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Mathematics

Excursions into Algebra and Combinatorics at q = 0

Abstract

We explore combinatorics associated with the degenerate Hecke algebra at q = 0, ob-

taining a formula for a system of orthogonal idempotents, and also exploring various pattern

avoidance results. Generalizing constructions for the 0-Hecke algebra, we explore the rep-

resentation theory of J -trivial monoids.

We then discuss two-tensors of crystal bases for Uq(s̃l2), establishing a complementary

result to one of Bandlow, Schilling, and Thiéry on affine crystals arising from promotion

operators. Finally, we give a computer implementation of Stembridge’s local axioms for

simply-laced crystal bases.
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Szabó (who also gave fantastic problem sets), and, again, Ken Debevoise.

(Domies) Finally, thanks and blame are due in equal parts to the Domes at UC Davis,

the utopian paradise I’ve called home for the last four years. The Domes have transformed

and expanded my notions of what is important and, perhaps more importantly, what is

possible. Many thanks are due to the people who originally created this space, including

Ron Swenson and Clay Brandow. Thanks also to those who have poured blood, sweat, and

lost sleep into keeping it running, including (but not limited to) Ben Pearl, Chris Congleton,

Jay Erker, JayLee Tuil, Veronica Pardo, Michelle Yates and the Solar Community Housing

Association.

Shout-outs are due to those who participated in the three-year run of the Domes’ Gary

Gygax Memorial Dungeons and Dragons Game, including Dustin Pluta, Pat Dragon, Ted

-vi-



Tracy, Chris Salam, Ben Miller, Jordan Thompson, Gretchen Kisler, Jay Erker, Brandon

Sowers, and all those who sat in for a game (or six) here and there.

Additional individual domies deserving thanks, in no particular order, include, but

are not limited to: Matt McCorkle, Kori Farrell, Francesca Claverie, Cat Callaway, Kurt

Vaughn, Kurt Kornbluth, Ina Rommeck, Jonathan Wooley, Jake Lorber, JayLee Tuil, Chuck

Parker, Marguerite Wilson, Mike Gordon, Michelle Yates, Shannon Harney, Veronica Pardo,

Hrubs, Liz Ernst, Chris Congleton, Isabel Call and probably three dozen others.

Thanks, finally, to Mom, Dad, and the sibs.

-vii-



1

CHAPTER 1

Introduction

Many structures in mathematics have been shown to admit one-parameter deformations,

which often allow a more complete understanding of the original object, and occasionally

connect various objects that previously seemed quite distinct. A very beautiful example

of this phenomena is given by the q-binomial coefficients
(
n
k

)
q
, which are polynomials in q.

When evaluated at q = 1, one recovers the usual binomial coefficient
(
n
k

)
, which counts the

number of subsets of k objects of a set with n objects. At q a prime power, though,
(
n
k

)
q

counts the number of k-dimensional subspaces of the n-dimensional vector space over the

field with q elements [Sta97]. This phenomenon is symptomatic of a much larger interplay

between the areas of algebra, combinatorics, and geometry.

Two of the most important examples of q-deformations are the Iwahori-Hecke algebra,

or Hecke algebra1 Hq(W ), which is a deformation of a Coxeter group W , and the quantum

group Uq(g), deforming the enveloping algebra of a Lie algebra g. In both of these cases,

specialization at q = 1 recovers the original object. These deformations have been important

in establishing canonical bases for representations of the original objects, and have also

proved useful in studying representation theory over finite fields [KL79, BB05, HK02, KS97].

The majority of this work is concerned with degenerate specializations of q-deformations

at q = 0. In the case of the Hecke algebra, the 0-Hecke algebra of a Coxeter group W is

no longer semi-simple, but still has a great deal of structure: It is a monoid algebra over a

monoid generated by idempotent “anti-sorting” operators, with a one-dimensional simple

representation for each subset of a collection of simple generators of W . This is an example

of an algebra of a J -trivial monoid; we will also discuss aspects of the reprsentation theory

of such monoids.

We also discuss crystal bases, which arise from representations of a q-deformation of the

enveloping algebra of a Lie algebra g. This deformation Uq(g) is known as a quantum group,

1This algebra was first defined by Iwahori, who named it after Erich Hecke. It is traditional to give credit
to Iwahori at the outset and then refer to the object as the Hecke algebra forevermore.
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and has been studied extensively; see [HK02, KS97] for background. While one cannot set

q = 0 in this construction (there are unavoidable q−1’s in the definition of Uq(g)), Kashiwara

demonstrated the existence of a certain lattice L that exists in Uq(g)-modules, and such

that the quotient L/qL often has a convenient basis compatible with the structure of the

representation [Kas90]. This basis can often be lifted to a “global basis” independent of q,

and has been useful in understanding the internal structure of modules for Uq(g).

