisely correspond to the house graph’s coarsest equitable partition yielded by 

1-D Weisfeiler-Lehman stabilization, ⎡{c d, } , {a}, {b e  , }⎤⎦ . Additional iterations yield the⎣ 

same prime numbers, hence, the dot product iteration process has stabilized. 

Table 32. Constructing the First Prime Diagonal Matrix 

(a) x  (b) = ⋅x = (x ) = ( )xx A (c) x getPrimes (d) D diag0 1 0 2 1 2 

a 2 

b 2 

c 2 

d 2 

e 2 

a 4 

b 6 

c 4 

d 4 

e 6 

a 2 

b 3 

c 2 

d 2 

e 3 

a b c d e 
a 2 0 0 0 0 

b 0 3 0 0 0 

c 0 0 2 0 0 

d 0 0 0 2 0 

e 0 0 0 0 3 

Table 33. First Prime Dot Product Iteration 

T D D  x Z ( )(a) = ⋅ ⋅A (b) x2 (c) 3 = ⋅x2 (d) x4 = getPrimes x3 

a b c d e 
a 0 6 0 0 6 

b 6 0 6 0 9 

c 0 6 0 4 0 

d 0 0 4 0 6 

e 6 9 0 6 0 

a 2 

b 3 

c 2 

d 2 

e 3 

a 84 

b 129 

c 62 

d 62 

e 129 

a 3 

b 5 

c 2 

d 2 

e 5 
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The last step needed to illustrate vertices contained in the same block yield equal 

dot products is motivated by the impact of prime numbers on uniqueness. For example, if 

the vectors, x, y, and z, are composed of prime numbers, the intermediate multiplications 

contained in the dot products, x ⋅y and x z  are distinct, but the summed multiplications, ⋅ , 

i.e., the dot products, may be equal. Various methods can be used to resolve this issue by 

appropriately replacing the dot product summation, e.g., by sorting, and not summing, the 

intermediate multiplications contained in each dot product. 

For example, the vectors listed in Table 34 yield distinct intermediate products, 

but happen to have an equal summed value, i.e., ⋅ T =106 5 2 5 3 5 5 3 7 = ⋅ + ⋅ + ⋅ + ⋅ + ⋅  x z  5 7 

⋅ T ⋅ + ⋅ + ⋅ + ⋅ + ⋅  and y z =106 = 7 2 7 3 3 5 3 7 5 7.  However, comparing sorted product pairs 

suffices to distinguish these dot products. For example, the products, ⋅ T ,x z  and y ⋅zT 

yield [5 2, 5  3, 5  5, 3  7, 5  7⋅ ⋅ ⋅ ⋅ ] and [ ⋅ ⋅ ⋅ ⋅ ⋅ ]⋅ 7 2,  7  3,  3  5,  3  7,  5  7  ,  respectively, corresponding 

to [10,15, 25, 21, 35] and [14, 21,15, 21,  35  .]  Finally, sorting the intermediate products in 

ascending order yields [10,15, 21, 25, 35] and [14,15, 21, 21, 35 ,]  respectively. 

Since the sorted intermediate products are distinct, if x and y are assumed to be in 

rows of an arbitrary matrix and z is the vector obtained after the last dot product iteration, 

x and y cannot be located in the same block of the coarsest equitable partition. Therefore, 

the dot product can be modified to obtain the same coarsest equitable partition yielded by 

1-D Weisfeiler-Lehman stabilization. 

Table 34. Two Equal Dot Products, x z⋅ T = ⋅ Ty z 

(c) z(a) x (b) y

5 5 5 3 5 7 7 3 3 5  2 3 5 7 7 
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3.3.2. Finding the Coarsest Equitable Partition By Iterated Dot Products 
The algorithm listed in Figure 41 determines a graph’s coarsest equitable partition 

by similarly modifying the dot product. Initial values are assigned on lines 1–4, where the 

entries in the vector, x, equal the prime number, ‘2’, and the partition archive vector, s, is 

set equal to ‘0’. The partition archive vector, s, stores the values contained in x obtained 

at the end of the most recent partition stabilization iteration. 

The stabilization iteration occurs on lines 6–26, where the loop terminates if the 

partition is identical after two consecutive iterations. The current vertex partition is saved 

for future comparison on line 9, i.e., = .s x  The diagonal prime number matrix based on 

the current partition is constructed on line 11 and applied to the rows and columns of the 

adjacency matrix, A, on line 13. The nested loops on lines 14–21 implement the last step, 

where the dot product, = ⋅ ,x A x  is replaced by the sorting of the summed multiplications 

defined by each of the n dot products. The n multiplications defined by the n dot products 

are computed on lines 16–18 and lexicographically sorted on line 20. 

Each set of identical rows of sorted multiplications is assigned a unique identifier 

on line 20. These identifiers are matched to a similarly unique prime number on line 21. 

The previous and updated partitions are compared on line 6, where if the block identifiers 

entries are equal, i.e., if = ,s x  the vertex partition has stabilized and the main loop can be 

terminated. This alternative method is equivalent to 1-D Weisfeiler-Lehman stabilization 

2 2Ο ⋅  and yields the same upper bound on execution time, (n log n ⋅ log n ) ,  or equivalently, 

(n log2 ). Ο  ⋅ ⋅ log2 )Ο ⋅ n That upper bound can be reduced to (d n  n  if the graph is stored 

using adjacency lists, where d = max deg v , v V  ∈ ,  as described in Section 2.3.3.3. ( ( i )) i 
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1. findCoarsestPartition (A, n) 
2. #  create prime partition vector 

,13. x 2= ⋅1n 

4. #  create archive partition vector 
n,15. =s 0  

6. #  compute the coarsest equitable partition 
7. while (s x≠ ) 
8. # archive most recent partition 
9. =s x  

10. # construct diagonal matrix 
11. D = diag ( )x 
12. # construct intermediate prime substitution matrix 
13. = ⋅ ⋅AT D D  

14. for i from 1 to n 
15. # compute pair-wise product 
16. for j from 1 to n 
17. Z = T x  ⋅ , , ji j  i j  

18. end for 

19. # sort row of pair-wise products 
20. Zi,: = sort (Zi,: ) 
21. end for 

22. # find unique lexicographically sorted rows 
23. x = getIdenticalRowIdentifiers (Z) 

24. # substitute primes for lexicographically unique rows 
25. x = getUniquePrimes (x) 
26. end while 

27. # return equitable partition 

28. return B = ⎡b b ,…b , x = j v, ⎤ → ∈  b⎣ i=1 2 max ( )x r r j⎦ 
29. end findCoarsestPartition 

Figure 41. 1-D Weisfeiler-Lehman Stabilization Using Primes and Dot Products 
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3.4. Relating Equitable Dot Products and PageRank Values 

3.4.1.	 Equitable Dot Products 
Given an arbitrary graph, G, and its associated adjacency matrix, A, the coarsest 

equitable partition, B, can be computed by applying Weisfeiler-Lehman stabilization. The 

method listed in Figure 42 is a matrix-based algorithm for performing Weisfeiler-Lehman 

stabilization (cf. Figure 18 in Section 2.3.3.3). 

Theorem 2 Vertices contained in the same block of the coarsest equitable 
partition have equal iterated dot products, xt+1 = ⋅ ,  assuming the initial A xt 

vector’s entries are equal, i.e., x0 (i) = x j , ,0 ( ) ∀i j  . 

Proof Weisfeiler-Lehman stabilization sorts adjacent labels, whereas the 
dot product multiplies each row’s values by some vector. Replacing the 
adjacent label sorting step on line 6 with = ⋅Z A x  facilitates establishing 

, ∈ → Z = Z ,  since a contradiction is obtained if the implication is v v 	  br s	 i r s 

false, i.e., if v v, ∈ → Zr = Zs .br s	 i 

Z ⋅ +x x ⋅xAssume that the dot products, = A A ⋅ + +  " Ar r ,1 1 r ,2 2 r ,n n 

and Z = As x1 A ⋅ + +  " As ⋅xn  are not equal, i.e., that Z ≠ Zss ,1 ⋅ +  s ,2 x2 ,n	 r . 

⎡x : v v 	  ∈E⎤ ,Then, sorting the adjacent labels, { , }∈E⎤ and ⎡x : v v,⎣ i r i ⎦ j { s j} ⎦⎣ 
should have showed the vertices are contained in different blocks, i.e., that 
vr ∈bi and vs ∈bj , i j. Zr = Zs .≠  Otherwise, it must be the case that ∎ 

1. findCoarsestPartition (A, n) 
,12. =x 1n 

,13.	 =s 0n 

4.	 while (s x≠ ) 
s x5. =

1,n−deg v	 −1( )r0 ⎤6. Zr n  = ⎡ x sort (x : Ar =1),1:  r s ,s⎣ ⎦ 
7. x = getUniqueRowIdentifiers (Z) 
8. end while 

9.	 return B = ⎡b b ,…b , x i v, ⎤ = → ∈  b⎣ i=1 2 max ( )x r r i⎦ 
10. end findCoarsestPartition 

Figure 42. 1-D Weisfeiler-Lehman Stabilization Using Matrices 
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More explicitly, during each iteration, each row contained in the label matrix, Z, 

corresponds to the sorted labels of every adjacent vertex, i.e., 

1,n−deg ( ) 1v − ⎤rsort ( s : r ,s = )x A  1 0 . (30)Z ,1:  = ⎣
⎡ 

rr n  x ⎦ 

Thus, the r th  row contains the current label, xr , given to vertex r, followed by the sorted 

labels of its adjacent neighbors, min (xs 1 ) ,…, max (xs n  = ) , such that {v vr , }∈E.  Finally, = s

the row, Zr , : , is padded with n − deg (v ) −1 zero entries to ensure Z is a square matrix. r 

At the end of this iteration, r =  if and only if Zr i  = Z ,i ∀x xs , s , .i 

 Replacing (30) with the dot product, i.e., = ⋅x,Z A  induces the computation of n 

dot products, where r = ,1 ⋅ +  r ,2 ⋅ + +  " ,n ⋅ .  However, A is a graph’s {0,1}Z  A x A  x  r 1 2 A x  r n 

adjacency matrix, thus, Zr =∑x As : r ,s =1,  where Ar s, =1 ↔{v v, s}∈E.  Therefore, the r 

dot product is simply the sum of the vertex labels adjacent to vr ,  which for some graphs, 

suffices to construct the coarsest equitable partition. Thus, vertices contained in the same 

block of a graph’s coarsest equitable partition yield equal iterated dot products, assuming 

the seed vector’s entries are equal. Thus, if x = cn,1, where c is some constant, iterating 

= ⋅x and x = getUniqueRowIdentifiers (Z) yields Z Z if v vs ∈bi .Z A r = s r , 

Vertices contained in different blocks may yield equal dot products, i.e., given two 

vertices, vr and vs , such that vr ∈bi ∧ ∈vs bj ,  it is possible that r = s .Z Z  Therefore, the 

, ∈b . Applying similar logic shows the inverse is converse is false, i.e., Z Z  = → v vr s r s i 

also false, i.e., if i j, v i v bj≠  such that r ∈b ∧ ∈ →  r ≠Z Zs .  Finally, the contrapositive s 

Z Z → ∈ ∧  ∈  such that i j.is true, i.e., ≠ v b v b , ≠r s r i s j 
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3.4.2. Equitable PageRank Values 
The relationship between the coarsest equitable partition and the dot product can 

be exploited to improve the PageRank algorithm’s performance. The PageRank algorithm 

perturbs an adjacency matrix to obtain a strictly positive stochastic matrix. The PageRank 

algorithm then uses the power method to find the normalized dominant eigenvector of the 

that perturbed matrix, where the PageRank vector’s entries are unique up to isomorphism. 

This relationship is leveraged in Chapters 4 and 5 to improve the PageRank algorithm’s 

performance on graphs yielding a non-discrete coarsest equitable partition, i.e., partitions 

containing one or more blocks composed of multiple vertices. 

Theorem 3 Vertices contained in the same block of the coarsest equitable 
partition must have equal PageRank values, i.e., , ∈b → x =v v  x .r s i r s 

Proof Assume the initial PageRank vector is the normalized ones vector, 
= n,1x 1 n.  and the PageRank vector is computed using the power method, 

which computes a normalized iterated dot product. Applying Theorem 2 
suffices to establish vertices contained in the same block of the coarsest 
equitable partition must have equal PageRank values. 

Identical results also hold with respect to the converse, inverse, and 
contrapositive. For instance, vertices contained in different blocks of the 
coarsest equitable partition may have the same PageRank value. However, 
vertices having different PageRank values must be in different blocks. ∎ 

Boldi et al. first showed that vertices contained in the same block of the coarsest 

equitable partition must also have equal PageRank values [BLS+06]. Their proof is based 

on category theory, namely, the minimum base and its fibrations, which correspond to the 

coarsest equitable partition and its blocks, respectively. They show that a Markov chain’s 

stationary distribution is constant within each fibration. Similarly, the PageRank value is 

constant within each block. Their work and Theorem 3 are only sufficient, i.e., no claims 

are made in either proof about the PageRank values of vertices in different blocks. 
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3.4.3. Additional Equitable Relationships 
Notably, dot product iteration may yield a less refined partition than the coarsest 

equitable partition. Conversely, vertices contained in the same block of a graph’s coarsest 

equitable partition yield equal dot products, assuming the first dot product iteration uses a 

constant vector, e.g., the all-ones seed vector. Additionally, vertices contained in the same 

block of the orbit partition yield equal dot product values, since vertices contained in the 

same orbit are necessarily contained in the same block of the coarsest equitable partition. 

An orbit partition may be more refined than the coarsest equitable partition, i.e., 

contain more blocks. Since the coarsest equitable partition may be less refined than the 

graph’s orbit partition, it may reveal more vertices that have equal PageRank values and 

is similarly more useful for improving the PageRank algorithm’s performance. Moreover, 

the coarsest equitable partition can be obtained in deterministic polynomial time, whereas 

computing the orbit partition may require exponential time (cf. Sections 2.3.3 and 2.3.4). 

For example, the 12-vertex graph illustrated in Figure 43 yields an orbit partition 

containing three 4-vertex blocks and a coarsest equitable partition containing an 8-vertex 

block and a 4-vertex block. Hence, more performance gains can be obtained by applying 

the coarsest equitable partition, since it only contains two blocks. In particular, using the 

coarsest equitable partition establishes eight vertices have equal PageRank values and the 

other four vertices also have equal PageRank values, for any scaling value, α. 

Figure 43. Graph Yielding Different Coarsest Equitable and Orbit Partitions 
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3.4.4. Complexity Analysis 
A matrix is assumed to be a dense, or non-sparse, matrix, unless otherwise stated. 

This approach simplifies the analysis and suffices to demonstrate the utility of applying a 

graph’s coarsest equitable partition to improve the PageRank algorithm’s performance. 

An arbitrary graph, G, contains n V=  vertices and defines an adjacency matrix, A, that 

contains n2 entries. G’s coarsest equitable partition, B, contains b k =  blocks, where= B 

≤ ⎡
1 b k

⎤ kb n, B  b b  = ⎣ , ,2 …,b = =  , and n =∑ = V .biB ⎦ i=1 

Given the number of vertices, n, finding the coarsest equitable partition requires 

Ο(n2 ⋅ log n)  time using the method described in Section 2.3.3.2. Furthermore, given the 

PageRank matrix, S, obtained using some arbitrary scaling value, α, the lower bound on 

2using the power method to obtain the PageRank vector, x, is Ω(n ⋅ log n) , a new result 

derived in Section 3.2. The upper bound on using the power method to obtain an arbitrary 

2 τ ≤ log α τ , as wasprecision, τ, in the PageRank vector, x, is Ο(n t⋅ ) , where t ≤ log Sλ2 ( )  

described in Section 2.5.2.2. Thus, the PageRank algorithm, which is essentially a power 

2 2method variant has a lower and upper bound of Ω(n ⋅ log n) and Ο(n t⋅ ) ,  respectively. 

The coarsest equitable partition can be determined in Ο(n2 ⋅ log n)  time using the 

algorithm described in Section 2.3.3.2. Thus, a PageRank algorithm variant that applies 

the coarsest equitable partition increases its execution time bounds by a n2 ⋅ log n  term. 

Thus, such a PageRank algorithm variant yields the lower and upper bounds, 2 ⋅ ⋅  nn2 log  

2 2 2 2 2n n t  Ω n log ⋅ n n t  ⋅ .and n ⋅ log + ⋅ ,  respectively, which are ( ⋅ n) and Ο(n log + ) 
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Therefore, any algorithm that applies the coarsest equitable partition to reduce the 

execution time of the PageRank algorithm must recoup the cost of initially computing the 

partition, i.e., the n2 ⋅ log n  term. Such efficiencies can be obtained by observing vertices 

contained in some arbitrary block, bi , yield equal PageRank values, where −1 of thebi

dot products are being (unnecessarily) computed. For instance, the PageRank algorithm’s 

b B= =2 b n log n) , n =∑lower bound, Ω(n ⋅ log n) , can be written as Ω(∑ ⋅ ⋅  i.e., b B  
i bii=1 i=1 

dot products of length n for log n iterations. Similarly, the PageRank algorithm’s upper 

b B=2bound, Ο(  )n t⋅ , can be equivalently written as Ο(∑ ⋅ ⋅ t ).b nii=1 

Hence, a PageRank algorithm variant that applies the coarsest equitable partition 

b B  
⋅ ⋅  log n) ,  and similarly, the upper bound, nyields the lower bound, Ω(n2 ⋅ log n +∑ i 

= bi=1 

b B=2Ο(n ⋅ log n +∑ ⋅ ⋅  t ).  Thus, eliminating n ⋅ log nn 2  or more operations will reduce bii=1 

the time required to obtain the PageRank vector. The ProductRank algorithm described in 

Section 4.3 eliminates −1  dot products from block bi of a coarsest equitable partition.bi

The QuotientRank algorithm described and analyzed in Chapter 5 uses a quotient matrix 

to reduce the time needed to obtain the PageRank vector more dramatically. 

Finally, decreasing τ increases precision by increasing the executed number of 

power method iterations. However, increasing precision cannot ensure vertices contained 

in the same block have equal computed PageRank values. The three algorithms described 

in Chapters 4 and 5 guarantee each block’s vertices have the same PageRank values. The 

latter two algorithms often compute the PageRank values more efficiently. 

87
 



 

 

 

 

 

 

 

IV. Reducing Equitable Differences and Dot Products 

4.1. Overview 
The relationship of the PageRank vector to the coarsest equitable partition shown 

in Chapter 3 yields several methods of improving the PageRank algorithm’s performance 

if the graph’s coarsest equitable partition is non-discrete, i.e., contains one or more blocks 

composed of multiple vertices. For instance, the two algorithms described in this chapter 

leverage that vertices contained in the same block of the coarsest equitable partition have 

identical iterated dot products up to a permutation of the summed intermediate products. 

The first algorithm, AverageRank, replaces the computed PageRank value of each 

vertex with the average PageRank value of vertices contained in the corresponding block. 

Thus, vertices contained in the same block will receive the same PageRank value, which 

eliminates any numerical differences in the computed PageRank values of such vertices. 

The second algorithm, ProductRank, computes one dot product for each block contained 

in the coarsest equitable partition during each power method iteration. The ProductRank 

algorithm guarantees vertices contained in the same block have the same PageRank value 

and reduces the execution time needed to compute the PageRank vector. 

Both algorithms ensure vertices contained in the same block have equal PageRank 

values if the power method used to determine the PageRank vector is terminated after an 

arbitrary iteration. The ProductRank algorithm also reduces the time needed to obtain the 

PageRank vector by only computing certain dot products and thus is more useful than the 

AverageRank algorithm. Both algorithms are superseded by the QuotientRank algorithm 

described in Chapter 5, which uses significantly more robust techniques to further reduce 

the time needed to compute the PageRank vector. 
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4.2. Eliminating Equitable PageRank Differences 

4.2.1. Numerical Differences and Equitable Vertices 
Vertices that are contained in the same block of the coarsest equitable partition of 

an arbitrary graph must have equal PageRank values. However, the PageRank values may 

differ if the values are computed using finite-precision arithmetic, where such differences 

induce an invalid vertex ordering. Such differences may occur even after many iterations 

of the power method have been performed to obtain the PageRank vector. The following 

example is based on the tree shown in Figure 44 that yields the adjacency matrix listed in 

Table 35 and the coarsest equitable partition, ⎡⎣{a c g i  , ,  ,  } , {b h} , { d f  , } , { }⎦, e ⎤ . 

a 

he 

d g 

b 

ifc 

Figure 44. 9-Vertex Tree: A Graph Yielding a 4-Block Equitable Partition 


Table 35. A 9-Vertex Tree’s Adjacency Matrix 


a b c d e f g h i 
a 0 1 0 0 0 0 0 0 0 

b 1 0 1 0 1 0 0 0 0 

c 0 1 0 0 0 0 0 0 0 

d 0 0 0 0 1 0 0 0 0 
e 0 1 0 1 0 1 0 1 0 
f 0 0 0 0 1 0 0 0 0 
g 0 0 0 0 0 0 0 1 0 

h 0 0 0 0 1 0 1 0 1 

i 0 0 0 0 0 0 0 1 0 
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This tree’s PageRank vector for α = 0.85  is listed in Table 36(a), where sorting its 

entries in descending order in Table 36(b). Since the tree’s coarsest equitable partition is 

{a c g i  , ,  ,  } ,{b h, } ,{d f  , } ,{e}⎤ ,  vertices { , ,  , }⎡ a c g i  should have the same PageRank value. ⎣ ⎦

The PageRank vector listed in Table 36(a) initially confirms this expected behavior, since 

vertices { , ,  , }a c g i  have an equal PageRank value up to the fourth decimal place, 0.0682. 

However, close inspection shows the PageRank values of vertices g and i are 1.388 10-17 ⋅ 

greater than the PageRank values of vertices a and c. The difference occurs in the last bit 

of the double-precision format specified by the IEEE 754 standard [ISB85]. The value, 

1.388 10⋅ -17 ,  is small in magnitude and induces a false order on vertices {a c g i  , ,  , } ,  where 

vertices g and i erroneously receive a higher PageRank value than vertices a and c. 

In this example, rounding to four decimal places ensures vertices contained in the 

same block have equal PageRank values. However, simply rounding the PageRank vector 

cannot guarantee such vertices have equal PageRank values. In particular, the computed 

PageRank values of vertices contained in each block may be above or below the rounding 

point and thus may receive different rounded PageRank values. 

Table 36. A 9-Vertex Tree’s PageRank Vector, α = 0.85 

(a) PageRank Vector (b) Sorted PageRank Vector 

a 0.0682 
b 0.1818 
c 0.0682 
d 0.0659 
e 0.2318 
f 0.0659 
g 0.0682 
h 0.1818 
i 0.0682 

0.2318 e 
0.1818 b 
0.1818 h 
0.0682 g 
0.0682 i 
0.0682 a 
0.0682 c 
0.0659 d 
0.0659 f 
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4.2.2. AverageRank: An Algorithm for Eliminating Equitable Differences 
Fortunately, differences in the computed PageRank values of vertices contained in 

the same block of the coarsest equitable partition can be easily eliminated. The algorithm 

listed in Figure 45 sets the PageRank value of each block’s vertices to the average of their 

computed values without internally modifying the PageRank algorithm (cf. Section 2.5). 

First, the PageRank vector is determined on line 3 using the PageRank algorithm. 