1.1. Orthogonal Idempotents in the 0-Hecke Algebra of the Symmetric Group.

The 0-Hecke algebra CH0(SN ) for the symmetric group SN can be obtained as the

Iwahori-Hecke algebra of the symmetric group Hq(SN ) at q = 0. It can also be constructed

as the algebra of the monoid generated by anti-sorting operators on permutations of N .

P. N. Norton described the full representation theory of CH0(SN ) in [Nor79]: In brief,

there is a collection of 2N−1 simple representations indexed by subsets of the usual gener-

ating set for the symmetric group, in correspondence with a collection of 2N−1 projective

indecomposable modules. Norton gave a construction for some elements generating these

projective modules, however these elements were neither orthogonal nor idempotent. While

it was known that an orthogonal collection of idempotents to generate the indecomposable

modules exists, there was no known formula for these elements.

Herein, we describe an explicit construction for two different families of orthogonal

idempotents in CH0(SN ), one for each of the two orientations of the Dynkin diagram for

SN . The construction proceeds by creating a collection of 2N−1 demipotent elements, which

we call diagram demipotents, each indexed by a copy of the Dynkin diagram with signs

attached to each node. These elements are demipotent in the sense that, for each element

X, there exists some number k ≤ N − 1 such that Xj is idempotent for all j ≥ k. The

collection of idempotents thus obtained provides a maximal orthogonal decomposition of

the identity.

An important feature of the 0-Hecke algebra is that it is the monoid algebra of a J -

trivial monoid. As a result, its representation theory is highly combinatorial. This paper is

part of an ongoing effort with Hivert, Schilling, and Thiéry [DHST11] to characterize the

representation theory of general J -trivial monoids, continuing the work of [Nor79, Car86,

HT09]. This effort is part of a general trend to better understand the representation theory
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of finite semigroups. See, for example, [IRS11, Ste06, Ste08, AMSV09, PPR97], and for a

general overview, [GMS09].

The diagram demipotents obey a branching rule which compares well to the situation

in [OV96] in their “New Approach to the Representation Theory of the Symmetric Group.”

In their construction, the branching rule for SN is given primary importance, and yields a

canonical basis for the irreducible modules for SN which pulls back to bases for irreducible

modules for SN−M .

Okounkov and Vershik further make extensive use of a maximal commutative alge-

bra generated by the Jucys-Murphy elements. In the 0-Hecke algebra, their construction

does not directly apply, because the deformation of Jucys-Murphy elements (which span

a maximal commutative subalgebra of CSN ) to the 0-Hecke algebra no longer commute.

Instead, the idempotents obtained from the diagram demipotents play the role of the Jucys-

Murphy elements, generating a commutative subalgebra of CH0(SN ) and giving a natural

decomposition into indecomposable modules, while the branching diagram describes the

multiplicities of the irreducible modules.

The Okounkov-Vershik construction is well-known to extend to group algebras of gen-

eral finite Coxeter groups [Ram97]. It remains to be seen whether our construction for

orthogonal idempotents generalizes beyond type A. However, the existence of a process for

type A gives hope that the Okounkov-Vershik process might extend to more general 0-Hecke

algebras of Coxeter groups.

Following this work, Berg, Bergeron, Bhargava and Saliola described a method for

constructing families of orthogonal idempotents for general R-trivial monoids [BBBS10].

Their work provides an interesting middle ground between the fully combinatorial formula

in this chapter and the general construction of idempotents from the semi-simple quotient.

The general method for construction of primitive idempotents is described, for example,

in [CR06], and in [DHST11], where very explicit algorithms are provided for J -trivial

monoids (which are a subset of R-trivial monoids). As one might expect, these various

constructions become computationally more difficult with greater generality.

The results in this chapter originally appeared in the Electronic Journal of Combina-

torics [Den11].
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1.2. Representation Theory of J -Trivial Monoids

The representation theory of the 0-Hecke algebra (also called degenerate Hecke alge-

bra) was first studied by P.-N. Norton [Nor79] in type A and expanded to other types by

Carter [Car86]. Using an analogue of Young symmetrizers, they describe the simple and in-

decomposable projective modules together with the Cartan matrix. An interesting combina-

torial application was then found by Krob and Thibon [KT97] who explained how induction

and restriction of these modules gives an interpretation of the products and coproducts of

the Hopf algebras of noncommutative symmetric functions and quasi-symmetric functions.