The coarsest equitable partition on line 5 is obtained using any method described 

in Section 2.3.3, e.g., 1-D Weisfeiler-Lehman stabilization. PageRank values differences 

among vertices in the same block are eliminated on lines 6–11 by setting their PageRank 

values to their corresponding average PageRank value. The median could be used in lieu 

of the average, but determining the median PageRank value requires (n log n)  time, Θ ⋅

whereas determining the average PageRank value only requires Θ(n)  time. 

1. findEquitablePageRank (A, n, α ,τ ) 
2. #  compute the PageRank vector 
3. x ← getPageRank (A, n, α ,τ ) 

4. #  compute the coarsest equitable partition 
5. B ← findCoarsestPartition (A, n) 

6. #  assign average PageRank value of equitable vertices 
7.  foreach , i ∈Bblock b 
8. foreach vertex v , j ∈bi 

9. x ( ) ← x bij ( )
10. end foreach 
11.  end foreach 

12.  return x 
13. end EquitablePageRank 

Figure 45. AverageRank: An Algorithm for Ensuring Equitable PageRank Values 
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4.2.3.	 Complexity Analysis 
Applying the power method to an arbitrary PageRank matrix, S, requires at least 

Ω(n2 ⋅ log n)  time, a new result described in Section 3.2. The coarsest equitable partition 

2can be found in Ο(n ⋅ log n)  time by applying the algorithm described in Section 2.3.3.2. 

Thus, the power method’s lower bound equals the upper bound on computing the coarsest 

equitable partition. Obtaining the average PageRank value of the vertices contained in the 

B 2same block requires Θ(n =∑ )  time and is dominated by n ⋅ log n. Thus, the lowerbii=1 

2	 2⋅ n log  + Ω(n log bound on the AverageRank algorithm is 2 ⋅ n n  , which is ⋅ n). 

2The upper bound on applying the power method to S is Ο(n t⋅ ) , where t denotes 

the number of power method iterations and t ≤ logα τ  (cf. Section 2.5.2.1). Therefore, the 

power method’s upper bound exceeds the complexity of computing the coarsest equitable 

partition, since log α τ ≥ log n  for most practical values of n, τ, and α. Thus, by combining 

2the upper bounds of applying the power method, Ο(n t⋅ ) ,  finding the coarsest equitable 

2partition, Ο(n ⋅ log n) ,  and obtaining mean PageRank values, Θ(n) , the upper bound 

2 2	 2 2n n t n  + , Ο n log +on the AverageRank algorithm is n ⋅ log + ⋅ which is ( ⋅ n n t  ⋅ ). 

The AverageRank algorithm ensures each block’s vertices receive equal PageRank 

values, but costs n2 ⋅ log n  more time than the PageRank algorithm. The ProductRank and 

QuotientRank algorithms described in Section 4.3 and Chapter 5, respectively, provide 

this same assurance and decrease the PageRank algorithm’s execution time if the graph’s 

coarsest equitable partition is non-discrete. 
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4.3. Eliminating Equitable PageRank Dot Products 

4.3.1. Excess Dot Products and Equitable Vertices 
The AverageRank algorithm described in Section 4.2.2 eliminates differences in 

PageRank value between vertices contained in the same block of the coarsest equitable 

partition and increases the PageRank algorithm’s execution time. Conversely, the method 

described in Section 4.3.2, the ProductRank algorithm ensures vertices in the same block 

have equal PageRank values and decreases the PageRank algorithm’s execution time. 

For example, the house graph shown in Figure 46(a) yields the coarsest equitable 

partition, ⎡{ , } ,{a} ,{ , ⎤ ,  shown in Figure 46(b). Since vertices b and e are contained c d  b e  }⎣ ⎦

in the same block, it suffices to obtain one of their associated dot products and assign its 

value to their associated PageRank vector entries during each power method iteration. 

Multiplying the house graph’s PageRank matrix listed in Table 38 with the initial 

PageRank vector, the normalized all-ones vector shown in Table 39(a), yields the updated 

PageRank vector shown in Table 39(b). More significantly, the intermediate product sums 

yielded by vertices b and e are 0.455 0.2 ⋅ + 0.030 0.2 + ⋅ + 0.030 0.2 0.455 0.2 ⋅ + 0.313 0.2 

and 0.455 0.2 + 0.313 0.2 + 0.030 0.2 ⋅ + 0.455 0.2 + 0.030 0.2,  respectively. 

Inspection reveals ordering the intermediate products yields the same sorted list, 

0.030 0.2 + 0.030 0.2 + 0.313 0.2 ⋅ + 0.455 0.2 + 0.455 0.2.  Vertices c and d also yield the 

same intermediate products up to isomorphism, since vertices c and d are also contained 

in the same block of the coarsest equitable partition. Hence, a second dot product can be 

eliminated during each power method iteration. The ProductRank algorithm described in 

Section 4.3.2 applies this technique to decrease the PageRank algorithm’s execution time. 

The potential performance improvement is formally determined in Section 4.3.3. 

93
 



 

 
  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

  

   

eb 
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c d 
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c d 
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(a) House Graph (b) Coarsest Equitable Partition
 

Figure 46. House Graph and Its 3-Block Coarsest Equitable Partition 


Table 37. House Graph’s Adjacency and Degree Matrix
 

(a) A (b) D
 

a b c d e 
a 0 1 0 0 1 

b 1 0 1 0 1 

c 0 1 0 1 0 

d 0 0 1 0 1 

e 1 1 0 1 0 

a b c d e 
a 2 0 0 0  0 

b 0 3 0 0  0 

c 0 0 2 0  0 

d 0 0 0 2  0 

e 0 0 0 0  3 

Table 38. House Graph’s Stochastic PageRank Matrix, S, α = 0.85 

a b c d e 
a 0.030 0.313 0.030 0.030 0.313 

b 0.455 0.030 0.455 0.030 0.313 

c 0.030 0.313 0.030 0.455 0.030 

d 0.030 0.030 0.455 0.030 0.313 

e 0.455 0.313 0.030 0.455 0.030 

Table 39. Initial PageRank Power Method Iterations of the House Graph 
5,1 S x⋅ ⋅ ⋅S x  S x1 0 1 2(a) x0 = (b) x1 = (c) x2 = (d) x3 = 

S x S x5 ∑(S x⋅ 0 ) ∑( ⋅ 1 ) ∑( ⋅ 2 ) 

a 0.2 

b 0.2 

c 0.2 

d 0.2 

e 0.2 

a 0.143 

b 0.257 

c 0.172 

d 0.172 

e 0.257 

a 0.175 

b 0.237 

c 0.176 

d 0.176 

e 0.237 

a 0.164 

b 0.246 

c 0.172 

d 0.172 

e 0.246 
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4.3.2. ProductRank: An Algorithm for Eliminating Equitable Dot Products 
In the AverageRank algorithm described in Section 4.2.2, the PageRank value of 

each block’s vertices was set to their average PageRank value. That method exploits the 

relationship established in Section 3.4.2, that such vertices yield identical dot products up 

to a permutation and thus have equal PageRank values. In that algorithm, the average is 

obtained after the power method is terminated, i.e., no internal modifications are made to 

the PageRank algorithm. The iterated dot product relationship is further exploited in this 

section to develop an algorithm that reduces the time needed to compute the PageRank 

vector by computing one dot product for each block during each power method iteration. 

However, to achieve that result, the PageRank algorithm must be internally modified. 

The unaltered PageRank algorithm listed in Figure 33 is repeated in Figure 47(a). 

Since lines 1–10 are unchanged in the ProductRank algorithm listed in Figure 47(b), they 

are not listed. The first change is to obtain the coarsest equitable partition on line 11 using 

the findCoarsestPartition function. That function can implement any of the three methods 

described in Section 2.3.3 for computing the graph’s coarsest equitable partition. 

The next change is to replace the matrix multiplication step in line 16, x ← ⋅ ,S x  

of the original PageRank algorithm with lines 17–24 in the ProductRank algorithm. The 

lines are similar to lines 6–11 in Figure 45, which assign the average PageRank value of 

each block’s vertices to those same vertices. In this algorithm, the dot product of the first 

vertex in every block is computed on lines 19 and 20. The resulting updated PageRank 

value is subsequently assigned to each vertex in that block using the loop on lines 21–23. 

The ProductRank algorithm’s remaining lines, 25–31, are identical to lines 17–23 in the 

original PageRank algorithm listed in Figure 47(a). 
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1. getPageRank (A, n, α ,τ ) 
2. # perturb adjacency matrix 

n3. di ←∑ i=1 
A:,i 

4. D ← diag ( )d 

5. # apply PageRank perturbation 

6. S ← ⋅ ⋅α A D  −1 ( )  1 α+ −  n 

7. #  initialize vectors and counter 
n,1x 1  n8. ←

n,19. ←s 0  

10. z ← 0 

11. #  iterate power method 

12. while ( s x
2 
>τ )−

13. #  save PageRank vector 

14. s ← x 

15. #  update PageRank vector 

16. ← ⋅xx S

17. #  normalize PageRank vector 

18. x ← x ∑x 

19. #  increment loop counter 

z ← +20. z 1 

21.  end while 

22. return x 

23. end PageRank 

(a) PageRank Algorithm 

1. getPageRank (A, n, α ,τ ) 
# 

11. #  get coarsest equitable partition 

12. B = findCoarsestPartition ( )A, n 

13. #  iterate power method 

14. while ( s x >τ )−
2 

15. #  save PageRank vector 

16. s ← x 

17. #  update PageRank vector 

18. foreach block b i ∈, B 

19. v ← bi (1) 

x ← S x20. :,v ⋅

21. foreach vertex v ∈ i, b 

22. xv ← x 

23. end foreach 

24. end foreach 

25. #  normalize PageRank vector 

26. x ← x ∑x 

27. #  increment loop counter 

28. z ← z +1 

29. end while 

30. return x 

31. end PageRank 
(b) ProductRank Algorithm 

Figure 47. ProductRank: An Algorithm for Eliminating Equitable Dot Products 
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4.3.3. Complexity Analysis 
The AverageRank algorithm described in Section 4.2.2 ensures vertices contained 

in the same block have equal PageRank values. The ProductRank algorithm described in 

Section 4.3.2 similarly ensures vertices contained in the same block have equal PageRank 

values. However, the ProductRank algorithm reduces the number of operations needed to 

compute the PageRank vector if a graph’s coarsest equitable partition is non-discrete. The 

performance gain is obtained by only computing one dot product for every block during 

each power method iteration. This method succeeds since vertices contained in the same 

block yield equal dot products up to a permutation of their intermediate multiplications. 

Therefore, the ProductRank algorithm reduces the time needed to compute the PageRank 

vector if the coarsest equitable partition is non-discrete. Thus, the ProductRank algorithm 

listed in Section 4.3.2 supersedes the AverageRank algorithm listed in Section 4.2.2. 

For example, it was shown in Section 4.3.1 that applying the PageRank algorithm 

to the house graph requires five dot products to be computed during each power method 

iteration, which requires a total of 25 multiplications and 20 additions. The house graph’s 

coarsest equitable partition contains three blocks, where two blocks contain two vertices, 

thus, two dot products can be eliminated from each block in each power method iteration. 

Each iteration performed by the AverageRank algorithm computes 5 dot products, 

which requires 25 multiplications and 20 additions. Conversely, each iteration performed 

in the AverageRank algorithm only computes 3 dot products, requiring 15 multiplications 

and 12 additions. Thus, if three iterations are executed, ensuring three bits of precision, 

the AverageRank algorithm performs (25 + 20) ⋅3 =135 operations, but the ProductRank 

algorithm only performs (15 +12) ⋅3 = 81 operations. 
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If α ≥ 0.5 and τ ≤1 ,n  the PageRank algorithm needs at least Ω ⋅n2 log n  time, ( ) 
2as shown in Section 3.2. Obtaining the coarsest equitable partition requires Θ  ⋅  (n log n) 

time, as noted in Section 2.3.3.2. Hence, the ProductRank algorithm obtains the coarsest 

2 2equitable partition in Ω  ⋅(n log n)  time and applies the power method in Θ  ⋅  (n log n) 

( )time, yielding an overall lower bound of Ω ⋅  n2 log n . 