Two other important steps were further made by Duchamp–Hivert–Thibon [DHT02] for

type A and Fayers [Fay05] for other types, using the Frobenius structure to get more re-

sults, including a description of the Ext-quiver. Through divided difference (Demazure

operator), the 0-Hecke algebra has a central role in Schubert calculus and also appeared

has connection with K-theory [Dem74, Las01, Las04, Mil05, BKS+08, LSS10].

Like several algebras whose representation theory was studied in recent years in the

algebraic combinatorics community (such as degenerate left regular bands, Solomon-Tits

algebras, ...), the 0-Hecke algebra is the algebra of a finite monoid endowed with special

properties. Yet this fact was seldom used, despite a large body of literature on finite semi-

groups, including representation theory results [Put96, Put98, Sal07, Sal08, MS11, Sch08,

Ste06, Ste08, AMV05, AMSV09, GMS09, IRS11]. From these, one can see that much of

the representation theory of a semigroup algebra is combinatorial in nature (provided the

representation theory of groups is known). One can expect, for example, that for aperi-

odic semigroups (which are semigroups which contain only trivial subgroups) most of the

numerical information (dimensions of the simple/projective indecomposable modules, in-

duction/restriction constants, Cartan matrix) can be computed without using any linear

algebra. In a monoid with partial inverses, one finds (non-trivial) local groups and an under-

standing of the representation theory of these groups is necessary for the full representation

theory of the monoid. In this sense, the notion of aperiodic monoids is orthogonal to that of

groups as they contain only trivial group-like structure (there are no elements with partial

inverses). On the same token, their representation theory is orthogonal to that of groups.
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The class of J -trivial monoids is by itself an active subject of research (see e.g. [ST88,

HP00, Ver08]), and contains many monoids of interest, starting with the 0-Hecke monoid.

Another classical J -trivial monoid is that of nondecreasing parking functions, or monoid of

order preserving regressive functions on a chain. Hivert and Thiéry [HT06, HT09] showed

that it is a natural quotient of the 0-Hecke monoid and used this fact to derive its complete

representation theory. It is also a quotient of Kiselman’s monoid which is studied in [KM09]

with some representation theory results. Ganyushkin and Mazorchuk [GM10] pursued a

similar line with a larger family of quotients of both the 0-Hecke monoid and Kiselman’s

monoid.

Some complications necessarily arise in the extension of the program to larger classes of

monoids, like R-trivial or aperiodic monoids, since the simple modules are not necessarily

one-dimensional in the latter case. The approach taken there is to suppress the dependence

upon specific properties of orthogonal idempotents. Following a complementary line, Berg,

Bergeron, Bhargava, and Saliola [BBBS10] have very recently provided a construction for a

decomposition of the identity into orthogonal idempotents for the class ofR-trivial monoids.

1.3. Non-Decreasing Parking Functions and Pattern Avoidance

In this chapter, we investigate various connections between the 0-Hecke monoid and

questions of pattern avoidance, and develop tools for approaching pattern avoidance as an

algebraic problem.

Pattern avoidance is a rich and interesting subject which has received much attention

since Knuth first connected the notion of [231]-avoidance with stack sortability [Knu97].

Pattern avoidance has also appeared in the study of smoothness of Schubert varieties [BL00,

Bil98], the Temperley-Lieb algebra and the computation of Kazhdahn-Lusztig polynomi-

als [Fan96, FG99]. There is also an extensive literature on enumeration of permutations

avoiding a given pattern; for an introduction, see [Bo04].

While many have studied pattern avoidance for particular patterns, there has been rel-

atively little attention given to the question of pattern avoidance as a general phenomenon.

Similarly, there has been a great deal of combinatorial insight into questions of pattern

avoidance, it has been rare to approach pattern avoidance from an algebraic perspective. In
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this chapter, we first introduce a method for reinterpreting pattern containment as equiva-

lent to a factorization problem for certain permutation patterns. We then use these results

directly in analysing the fibers certain quotients of the 0-Hecke monoid.

We begin by introducing the notion of a width system, which, in some cases, allows the

factorization of a permutation x containing a pattern σ as x = yσ′z, where σ′ is a ‘shift’

of σ, y and z satisfy certain compatibility requirements, and the `(x) = `(y) + `(σ) + `(z).

This factorization generalizes an important result of Billey, Jockusch, and Stanley [BJS93],

which states that any permutation x containing a [321]-pattern contains a braid; that is,

some reduced word for x in the simple transpositions contains a contiguous subword sisi+1si.