2The PageRank algorithm’s upper bound is Ο(n t⋅ ) , where t ≤ log τ denotes theα

maximum number of required power method iterations, as described in Section 2.5.2. The 

2ProductRank algorithm computes the graph’s coarsest equitable partition in Θ  ⋅  (n log n) 
2time and applies the power method in Ο(n t⋅ )  time, yielding an overall upper bound of 

2 2(n log +  ⋅  ).Ο ⋅  n n t

Sharper bounds can be derived by accounting for the dot products eliminated by 

applying the coarsest equitable partition. If a block contains s vertices, s −1 dot products, 

or (  )− ⋅n  multiplications and (s −1) ⋅ −  additions are saved in each power method s 1 (n 1) 

iteration. If t iterations are performed, ( − ) ⋅ ⋅ − ⋅n 1) t  operations are eliminated. s 1 2( 

A coarsest equitable partition, B, contains b = B blocks, where n = bi . Only∑ B 

=1i 

one dot product is computed for each block, therefore, the algorithm yields a lower bound 

2 2Ω ⋅  + ⋅ ⋅ )of (n log n b n log n , where n ⋅ log n  operations are used to compute the coarsest 

equitable partition and b n⋅ ⋅ log n operations are used to obtain b dot products of length n 

2 nfor at least log n  iterations. Similarly, the upper bound is Ο(n ⋅ log n b+ ⋅ ⋅  t ). 
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For example, the 4× 4  grid graph shown in Figure 48 yields the coarsest equitable 

partition listed in Table 40. The partition contains 3 blocks, hence, only 3 dot products are 

computed during every power method iteration. Eliminating 13 of 16 dot products saves 

13 ⋅ (16 +15) = 403  floating-point operations. Computing the remaining three dot products 

only requires 3 16  ( +15  ) = 93   floating-point operations. ⋅ 

Obtaining the coarsest equitable partition requires as many as 162 ⋅ log 16 = 10242 

operations. Since ⎡1024 403 ⎤ = 3,  at least four power method iterations must be executed ⎢ ⎥

before the PageRank algorithm’s execution time is reduced. However, since log 2 n = 4, at 

least that many iterations are performed to obtain the PageRank vector. Thus, if α ≥ 0.5 

and τ ≤ 1 n ≤ 1 16 ≤ 0.0625,  the Product Rank algorithm shown in Figure 47(b) needs less 

time than the PageRank algorithm to compute this grid graph’s PageRank vector. 

164 128 

3 7 11 15 

2 6 10 14 

1 1395 

Figure 48. 4 4  Grid: A Graph Yielding a 3-Block Equitable Partition ×

Table 40. 4 4  Grid Graph’s 3-Block Coarsest Equitable Partition ×

i Block ib ∈ B 

1 {1, 4, 13, 16} 

2 {2, 3, 5, 8, 9, 12, 14, 15} 

3 {6, 7, 10, 11} 
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4.3.4. Algorithm Applicability 
The decision to use the ProductRank algorithm listed in Figure 47(b) or the more 

efficient QuotientRank algorithm developed in Chapter 5 to obtain the PageRank vector 

hinges on several factors, where this section prefaces the more in-depth analysis provided 

in Section 5.7. The key factors are the number of blocks, b, in a graph’s coarsest equitable 

partition, B, PageRank scaling value, α, and required precision in the PageRank vector, τ. 

To simplify the analysis, it is assumed α ≥ 0.5 and τ ≤1 ,  where =n n V  ,  the number of 

vertices in the input graph, G. 

Loosely stated, if b is sufficiently less than n, applying either method dramatically 

reduces the time needed to obtain the PageRank vector. However, if b is sufficiently large 

with respect to n, where b n,≤  applying the ProductRank or QuotientRank algorithm can 

increase the time needed to obtain a PageRank vector by a factor of two, i.e., 2 n2 log  .⋅ ⋅  n 

The worst case occurs if the coarsest equitable partition is discrete, i.e., if b n,=  since the 

time needed to obtain the coarsest equitable partition equals the lower bound of obtaining 

the PageRank vector, n2 ⋅ log n.  However, the PageRank algorithm’s upper bound can be 

significantly reduced if the graph’s coarsest equitable partition is discrete, i.e., if b n.< 

Unfortunately, it is impossible to assess a priori if the graph yields a non-discrete 

coarsest equitable partition containing a sufficiently small number of blocks, b. Assuming 

b is sufficiently small with respect to n, the PageRank vector is obtained more efficiently 

using either the ProductRank algorithm listed in Section 4.3.2 or QuotientRank algorithm 

constructed in Chapter 5. Although both algorithms are more efficient than the PageRank 

algorithm, the ProductRank algorithm is easier to implement, whereas the QuotientRank 

algorithm more dramatically reduces the time needed to compute the PageRank vector. 
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V. Lifting PageRank Values 

5.1. Overview 
A more dramatic decrease in the PageRank algorithm’s execution time is obtained 

using the quotient matrix induced by the graph’s coarsest equitable partition, as shown in 

Section 5.2. An example that applies the quotient matrix to obtain the PageRank vector is 

constructed in Section 5.3. The corresponding algorithm is described in Section 5.4 and 

its analysis is contained in Section 5.5. The utility of the quotient graph was also obtained 

using different tools by Boldi et al. [BLS+06]. However, they did not develop a method 

similar to the QuotientRank algorithm described and analyzed in Sections 5.4 and 5.5. 

For example, the coarsest equitable partition of the graph shown in Figure 49(a) is 

⎡ 2,4,6,8,10,12 , 1,3,5,7,9,11}⎦  and induces the quotient graph shown in Figure 49(b). 

Every vertex in each block is linked to two vertices in the other block, hence, the pair of 

2-edges, and odd-labeled vertices are linked to one odd-labeled vertex, hence, the 1-loop. 

As will be shown in this chapter, the PageRank vector can be obtained more efficiently 

by lifting the dominant eigenvector of a 2 2  quotient matrix (cf. Section 2.3.5), instead 

⎣{ } { ⎤ 

×

of computing the dominant eigenvector of the original graph’s 12×12 PageRank matrix. 

8 

10 
911 

7 
12 

2 

4 

35 

1 

6 

{1,3,5,7,9,11} {2,4,6,8,10,12} 

2 

2 
1 

(a) Pseudo-Benzene (b) Quotient Graph 


Figure 49. Pseudo-Benzene: A Graph Yielding a 2-Block Equitable Partition [StT99]
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5.2.	 Quotient Computations 
As described in Section 2.3.5, given some arbitrary matrix, M, and some similarly 

arbitrary partition, B, the entries in the quotient matrix, Q, induced by B correspond to the 

average row sums in M with respect to B. Formally, Q is obtained by computing [Hae95] 

= (B B)−1 
⋅  ⋅ ⋅  Q T ⋅ BT M B  

(31) 
= † ⋅ ⋅  ,B M B

where B is the characteristic block matrix whose n V rows correspond to the vertices= 

contained in V and b = B columns correspond to the blocks contained in B, respectively. 

Given an arbitrary graph, G, and its associated adjacency matrix, A, it is critical to 

construct the appropriate quotient matrix, Q. For instance, an incorrect approach is to first 

compute the quotient matrix based on A, where 

Q = (BT ⋅B)−1 
BT A B  

(32) 
= † ⋅ ⋅  ,B A B

and subsequently apply the PageRank perturbation, where 

SQ Q D  Q 
1 (1 α ) n . 	(33)= ⋅ ⋅ −α + −  

However, applying the PageRank algorithm to SQ  yields the correct PageRank 

vector if α =1.  Given an adjacency matrix, A, the correct approach for any value of α, as 

shown in this section, is to apply the traditional PageRank perturbation to A, where 

SA A D  A 
1 (1 α )= ⋅ ⋅ −α + −  n . (34) 

The correct quotient matrix, Q, subsequently can be obtained by computing 

T TQ = (B ⋅ )−1 
SA	 (35)

B ⋅ ⋅ ⋅  B B 

= † ⋅ ⋅  B .B SA 
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To show the PageRank vector, x, associated with a PageRank matrix, S S  ,= A can 

be lifted from a quotient matrix, Q, using (35), three key results must be obtained. First, it 

must be established Q and S yield the same dominant eigenvalue, one. Second, it must be 

shown a unique eigenvector, r, is associated with Q’s dominant eigenvalue, one. Finally, 

it must be shown that S’s PageRank vector, x, can be lifted from Q’s eigenvector, r. 

The quotient matrix, Q, yielded by applying (35) is often not stochastic. However, 

Q’s row sums equal one or more of S’s corresponding row sums. Moreover, Q’s diagonal 

entries, as well as many of Q’s non-diagonal entries, may equal zero, i.e., Q is often not 

primitive or irreducible. Therefore, Q does not satisfy the conditions of the Perron or the 

Perron-Frobenius theorems, hence, they cannot be directly applied to ensure that Q yields 

a unique eigenvector associated with the dominant eigenvalue, one. Instead, more robust 

machinery, namely, the interlacing and lifting properties described in Section 2.3.5 must 

be used to establish the eigen decomposition relationships between a PageRank matrix, S, 

and the quotient matrix, Q, induced by S’s coarsest equitable partition, B. 

Theorem 4 The dominant eigenvalue of an equitable quotient matrix, Q, 
of a positive stochastic matrix, S, equals S’s dominant eigenvalue, one. 

Proof Given the quotient matrix, Q, induced by an arbitrary partition, B, 
of an arbitrary matrix, M, the eigenvalues of M and Q are interlaced, such 
that λ − + ( )  ( )  ≤ λi Q ≤ λi (M)n m i  M , λi ≤ . If B is equitable, e.g., if B isλi+1 

the coarsest equitable partition of = , Q’s eigenvalues are some subset M S  
of S’s eigenvalues. If S is the weighted adjacency matrix of some strongly 
connected graph, G, Q and S must have the same dominant eigenvalues, 
i.e., λ1 ( )  ( )Q = λ1 S  [God93, CRS97]. 

A stochastic positive matrix, e.g., a PageRank matrix, S, yields the 
dominant eigenvalue, one. Q may not be stochastic. However, applying 
the Perron and Perron-Frobenius theorems to the PageRank matrix, S, and 
the interlacing property to an equitable quotient matrix, Q, shows that Q 
also yields the dominant eigenvalue, one, i.e., λ1 (Q) = λ1 (S) =1. ∎ 
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The next step establishes Q has a unique eigenvector, r, whose entries are a subset 

of the entries in S’s dominant eigenvector, x, where x can be obtained more efficiently by 

simply lifting it from Q’s dominant eigenvector, r. 

Theorem 5 The entries contained in the dominant eigenvector, r, yielded 
by the quotient matrix, Q, defined by the coarsest equitable partition, B, of 
a positive stochastic matrix, S, are a subset of the entries contained in S’s 
dominant eigenvector, x. Each entry in x can be obtained by simply lifting 
it from Q’s dominant eigenvector, r. 

Proof A coarsest equitable partition, B, is equitable, therefore, the lifting 
identity, ⋅ = S B r  ⋅ ⋅ =  ⋅  ⋅ =  ⋅ =  B r  x,  ensures that each entry in Q’sS x  B Q r  
dominant eigenvector, r, also equals some entry in S’s PageRank vector, x. 

Applying the Perron-Frobenius theorem ensures elements in x are 
positive and unique, thus, r’s elements are positive and unique. The lifting 
identity, = ⋅ ,  maps entries in Q’s eigenvector, r, to S’s eigenvector, x.x B r
Each of B’s n non-zero entries equal one, thus, lifting is simply an exercise 

† T Tx B r  and r B x  B  ∎in memory copying, where = ⋅ = ⋅ = (B ⋅B)−1 
⋅ ⋅  x . 

Thus, given some arbitrary graph, G, and its adjacency matrix, A, the PageRank 

vector can be obtained by normalizing the dominant eigenvector of the PageRank matrix, 

S = ⋅  ⋅α A D  − (1 )1 +  −  α n . G’s PageRank vector, x, can be constructed more efficiently by 

lifting it from Q’s PageRank vector, r. The quotient matrix, Q, is yielded by applying the 

block matrix, B, defined by the partition, B, to the PageRank matrix, S, where 

† T T=  ⋅ ⋅ =  S B  (B ⋅B)−1 
⋅  ⋅ ⋅  S B  . (36)Q B  B  

Assuming Q’s dominant eigenvector, r, is available, e.g., by applying the power method, 

S’s dominant eigenvector, x, is obtained by simply lifting, or copying, it from r, where 

= ⋅ (37)x B r  . 

Finally, that vector is normalized by its sum, yielding the PageRank vector, x, where 

=x x  ∑x → ∑x =1. (38) 
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5.3. Lifting the House Graph’s PageRank Vector 
The example in this section illustrates how the PageRank vector can be efficiently 

lifted from the dominant eigenvector of the quotient matrix. The house graph depicted in 

Figure 50(a) yields the coarsest equitable partition, B = ⎡ , ,  a , , ⎤ ,  illustrated in ⎣{c d} { } {b e  }⎦

Figure 50(b). Its associated block matrix, B, is listed in Table 41, where ‘1’s reflect B’s 

vertex block membership. The intermediate product, = T B,N B  ⋅  is listed in Table 42(a), 

where a diagonal entry equals its corresponding column sum from B. Reciprocating all of 

the diagonal entries yields its matrix inverse, N−1,  as shown in Table 42(b). 

e 

c d 

b 

a 

eb 

a 

c d 

(a) House Graph (b) Coarsest Equitable Partition
 

Figure 50. House Graph’s 3-Block Coarsest Equitable Partition 


Table 41. Characteristic Block Matrix, B 


{c, d} {a} {b, e} 
a 0 1 0 
b 0 0 1 
c 1 0 0 
d 1 0 0 
e 0 0 1 

Table 42. Characteristic Block Matrix Products 
T −1 T −1N B N  B(a) = ⋅B, i ,: =∑ i,: (b) N = (B ⋅B)−1

, Ni i, =1 Ni i  , 

{c, d} {a} {b, e} 
{c, d} 2 0 0 

{a} 0 1 0 

{b, e} 0 0 2 

{c, d} {a} {b, e} 
{c, d} 1/2 0 0 

{a} 0 1 0 

{b, e} 0 0 1/2 
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The house graph’s adjacency matrix is listed in Table 43. Given the scaling factor, 

α = 0.85,  the house graph yields the PageRank matrix shown in Table 44. Subsequently 

applying the quotient matrix identity, 

)−1† T T= ⋅ ⋅ = ( ⋅ ⋅ ⋅ ⋅B , (39)Q B S B  B B  B S

yields the quotient matrix, Q, listed in Table 45. As this example illustrates, a stochastic 

PageRank matrix, S, may yield a non-stochastic quotient matrix, Q, i.e., none of the rows 

or columns in Q sum to one, although the row sums remain constant. 

Table 43. House Graph’s Adjacency Matrix, A 

a b c d e 
a 0 1 0 0 1 
b 1 0 1 0 1 
c 0 1 0 1 0 

d 0 0 1 0 1 
e 1 1 0 1 0 

Table 44. House Graph’s PageRank Matrix, S, α = 0.85 

a b c d e 
a 0.0300 0.3133 0.0300 0.0300 0.3133 0.7167 

b 0.4550 0.0300 0.4550 0.0300 0.3133 1.2833 

c 0.0300 0.3133 0.0300 0.4550 0.0300 0.8583 

d 0.0300 0.0300 0.4550 0.0300 0.3133 0.8583 

e 0.4550 0.3133 0.0300 0.4550 0.0300 1.2833 

1 ∑ 

Table 45. Quotient Matrix, Q, of the House Graph’s PageRank Matrix, S, α = 0.85 

{c, d} {a} {b, e} 
{c, d} 0.4850 0.0300 0.3433 0.8583 

{a} 0.0600 0.0300 0.6267 0.7167 

{b, e} 0.4850 0.4550 0.3433 1.2833 

1.0300 0.5150 1.3133 ∑ 
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As described in Section 2.3.5, the eigenvalues of the quotient matrix, Q, interlace 

the eigenvalues of the PageRank matrix, S. Moreover, since a coarsest equitable partition, 

B, is equitable, Q’s eigenvalues are a subset of S’s eigenvalues, as reflected in Table 46. 

The dominant eigenvectors of the PageRank matrix, S, and quotient matrix, Q, are listed 

in Tables 47(a) and (b), respectively. The PageRank vector of S is assumed to be obtained 

by multiplying a 5 5 ×  vector during each power method iteration. The ×  matrix with a 5 1

PageRank vector of the quotient matrix, Q, is similarly assumed to be obtained by simply 

multiplying a 3 3 ×  vector during each power method iteration. ×  matrix with a 3 1

However, S’s PageRank vector, x, can be obtained by simply lifting it from Q’s 

dominant eigenvector, x. This process multiplies Q’s eigenvector, r, with B, as reflected 

in Table 47(c). Normalizing that lifted eigenvector yields the PageRank vector, x, listed in 

Table 47(d), which, as required, equals the PageRank vector listed in Table 47(a). 

Table 46. Eigenvalues of the PageRank and Quotient Matrices 

(a) sort ( i ( )λ S ) (b) sort ( λ Qi ( ) ) 
1.0000 
-0.7083 
-0.4250 
0.2833 
0.0000 

1.0000 
-0.4250 
0.2833 

Table 47. Dominant Eigenvectors of the PageRank and Quotient Matrices 

x x ∑x(a) x (b) r (c) x B= ⋅r (d) = 

a 0.1681 

b 0.2437 

c 0.1723 

d 0.1723 

e 0.2437 

∑ 1.0000 

{c, d} 0.2949 

{a} 0.2878 

{b, e} 0.4173 

∑ 1.0000 

a 0.2878 

b 0.4173 

c 0.2949 

d 0.2949 

e 0.4173 

∑ 1.7122 

a 0.1681 

b 0.2437 

c 0.1723 

d 0.1723 

e 0.2437 

∑ 1.0000 
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5.4. QuotientRank: An Algorithm for Lifting PageRank Vectors 
The algorithm listed in Figure 51 obtains the dominant eigenvector of the quotient 

matrix induced by the coarsest equitable partition and lifts this eigenvector to obtain the 

PageRank vector of the input matrix. The standard PageRank matrix, S, is constructed 

with respect to the adjacency matrix, A, on lines 1–5. The coarsest equitable partition is 

determined on lines 6–7 by applying one of the methods described in Section 2.3.3. The 

characteristic block matrix, B, is computed on lines 9–11, and subsequently applied to the 

PageRank matrix, S, to obtain the quotient matrix, Q, on line 12. The power method is 

applied to Q on lines 13–27 to obtain its dominant eigenvector. Any vector norm could be 

applied on line 24, where the sum norm is the most efficient to obtain. The final step is to 

lift Q’s dominant eigenvector, r, on line 29, where normalizing the lifted vector, x, with 

respect to its sum yields the PageRank vector of the input matrix, A, on line 30. 

It is assumed that an arbitrary adjacency matrix, A, is dense. However, the block 

matrix, B, should be a sparse matrix. As indicated on lines 10 and 11, B has a lone ‘1’ on 

each row that reflects vertex membership in a coarsest equitable partition’s blocks. Thus, 

one of the intermediate products, = T B,N B  ⋅  computed on line 12 is a diagonal matrix, 

such that a diagonal entry of N corresponds to the number of vertices in some block, i.e., 

−1 TN = =∑B:,  i , Hence, its inverse, N = (B ⋅B)−1 
,  is obtained by reciprocating each i i, Bi 

← −1 T−1diagonal entry, i.e., Ni i, =1 Ni i, . Therefore, line 12 can be written as Q N ⋅  ⋅ ⋅  B  S B  , 

where N−1 is obtained by reciprocating B’s column sums. The lifting step performed on 

line 29, = ⋅ ,  is equivalent to simply copying eigenvalues in r to their correspondingx B r

positions in the PageRank vector, x. 
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1. getPageRank (A, n, α ,τ ) 
2. # perturb adjacency matrix 

n3. di ←∑ i
A:,i=1 

4. D ← diag (d) 
5. S α A D  1 (1 α )← ⋅ ⋅ − + −  n 

6. #  get coarsest equitable partition 
7. B ← findCoarsestPartition (A, n) 
8. # construct block and quotient matrices 
9. b ← B 

,B 0  10. ← n b  

11. B ←1, ∀ , : ∈Bi j, i j v  i j 

T T †B B  
−1 
⋅  ⋅ ⋅ ←  ⋅ ⋅  12. Q ←( ⋅ ) B S B  B S B  

13. #  initialize vectors & iteration counter 
b,114. r ← 1 b 
b,115. s ← 0 

16. z ← 0 
17. #  iterate power method 
18. while ( s r  >τ )−

2 

19. #  save eigenvector 
20. s ← r 
21. #  update eigenvector 
22. r ←Q ⋅r 
23. #  normalize eigenvector 
24. r ← r ∑r 
25. #  increment loop counter 
26. z ← z +1 
27.  end while 

28. #  lift and normalize PageRank vector 
29. x ← ⋅B r 
30. x ← x ∑x 

31.  return x 
32. end PageRank 

Figure 51. QuotientRank: An Algorithm for Lifting PageRank Vectors 
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5.5. Complexity Analysis 

Applying the PageRank perturbation on lines 2–5 is Θ(n2 ) ,  since all entries must 

be scaled and shifted. Computing the coarsest equitable partition, B, on lines 6–7 requires 

2Θ(n ⋅ log n)  time, as described in Section 2.3.3.2. Constructing the block matrix, B, on 

lines 9–11 from the coarsest equitable partition, B, requires Θ(n)  time, where n ones are 

placed at B’s rows and column corresponding to the vertex block membership in B. Since 

the n b  non-zero entries, it is stored as a sparse matrix, which ×  matrix, B, only contains n

only consumes Θ n space.( )  

T T S BThe quotient matrix construction, Q = (B ⋅B)−1 
⋅B ⋅ ⋅  ,  performed on line 12 

−1 −1 T TQ N  and S B  can be decomposed into two steps, = ⋅Z, where N = (B ⋅B)−1 
= .Z B  ⋅ ⋅

−1 TThe first step, N = (B ⋅B)−1 
,  yields a diagonal matrix whose diagonal entries equal the 

reciprocal of the number of vertices contained in the corresponding block in B. Thus, the 

diagonal entries in N−1 equal B’s reciprocated column sums. Moreover, since = T BN B  ⋅

is a diagonal matrix, its inverse, N−1,  can be computed in Θ(n)  time. 