(This subword, in our context, plays the role of the σ′.) Equivalently, a permutation that

is [321]-avoiding is fully commutative, meaning that every reduced word may be obtained

by commutation relations. These permutations have been extensively studied, with major

contributions by Fan and Green [Fan96, FG99] and Stembridge [Ste96], who associated a

certain poset to each fully commutative element, where linear extensions of the poset are

in bijection with reduced words for the permutation.

Width systems allow us to extend this notion of subword containment considerably,

and give an algebraic condition for pattern containment for certain patterns. The width

system is simply a measure of various widths of a pattern occurrence within a permutation

(called an ‘instance’). For certain width systems, an instance of minimal width implies a

factorization of the form discussed above. These width systems tend to exist for relatively

long permutations. The main results are contained in Propositions 4.2.13, 4.2.14, 4.2.15,

4.2.17, and Corollary 4.2.16.

We then apply these ideas directly, and study pattern avoidance of certain patterns

(most interestingly [321]-avoidance) in the context of quotients of the 0-Hecke monoid.

Non-decreasing parking functions NDPFN may be realized as a quotient of the 0-Hecke

monoid for the symmetric group SN , and coincide with the set of order-preserving regressive

functions on a poset when the poset is a chain. These functions are enumerated by the

Catalan numbers; for example, if one represents f ∈ NDPFN as a step function, its graph

will be a (rotated) Dyck path. These functions form a J -trivial monoid under composition,

and may be realized as a quotient of the 0-Hecke monoid. We show that the fibers of this
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quotient each contain a unique [321]-avoiding permutation of minimal length, and a [231]-

avoiding permutation of maximal length (Theorem 4.3.3). We then show that a slightly

modified quotient has fibers containing a unique [321]-avoiding permutation of minimal

length, and a [312]-avoiding permutation of maximal length (Theorem 4.3.7).

This provides a bijection between [312] and [321]-avoiding permutations that is very

similar in spirit to the bijection of Simion and Schmidt between [132]-avoiding permutations

and [123]-avoiding permutations [SS85]. (The patterns [312] and [123] are the respective

“complements” of the patterns [312] and [321].)

We then combine these results to obtain a bijection between [4321]-avoiding permuta-

tions and elements of a submonoid of NDPF2N (Theorem 4.4.4), which we consider as a

parabolic submonoid of a type B generalization of non-decreasing parking functions.

We then expand our discussion to the affine symmetric group and affine 0-Hecke monoid.

The affine symmetric group was introduced originally by Lusztig [Lus83], and questions

concerning pattern avoidance in the affine symmetric group have recently been studied by

Lam [Lam06], Green [Gre02], Billey and Crites [BC10]. Lam and Green separately showed

that an affine permutation contains a [321]-pattern if and only if it contains a braid, in the

same sense as in the finite case.

We introduce a definition for affine non-decreasing parking functions ÑDPFN , and

demonstrate that this monoid of functions may be obtained as a quotient of the affine

symmetric group. We obtain a combinatorial map from affine permutations to ÑDPFN

and demonstrate that this map coincides with the definition of ÑDPFN by generators and

relations as a quotient of S̃N . Finally, we prove that each fiber of this quotient contains a

unique [321]-avoiding element of minimal length (Theorem 4.5.15).

1.4. Some Results on Crystal Bases

Crystal bases were originally introduced by Kashiwara [Kas90, Kas91, KN94] to describe

the internal structure of representations of a semi-simple Lie algebra g, and over time the

theory was expanded to include crystals for representations of affine Lie algebras [KKM+91,

KKM+92, KKM94]. The construction of the crystal first involves a q-deformation of the

enveloping algebra of the Lie algebra, yielding a quantum group Uq(g). Then one chooses

a representation of the quantum group and a certain lattice within this representation.
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Finally, by taking q to zero, this lattice yields a crystal basis, which has the structure of an

edge-colored digraph called a crystal graph. The vertices of the digraph index a basis of the

representation, and the edges are colored according to the action of the ẽi and f̃i operators

on this basis. A crystal basis can often be pulled back to a global basis for Uq(g) at any q.

In particular, at q = 1, one recovers a basis for the representation of U(g).

1.4.1. Promotion Operators. Highest weight representations for Uq(ĝ), where ĝ is

an affine Lie algebra, are infinite-dimensional. As a result, the crystal bases for these repre-

sentations are infinite. However, a modification of the weight lattice used in the definition

of the quantum group yields an object U ′q(ĝ) which admits finite dimensional representa-

tions. These representations are no longer highest-weight representations, but often (when

the crystal is “perfect”) can be used as building blocks to construct crystals for the infinite-

dimensional highest weight representations. This construction is known as the Kyoto path

model [KKM+91, KKM+92, KKM94]. The most important of these finite crystals are the

Kirillov-Reshetikhin crystals, which have been extensively studied [FOS09].