The second step, = T S B,  multiplies a b n , by an n nZ B  ⋅ ⋅ ×  matrix, BT ×  matrix, 

S, yielding the b n×  product, T ⋅ . ×  matrix is multiplied by a n bB S  This b n ×  matrix, B, 

yielding a b b×  matrix, = T S B  . These multiplications are Ο(b n⋅  and Ο(  )b n2 ⋅Z B  ⋅ ⋅ 2 ) , 

respectively, where ≤ .  is a discrete partition, which is the worst case, these b n  Thus, if B

bounds become ( ) Since B contains nΟ n3 .  non-zero entries, storing B as a sparse matrix 

reduces the bounds to Ο n2 and Ο b n⋅ ,  respectively, yielding Ο n  if = .( ) ( ) ( 2 ) b n
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The same bounds can also be derived using the tools described in Section 2.3.5.2. 

i j  r k  ≤ i j  b 1 k n r b ,Given an arbitrary vertex partition, B, Q , =∑S , , where 1 ,  ≤ , ≤ ≤ , v ∈ i 

and vk ∈bj . The complexity of this summation is ( 2 ⋅ ) ×Ο b n , since each entry in the b b

matrix, Q, may consume as many as n summations. If b n,  which is the worst possible =

case, the best upper bound that can be obtained initially appears to be ( )Ο n3 . 

However, since B is assumed to be the coarsest equitable partition, which is an 

equitable partition, the summation can be computed more efficiently. In particular, each 

vertex contained in block bi  has an equal number of neighbors with respect to block bj , 

where 1 ≤ i j  b, ≤ . Therefore, the number of neighbors with respect to block bj  must only 

N u  ( )∩bj = N v  ( )∩bj , wherebe determined for a single vertex in block bi , i.e., z , = i j  

1 ,  ≤ , u v  b  and N u  denotes u’s neighborhood (cf. Sections 2.3.2 and 2.3.3). ≤ i j  b , ∈ i , ( )

Thus, Qi j, = zi j ⋅S , ,  for some arbitrary vertex, u bi ,  and some arbitrary neighbor of u,, u w  ∈

w bj . This approach yields the same bound on building Q, Ο n∈ ( 2 )  (cf. Section 2.3.5.3). 

The most interesting analysis step occurs when assessing the complexity of using 

the power method on lines 13–27 to determine the dominant eigenvector of the quotient 

matrix, Q. As described in Sections 2.5.2.2 and 3.2, given some precision, τ, and scaling 

factor, α > 0.5,  using the power method to obtain the PageRank vector of the PageRank 

2 2matrix, S, yields the lower and upper bounds of Ω(n ⋅ log n) and Ο(n t⋅ ) ,  respectively. 

The value of t is bounded by t ≤ log τ ≤ log α τ , where λ2 (S) denotes the eigenvalueλ S2 ( )  

λ2 (S) ≤α.with the second largest magnitude and 
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The power method is used to obtain the dominant eigenvector, r, of the quotient 

matrix, Q, where r is lifted to obtain the PageRank vector, x, of the PageRank matrix, S. 

Since S and Q are n n × matrices, respectively, where b n  substitution into ×  and b b ≤ ,

2 2 2 2) ( ) ) ( ⋅ )  respectively. the bounds Ω(n ⋅ log n and Ο n t⋅  yields Ω(b ⋅ log b and Ο b t , 

Theorem 6 The practical lower bound on the execution time needed to 
,Qb bobtain the dominant eigenvector of  is log b.

Proof The practical lower bound on the number of iterations was based 
on assuming τ ≤1 .n  Since vertices contained in a given block have equal 
PageRank value, the maximum precision increases to τ ≤1 .b Substitution 
yields the new practical minimum number of iterations, b = log 1 b . ∎2

The upper bound on the number of power method iterations, r, needed to compute 

Q’s PageRank vector, r, may be less than the bound on the number of iterations needed to 

compute S’s PageRank vector, x, since r ≤ log τ ≤ log τ ≤ log α τ .Q Sλ2 ( )  λ2 ( )  

Theorem 7 The upper bound on the number of power method iterations, 
r, required to obtain the dominant eigenvector, x, of an equitable quotient 
matrix, Q, is bounded by the number of iterations, t, needed to obtain the 
PageRank vector of the PageRank matrix, S. 

Proof The number of iterations, r, required to determine x is bounded by 
logλ Q τ  [GoV88]. Interlacing ensures λ2 (Q) = λi (S) ≤ λ2 (S)  for some i,

2 ( ) 
  

therefore, r ≤ log
 τ ≤ ≤  log t τ ≤ log α τ . ∎Q Sλ2 ( )  λ2 ( )  

Q S ,  the upper bound on the number of power method iterations If λ2 ( ) < λ2 ( )  

may differ with respect to S and Q, where r = log Q τ , t = log λ2 ( )S τ ≤ log τ , and r tα ≤ .λ2 ( )  

In the worst case, if the coarsest equitable partition, B, is a discrete partition, i.e., if none 

of B’s blocks are composed of multiple vertices, b n= →λ2 Q = λ S → =  ( ) 2 ( )  r t  . The 

< λ 2 ( ) thus, r tconverse, is not true, since for certain graphs, b n,  yet 2 (Q) = λ S , = . 
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Thus, applying power method iteration to the quotient matrix, Q, of the PageRank 

matrix, S, reduces the lower and upper bounds on the complexity of the power method in 

Sn n, ,Qb btwo ways. The matrix size reduction, from to , reduced the bounds on the power 

2 2 2 2method from Ω(n ⋅ log n) and Ο(n t⋅ ) to Ω(b ⋅ log b) and Ο(b t⋅ ) ,  respectively, 

2where the performance scales in proportion to n b2 . The upper bound on the number of 

2 ⋅power method iterations, t, is replaced by r, yielding Ο(b r ) , where r depends on Q’s, 

not S’s, second dominant eigenvalue, i.e., r ≤ log τ ≤ log τ ≤ log α τ . If B is storedQ Sλ2 ( )  λ2 ( )  

as a sparse matrix, the lifting step is Θ(n) , since B contains n non-zero entries. 

Thus, the lower bound of the QuotientRank algorithm described in Section 5.4 is 

based on computing the coarsest equitable partition and applying the power method to Q, 

2 2which are Ω(n ⋅ log n) and Ω(b ⋅ log b) ,  respectively. Hence, its overall lower bound is 

(n ⋅ log n b  ⋅ log b)Ω 2 + 2 . The corresponding upper bound on the QuotientRank algorithm 

is Ο(n ⋅ log + ⋅ , where b n r t, rn b r  ) ≤ , ≤ ≤ log 2 2 
Q τ , and t ≤ log τ ≤ log α τ .Sλ2 ( )  λ2 ( )  

�  a QuotientRank algorithm implementation that uses an efficient method 

of computing the coarsest equitable partition outperforms the PageRank algorithm, which 

If b n,

2 2 2 2is Ω(n ⋅ log n) and Ο(n t ). The gains are proportional to ( ⋅ ) ( ) ≤ ,⋅ n t  b r⋅ , where b n

r ≤ log τ , t ≤ log log α τ , and r t.τ ≤ ≤ The worst case again occurs if the graph’s Q Sλ2 ( )  λ2 ( )  

=

is doubled by the cost to find B, for a total of 2 ⋅n2 ⋅ log n  operations. The QuotientRank 

algorithm is more efficient, however, if the coarsest equitable partition is non-discrete. 

equitable partition, B, is discrete, where if b n,  the PageRank algorithm’s lower bound 
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5.6. A QuotientRank Example 
This example illustrates the potential performance gain obtained by applying the 

QuotientRank algorithm. The pseudo-benzene graph shown in Figure 52(a) has a coarsest 

equitable partition of two blocks, ⎡ 2,4,6,8,10,12 , 1,3,5,7,9,11}⎤ .  The graph’s 12×12⎣{ } { ⎦

adjacency and PageRank matrices are not listed. The 2 2  quotient matrix induced by its ×

coarsest equitable partition and PageRank matrix is shown in Table 48 and illustrated in 

Figure 52(b). Finding its coarsest equitable partition requires as many as n2 ⋅ log 2 n (517) 

operations. Constructing the PageRank matrix, S, which is used in both the QuotientRank 

and PageRank algorithms, requires n2  (144) operations. Storing a 12× 2  block matrix, B, 

as a sparse matrix only requires n (12) operations. Constructing a 2× 2  quotient matrix, 

T T 2Q ( )−1 
S B  requires ⋅= B ⋅B ⋅B ⋅ ⋅ , b n  (48) operations. 

8 

10 
911 

7 
12 

2 

4 

35 

1 

6 
{1,3,5,7,9,11} {2,4,6,8,10,12} 

0.6417 

0.9250 
0.3583 0.0750 

(a) Pseudo-Benzene Graph (b) PageRank-Induced Quotient Graph 

Figure 52. Pseudo-Benzene Graph and Its PageRank-Induced Quotient Graph 

Table 48. A 2× 2  PageRank-Induced Quotient Matrix, Q 

destination 
{2,4,6,8,10,12} {1,3,5,7,9,11} 

source 
{2,4,6,8,10,12} 0.0750 0.6417 0.7167 

{1,3,5,7,9,11} 0.9250 0.3583 1.2833 

1 ∑ 
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−52A PageRank vector computed to 52 bits of precision, τ = 2 ,  or approximately 

15 decimal digits, correspond to IEEE 754 double-precision values [ISB85]. Applying the 

power method to the PageRank matrix, S, and the induced quotient matrix, Q, requires 

2 2 ⋅ τ ,  time, respectively. The eigenvalues of S and Qn t⋅ , t ≤ log  τ and b r, r ≤ log  S Qλ2 ( )  λ2 ( )  

λ S = 0.85 andreveal that = 0.5667,  i.e., the largest number of power method 2 ( )  λ2 (Q) 

iterations that must be performed with respect to S or Q are t = ⎡log 0.85 2
−52 ⎤ = 222 and⎢ ⎥

r = ⎡⎢log 0.5667 2
−52 ⎤⎥ = 64,  respectively. Thus, in the worst case, applying the power method 

to S and Q costs 122 ⋅222 = 31,968 and 22 ⋅64 = 256  operations, respectively. 

The dominant eigenvector, r, of Q is shown in Table 49(a). Lifting S’s dominant 

eigenvector, x, from r, results in the vector shown in Table 49(b). Normalizing the vector 

by its sum yields S’s PageRank vector listed in Table 49(c). These lifting and normalizing 

steps require 3 ⋅n  (36) operations, 12 to compute B r x ∑x.⋅  and 24 to compute 

Table 49. Lifting the PageRank Vector from the Dominant Eigenvector 

(c) x x ∑x(a) r (b) x B= ⋅r = 

1 0.4096 
2 0.5904 
∑ 1.0000 

1 0.5904 
2 0.4096 
3 0.5904 
4 0.4096 
5 0.5904 
6 0.4096 
7 0.5904 
8 0.4096 
9 0.5904 

10 0.4096 
11 0.5904 
12 0.4096 
∑ 6.0000 

1 0.0984 
2 0.0683 
3 0.0984 
4 0.0683 
5 0.0984 
6 0.0683 
7 0.0984 
8 0.0683 
9 0.0984 

10 0.0683 
11 0.0984 
12 0.0683 
∑ 1.0000 
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Summing each algorithm’s number of operations yields Table 50, which confirms 

using the QuotientRank algorithm is more efficient than using the PageRank algorithm to 

obtain the PageRank vector of the graph shown in Figure 52. Although some overhead is 

required to build the quotient matrix and lift the PageRank vector, the execution time is 

dramatically reduced in proportion to 32112 1109 ≈ 29. Executing each algorithm shows 

the number of observed power method iterations for S and Q are 60 and 62, respectively, 

as shown in Table 51. Although the PageRank algorithm executes two fewer iterations, it 

still needs more execution time than the QuotientRank algorithm, where 8784 1101 ≈ 8. 

Table 50. Theoretical Iterations: n = 12, b = 2, τ = 2−52 → t = 222, r = 64 

(a) PageRank Algorithm (b) QuotientRank Algorithm 

Task Time Total 
Construct S 2n 144 

Power Method 2n t⋅ 31968 

∑ 32112 

Task Time Total 
Compute B 2 

2n log n⋅ 517 

Construct S 2n 144 

Construct B n 12 

Construct Q 2n 144 

Power Method 2b r⋅ 256 

Lift & Normalize x 3 ⋅ n 36 
∑ 1109 

Table 51. Observed Iterations: n = 12,  b = 2,  τ = 2−52 → t = 60,  r = 62  

(a) PageRank Algorithm (b) QuotientRank Algorithm 

Task Time Total 
Construct S 2n 144 

Power Method 2n t⋅ 8640 

∑ 8784 

Task Time Total 
Compute B 2 

2n log n⋅ 517 

Construct S 2n 144 

Construct B n 12 

Construct Q 2n 144 

Power Method 2b r⋅ 248 

Lift & Normalize x 3 ⋅ n 36 
∑ 1101 
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5.7. QuotientRank Applicability 
Section 4.3.4 informally considered when the algorithm described in Section 4.3.2 

or QuotientRank algorithm described in Section 5.4 should be used to compute a graph’s 

PageRank vector instead of applying the PageRank algorithm. The material contained in 

this section provides a more robust analysis with respect to the QuotientRank algorithm, 

which is the most significant new algorithm described herein. If dense matrices are used, 

with the notable exception of the block matrix, B, which is stored as a sparse matrix, the 

key factors in assessing if the PageRank algorithm or QuotientRank algorithm is the more 

efficient method of computing the PageRank vector, x, of an arbitrary graph, G, are: 

• n V= ,  number of vertices contained in G 

,  number of blocks contained in G’s coarsest equitable partition, B• b = B 

• α , α ≥ 0.5,   scaling factor used to construct the PageRank matrix, S 

• τ ,τ ≤1 n,  numerical precision of the PageRank vector, x 

• t t, ≤ log  τ ≤ log  α τ ,  maximum iterations with respect to SSλ2 ( )  

• , ≤r r log  τ  maximum iterations with respect to quotient matrix, QQλ2 ( )  

The number of blocks, b, contained in the graph’s coarsest equitable partition, B, 

is bounded by the number of vertices, n, in G, i.e., b n≤ . Furthermore, as established in 

Section 5.5, the maximum number of required power method iterations with respect to S 

equals or exceeds the number of maximum iterations needed with respect to Q, i.e., r t,≤ 

since r ≤ log τ ≤ ≤  t log τ ≤ log α τ . The following bounds, in particular, the lower λ Q λ S2 ( )  2 ( )  

bounds are derived by assuming the scaling factor, α, used in the PageRank perturbation 

is contained in the range, 0.5 α 1≤ ≤  and the PageRank vector is computed to a precision 

that nominally provides for at least n unique PageRank values, i.e., τ ≤1 .n 
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2 

The PageRank algorithm’s practical lower bound on its required execution time is 

Ω(n ⋅ log n) ,  a new result derived in Section 3.2. The analysis in Section 5.5 showed the 

2 2QuotientRank algorithm’s lower bound is Ω(n ⋅ log n b  ⋅ log b . The number of blocks, + ) 

b, contained in the coarsest equitable partition, B, is bounded by the number of vertices, 

2b n ⋅ n) 

In the worst case, if G yields a discrete coarsest equitable partition, i.e., if b n

n V ,=  where ≤ . The coarsest equitable partition can be found in Θ(n log  time. 

= , 

the QuotientRank algorithm increases the PageRank algorithm’s lower bound by a factor 

2 2 2of two, where n ⋅ log n b  ⋅ log b 2 n ⋅ log . The impact of this worst-case scenario is +  = ⋅  n 

offset by noting two more significant results. First, the QuotientRank algorithm decreases 

the execution time required to determine the PageRank vector of those graphs that yield a 

non-discrete coarsest equitable partition, i.e., if < .b n For such graphs, the QuotientRank 

algorithm also ensures vertices contained in the same block have equal PageRank values. 

The PageRank algorithm’s upper bound is Ο(n t⋅ ) , where t ≤ log 2 
S τ ≤ log α τ ,λ2 ( )  

as shown in Section 2.5.2.2. The analysis in Section 5.5 establishes that the QuotientRank 

algorithm’s upper bound is Ο(n2 ⋅ log + 2 ⋅ ) , where rn b r  ≤ log τ ≤ t. This bound also Qλ2 ( )  

degenerates in the worst-case, i.e., if the coarsest equitable partition is discrete, where 

2 2b n yields Ο n ⋅ log n n t  )= ( + ⋅ . Thus, in the worst case, the QuotientRank algorithm 

may need n2 ⋅ log n  more time than the PageRank algorithm. However, the QuotientRank 

algorithm outperforms the PageRank algorithm if the graph’s coarsest equitable partition 

is non-discrete, i.e., contains sufficiently fewer blocks than the graph contains vertices. 
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The upper bounds on the PageRank and QuotientRank algorithm’s execution time 

2 2 2 2 2are (  )⋅  and Ο(n ⋅ log + ⋅ ,  respectively. The ⋅  and ⋅  terms denote the Ο n t n b r  ) n t b r

time needed to apply the power method to the PageRank and quotient matrices, S and Q, 

respectively. Thus, the QuotientRank algorithm outperforms the PageRank algorithm if 

2 2 2 2(n t b r  ) n⋅ −  ⋅ ≥  n ⋅ log , where n ⋅ log n  denotes the time needed to obtain the coarsest 

2 2n t  b r

r t≤  and ≤ .  Although r 

equitable partition. The anticipated reduction in execution time is ( ⋅ ) (  )  ⋅ , where 

b n ≤ log τ ≤ ≤  t log τ ≤ log α τ ,  preliminary data suggests λ Q λ S2 ( )  2 ( )  

(r t ) Q τ ≤ log λ2 ( )S α 
2≈ ≤ log τ ≤ log τ ,  reducing the relative performance gain to n b2 .λ2 ( )  

If b is sufficiently small relative to n, i.e., if a coarsest equitable partition contains 

fewer blocks than vertices, the QuotientRank algorithm obtains a PageRank vector in less 

time than the PageRank algorithm. However, b’s value can only be known by computing 

the coarsest equitable partition, which requires n2 ⋅ log n  time. Graphs containing regular 

structure yield such gains, e.g., the grid graph depicted in Figure 53. 

These relative performance gains increase as the number of blocks decreases with 

respect to the number of vertices, i.e., as b decreases with respect to n. For instance, many 

trees have a coarsest equitable partition containing fewer blocks than vertices. Finally, at 

least certain web graphs yield a coarsest equitable partition containing fewer blocks than 

vertices [BLS+06]. 

Figure 53. 8 3×  Grid: A Graph Yielding a Non-Discrete Coarsest Equitable Partition 
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VI. Conclusions and Future Research 

6.1. Conclusions 

6.1.1. Complexity Bounds 
The first new result, which was derived in Section 3.2, is a practical lower bound 

on the number of power method iterations that is obtained by applying recent work that 

defined an upper bound [HaK03, LaM06]. The lower bound is derived by applying two 

assumptions related to the required precision, τ, and PageRank scaling value, α. The first 

assumption is τ ≤1 ,n where τ =1 n  is the largest precision that can provide n unique 

PageRank values, i.e., one value for each of the n vertices. Assuming α ≥ 0.5 includes 

the suggested default PageRank scaling value, α = 0.85. Applying these two assumptions 

and applying base-2 logarithms yields a practical lower bound on the number of required 

power method iterations, t, needed to compute the PageRank vector, where 

log 1 n log τ2 = log 2 ≤ ≤ log α τ = 2 .n t  (40)
log 0.5 log α2 2 

The practical lower bound, log 2 n,  matches experimental results reported by the 

PageRank algorithm’s creators [PBM+98] and other researchers [ANT+02]. Each power 

method iteration performed in the PageRank algorithm multiplies an n n  matrix with an ×

n×1  vector. If dense matrices are used, the lower and upper bounds on the time needed to 

2 2determine the PageRank vector are Ω(n ⋅ log n) and Ο(n ⋅ log α τ ) ,  respectively, where 

log n  and logα τ  are the minimum and maximum required number of iterations. If sparse 

matrices are being used, the lower and upper bounds are Ω(m ⋅ log n) and Ο(m ⋅ log α τ ) , 

respectively, where m = E denotes the number of edges contained in the graph. 
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6.1.2. Obtaining Canonical Vertex Orderings from the PageRank Vector 
Another result, which is not known to be formally stated elsewhere with respect to 

the PageRank algorithm, is related to the concept of finding a canonical vertex ordering. 

Assuming sufficient computing resources exist, the two methods described in Section 1.2 

can obtain a canonical order, where the first method only uses the PageRank algorithm. 

For example, the mansion graph illustrated in Figure 54(a) yields a PageRank vector that 

induces a canonical vertex order, as shown in Figure 54(b). 

However, graphs relevant to the work described herein yield non-discrete coarsest 

equitable partitions. Thus, their PageRank vectors contain at least two equal entries and 

cannot induce a canonical ordering. For such graphs, a canonical ordering can be found 

using an application that computes a canonical isomorph, e.g., nauty, and applying the 

PageRank algorithm to the canonical isomorph. For example, the canonical isomorph that 

is yielded by applying nauty to house graph is shown in Figure 54(c), where its PageRank 

vector induces the canonical vertex ordering illustrated in Figure 54(d). 

However, finding a canonical isomorph may require exponential time, therefore, 

the latter approach only succeeds if it is applied to sufficiently small and irregular graphs. 

For instance, nearly every random graphs and random trees is sufficiently irregular, even 

if their coarsest equitable partition is not discrete. 

e 

c d 

b 

a 

f 

e 

c d 

b 

a 

f 

e 

a b 

d 

c 

e 

a b 

d 

c 

(a) Mansion Graph (b) PageRank Order (c) House Graph (d) PageRank Order 

Figure 54. Canonical PageRank Orderings of the Mansion and House Graphs 
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6.1.3. Relating the PageRank Vector and the Coarsest Equitable Partition 
The most theoretical contribution constructed herein is contained in Section 3.3, 

where it is shown that vertices contained in the same block of a graph’s coarsest equitable 

partition must have equal iterated dot products. Since a PageRank vector can be obtained 

by applying the power method, which simply computes an iterated dot product, vertices 

contained in the same block yield equal PageRank values, as described in Section 3.4. 

This result mirrors another proof of the relationship between the PageRank vector and the 

coarsest equitable partition [BLS+06]. Boldi et al.’s earlier proof uses tools from category 

theory, e.g., the graph’s minimum base and its fibrations, which correspond to the graph’s 

coarsest equitable partition and its blocks. 

Both of the proofs suggest many methods of improving the PageRank algorithm’s 

performance. The first improvement is obtained by the AverageRank algorithm listed in 

Section 4.2, which uses the average block PageRank values. That method’s lower bound 

2is the same as the PageRank algorithm’s, Ω(n ⋅ log n),  where n denotes the number of 

2 2 2vertices. However, its upper bound is increased from Ο(n t⋅ ) to Ο(n ⋅ log n + n ⋅ t ) , 

where t ≤ log ≤ log α τ and S denotes the PageRank matrix. Sλ2 ( )  

That method is superseded by the ProductRank algorithm listed in Section 4.3, in 

which one PageRank value is computed for each block in the coarsest equitable partition. 

The ProductRank algorithm’s lower bound is also the same as the PageRank algorithm’s 

2 2lower bound, Ω(n ⋅ log n).  More importantly, the upper bound reduces from Ο(n t⋅ ) to 

Ο(n ⋅ log n +  ⋅  ⋅ ) , 2 b n t  where b denotes the number of blocks. The ProductRank algorithm 

ensures vertices contained in the same block have the same PageRank value. 
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Both algorithms are superseded by the proof provided in Section 5.2 that shows a 

certain quotient matrix induced by the coarsest equitable partition can be used to compute 

the PageRank vector. That proof is the basis of the QuotientRank algorithm described in 

Section 5.4. As shown in Section 5.5, the lower and upper bounds of the QuotientRank 

2 2 2algorithm are Ω(n ⋅ log n and Ο n ⋅ log n b r  )) ( + ⋅ ,  respectively, where b denotes the 

number of blocks contained in the coarsest equitable partition. The value of r is based on 

the second eigenvalue of the quotient matrix, Q, the precision, τ, and scaling factor, α, 

such that r ≤ log τ ≤  ≤  t log τ ≤ log α τ .Q Sλ2 ( )  λ2 ( )  

The QuotientRank algorithm further extends [BLS+06], which also showed that 

the quotient matrix can be used to reduce the time needed to obtain the PageRank vector. 

However, that proof’s authors did not develop or analyze a method based on the quotient 

matrix. As established in Sections 5.5– 5.7, the QuotientRank algorithm’s upper bound is 

2 2 2( ⋅ log n b r  ⋅ ) , Ο(n t ).Ο n +  whereas the PageRank algorithm’s upper bound is ⋅  Thus, 

2 2 2 2 2if (n t ) (  b r  ) n ⋅ log n,  the potential performance gain is (n t  b r⋅ ) (  ⋅ ) ,  such that ⋅ −  ⋅ ≥  

r ≤ log τ ≤  ≤  t log τ ≤ log α τ .λ Q λ S2 ( )  2 ( )  

In sum, PageRank vectors of graphs containing at least some regular structure can 

be obtained in less time using the ProductRank and QuotientRank algorithms described in 

Sections 4.3 and 5.2, respectively. The relative gain is based on the number of blocks in 

the coarsest equitable partition and number of vertices, such that the performance gain is 

2 ⋅ ≈ ≤ log S
2n t  b r .  Preliminary data suggests (r t  τ ,  reducing the gain to n b2.( 2 ⋅ ) (  )  ) λ2 ( )  

Such gains can be obtained on some web graphs [BLS+06], many trees, and grid graphs. 
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6.2. Future Work 

6.2.1. Implementation Improvements 
Many of the algorithms described herein were implemented in MATLAB to verify 

their correctness. A key area of future work is to design robust implementations, e.g., the 

methods described in Sections 2.3.3.2 and 5.2. For instance, the current implementation 

find the coarsest equitable partition using 1-D Weisfeiler-Lehman stabilization, due to its 

relevance to the results described herein. However, the method listed in Section 2.3.3.2 is 

more efficient. 

The quotient matrix can be constructed more efficiently, as noted in Section 5.5. 

The current versions also use dense matrices, but sparse matrices must be used to process 

large graphs, e.g., web graphs. Adding sparse matrix support also motivates supporting 

personalization vectors, where provided a probability vector, v, the PageRank matrix, S, 

yielded by applying the PageRank perturbation is (cf. Section 2.5.3) 

1  1,  nα + −  ⋅ ⋅  .S = ⋅ ⋅A D  − (1 α ) v 1  (41) 

This modification adjusts the PageRank of certain vertices, e.g., to decrease the effect of 

“spamming done by the so-called link farms” [LaM06]. Personalization may decrease the 

effectiveness of applying the graph’s coarsest equitable partition, since a personalization 

vector may increase the number of blocks contained in the coarsest equitable partition. 

A robust implementation should also leverage parallel hardware, e.g., multi-core 

processors. The power method can be executed in parallel, since PageRank matrix rows 

can be independently multiplied by a PageRank vector. Weisfeiler-Lehman stabilization 

can be implemented in parallel, but similarly implementing the algorithm for finding the 

coarsest equitable partition described in Section 2.3.3.2 in parallel requires more effort. 
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6.2.2. Other Linear Algebra Applications 
Throughout this research, it was assumed the PageRank vector is being computed 

by applying the power method to the stochastic PageRank matrix, S, or its corresponding 

quotient matrix, Q. For instance, given Q, and the normalized all-ones vector, = b,1 b ,r 1  

the PageRank vector is obtained by iteratively computing 

r ← ⋅S r  
(42)

r ← r ∑r

until r converges to the required numerical precision, τ. Given Q’s dominant eigenvector, 

r, the PageRank vector, x, is lifted and normalized using the block matrix, B, where 

x ← ⋅B r  
(43)

x ← x ∑x. 

One conjecture is that a similar process reduces the time needed to perform other 

linear algebra tasks. For example, given an arbitrary linear system, 

A x⋅ = b , (44) 

the solution vector, x, preliminary work suggests x can be obtained by solving the system, 

Q r⋅ = c , (45) 

where Q denotes A’s quotient matrix and c denotes the associated elements in b. Solving 

for r and applying the lifting identity and block matrix, B to r, yields the solution vector, 

x, where again, x ← ⋅ .B r  

A key nuance is that the coarsest equitable partition must be found with respect to 

A and each unique vector, b. Loosely stated, b similarly partitions A in the same way the 

personalization vector, v, partitions the PageRank matrix (cf. Sections 2.5.3 and 6.2.1). 

This approach may decrease the time needed to find x in applications that require solving 

structured linear systems, e.g., certain linear regression or finite element systems. 
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6.2.3. k-D Weisfeiler-Lehman Stabilization 
The coarsest equitable partition is the most refined partition that can be obtained 

by only considering the neighbors of each vertex. Thus, the coarsest equitable partition is 

obtained by applying information in the first dimension, which contains the current labels 

of all adjacent vertices. This concept gives rise to the method listed in Section 2.3.3.3 for 

finding the coarsest equitable partition, 1-D Weisfeiler-Lehman stabilization. The concept 

also can be generalized to k dimensions, or k-D Weisfeiler-Lehman stabilization [Bas02]. 

Although k-D stabilization was thought to decide graph isomorphism in polynomial time, 

both parts of that conjecture have been shown to be false [Für87, CFI92, Für01]. 

The k-D equitable partition is often more refined than the 1-D equitable partition. 

Since the k-D partition may contain more blocks than the 1-D partition, it yields fewer 

performance gains with respect to the PageRank algorithm or the future work described 

in Section 6.2.2. However, graphs that yield finer partitions based on a value of k relative 

to smaller values of k are useful for assessing algorithms that decide graph isomorphism. 

Although a library of graphs strictly based on k does not exist, the libraries constructed by 

Weisfeiler [Wei76], Mathon [Mat78], and Junttila and Kaski [JuK07] are commonly used. 

An avenue of future research is to construct a graph library strictly based on values of k. 

In addition, the proof developed in Chapter 3 can be extended to show that some 

linear algebra methods of determining isomorphism are no more powerful than applying 

k-D stabilization. For instance, one avenue of work described elsewhere considered using 

the matrix inverse to determine graph isomorphism [AMB+07]. The proof constructed in 

Chapter 3 can be extended to show the matrix inverse does not provide more information 

than the equitable partition yielded by applying 2-D Weisfeiler-Lehman stabilization. 
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6.2.4. Open Call for Parallel Software that Decides Graph Isomorphism 
Many algorithms decide graph isomorphism for either a restricted set of graphs or 

two arbitrary graphs (cf. Section 2.3.4.2). Algorithms that decide graph isomorphism can 

be classified into two groups, where an algorithm either computes an explicit permutation 

between two graphs or computes a canonical certificate of each graph, i.e., two graphs are 

isomorphs if some permutation between their vertices exists or their canonical certificates 

are identical. Both types of algorithms apply graph invariants, e.g., the coarsest equitable 

partition, to prune the search tree. For example, the classic algorithm developed by Babai, 

Erdös, and Selkow uses an invariant that can be computed in linear time [BES80]. Their 

algorithm yields a canonical isomorph of nearly all random graphs. 

More robust algorithms decide graph isomorphism between two arbitrary graphs. 

Some readily accessible software tools include Boost [BST], Groups & Graphs [KoK06], 

LEDA [LED], Mathematica [MTH], and NetworkX [HSS]. Other algorithms that decide 

graph isomorphism include VF2 [CFS+04], Bliss [JuK07], and ScrewBox [KuS07]. The 

VF2 algorithm is the most modern algorithm that decides graph isomorphism by finding 

a permutation between two input graphs instead of finding their canonical isomorphs. 

The standard algorithm used to decide graph isomorphism, nauty, includes many 

other isomorphism-related functions [McK81, McK04]. Software tools that require such 

functions often interface with nauty, such as GAP’s GRAPE package [GAP, Soi06] and 

MAGMA [MAG]. MATLAB’s documentation hints that its bioinformatics package links 

with nauty [MAT]. Nauty’s widespread usage can be attributed to many factors, e.g., its 

performance and function set, which includes functions for finding canonical isomorphs, 

orbit partitions, quotient graphs, and automorphism groups. 
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Unfortunately, nauty does have some shortcomings, prompting this open call for 

improvements to nauty or an alternative tool that implements its functions and addresses 

its shortcomings. For example, nauty is freely accessible, however, its source code is not 

open-source. The only known open-source package that is similar to nauty is the N.I.C.E. 

library and that was recently written for the SAGE mathematics package [SAG, Mil07]. 

The N.I.C.E. library applies techniques used in nauty and summarized in Section 2.3.4.2. 

The N.I.C.E. library can be integrated in military applications, whereas nauty’s copyright 

statement currently precludes its use in military applications [McK04]. 

Currently, N.I.C.E. is the only known alternative to nauty that provides a similar 

set of functions, such as obtaining canonical isomorphs and orbit partitions. N.I.C.E. also 

appears to support non-simple graphs, such as weighted and directed graphs. In contrast, 

nauty’s documentation describes how to transform theses graphs for processing [McK04]. 

However, N.I.C.E.’s stated objectives are to provide an open-source and understandable 

alternative to nauty, i.e., N.I.C.E. is not designed to provide the raw speed with respect to 

deciding graph isomorphism that is presently yielded by nauty. 

Hence, the most ambitious future goal is to construct an open-source software tool 

that finds canonical isomorphs and orbit partitions and whose performance is competitive 

with nauty’s performance. This application would leverage the multi-core processors and 

other parallel tools available in modern computing devices. For instance, this application 

could apply the method used to find the coarsest equitable partition to be implemented in 

the parallel algorithm for determining the PageRank vector, as described in Section 6.2.1. 

A software tool that decides graph isomorphism in parallel can benefit many applications, 

to include work related to UAV swarms, as described in Sections 2.1, 2.2.2, and 6.1.2. 
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6.3. Summary 
The PageRank algorithm is often used to order query responses, e.g., web pages 

matching some search criteria. However, the PageRank algorithm has other applications. 

For instance, the results described herein were motivated by exploring how the PageRank 

algorithm or tools used to decide graph isomorphism could be applied to sensor networks, 

e.g., UAV swarms. One natural problem to consider orders the nodes based on some 

st nd th measure of importance. If an attacker knows the 1 ,  2  ,  …, n  most critical nodes, the 

attacker can determine which nodes to attack first. A similar application is finding nodes 

that can facilitate spreading (mis)information, or in social networks, diseases and rumors. 

In general, the PageRank algorithm is useful for analyzing scenarios that require knowing 

the probable behavior of an object that traverses the underlying graph. 

The results described in Chapters 3–5 improve the performance of the PageRank 

algorithm in several ways, e.g., if it is being applied to networks such as UAV swarms. 

For instance, the practical lower bound derived in Section 3.2 provides the minimum time 

needed to obtain the PageRank vector of an arbitrary UAV swarm. The proof described in 

Sections 3.3 and 3.4 establishes it is possible to easily identify nodes that must have equal 

PageRank values by applying the graph’s coarsest equitable partition. 

The AverageRank algorithm listed in Section 4.2 ensures such nodes have equal 

PageRank values, even if a PageRank vector is numerically computed. The ProductRank 

algorithm listed in Section 4.3 finds the PageRank vector of graphs containing such nodes 

more efficiently. Both methods are superseded by the QuotientRank algorithm listed in 

Section 5.4, the most efficient algorithm described herein. Finally, these results generated 

many promising avenues of future research, as described in Section 6.2. 
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