By removing the affine node from the Dynkin diagram for an affine Lie algebra, one

may restrict back to finite type. On the level of crystal bases, this process restricts a finite-

dimensional U ′q(ĝ) crystal to a classical crystal by removing all edges labeled 0. On the

other hand, starting with a classical crystal, one may ask whether there exists a way to

insert 0-arrows to obtain a crystal graph for U ′q(ĝ).

For g = sln, each crystal basis for a highest weight representation is indexed by a

partition λ, and the crystal graph has vertices labeled by semi-standard Young tableaux.

Applying the crystal operators f̃i is a combinatorial operation on a tableau.

We define a promotion operator on a crystal graph B to be a map pr : B → B

satisfying the properties:

• If wt(b) = (w1, . . . , wn+1), then wt(pr(b)) = (wn+1, w1, . . . , wn),

• prn+1 = id, and

• For all i ∈ {1, . . . , n}, we have:

pr ◦fi = fi+1 ◦ pr, and pr ◦ei = ei+1 ◦ pr .
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Given a promotion operator on a classical crystal B, one may define an affine structure on

B by placing the 0-arrows according to:

pr ◦fn = f0 ◦ pr, and pr ◦en = e0 ◦ pr .

We call a promotion operator connected if the resulting affine crystal is connected.

When λ is a rectangular partition, there exists a combinatorial operation on the crystal

called the (canonical) promotion operator pr which implements the affine Dynkin diagram

automorphism. Shimozono showed that one may use this promotion operator to insert 0-

arrows into the crystal graph and obtain a finite-dimensional Kirillov-Reshetikhin crystal.

Shimozono further showed that on a classical crystal B of shape λ, B admits a promotion

operator only if λ is rectangular, in which case pr is the unique promotion operator [Shi02].

Later, Bandlow, Schilling and Thiéry showed that on a two-tensor of crystals of rectan-

gular tableaux of type An with n ≥ 2, there exists a unique connected promotion operator,

given by the canonical promotion operator acting diagonally on the tensor product [BST10].

In the case when n = 1, there exist non-canonical connected promotion operators that

give crystals non-isomorphic to the Kirillov-Reshetikhin crystals. The first goal of this

chapter is to show that these non-canonical promotion operators yield crystals that in fact

do not arise from representations of U ′q(ŝl2). The main tool here is the classification of

representations of U ′q(ŝl2) by Chari and Pressley using evaluation representations [CP95].

1.4.2. Computer Implementation of Stembridge Local Axioms. In Section 5.3,

we provide a computer implementation of Stembridge’s local axioms for crystals arising

from highest weight representations in the Sage computer algebra system. We first review

Stembridge’s results, then discuss the design of the Sage system, and finally provide code

which checks a simply-laced crystal in Sage for compliance with the local axioms. This base

of code could also be extended to check local axioms for non-simply-laced typNes. The code

provided is about to be integrated into the main distribution of Sage.
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CHAPTER 2

A Combinatorial Formula for Idempotents in the Zero-Hecke

Algebra of the Symmetric Group

Our goal in this chapter is to discuss the salient features of the representation theory

of the 0-Hecke algebra CH0(W ), which arises as the algebra over a certain monoid H0(W )

obtained by deformation of a Coxeter group W . We review the construction and features of

the algebra, and then give a construction of orthogonal idempotents in the algebra CH0(SN ).

The results in this chapter originally appeared in the Electronic Journal of Combi-

natorics [Den11], and appeared in an extended abstract for the Formal Power Series and

Algebraic Combinatorics conference [Den10].

Section 2.1 establishes notation and describes the relevant background necessary for the

rest of the paper. For further background information on the properties of the symmetric

group, one can refer to the books of [Hum90] and [Sta97]. Section 2.2 reviews the essential

facts of the representation theory of H0(SN ). Section 2.3 gives the construction of the

diagram demipotents. Section 2.4 describes the branching rule the diagram demipotents

obey, and also establishes the Sibling Rivalry Lemma, which is useful in proving the main

results, in Theorem 2.4.7. Section 2.5 establishes bounds on the power to which the diagram

demipotents must be raised to obtain an idempotent. Finally, remaining questions are

discussed in Section 2.6.

2.1. Definitions and Background

Let W be a finite Coxeter group, which is to say a group generated by reflections. For W

finite, these groups are classified by Dynkin Diagrams which encode a system of generators

and relations. Namely, the Dynkin Diagram is a graph on vertex set I = {1, . . . , n}, with

multiple edges allowed. Dynkin diagrams also encode data about many other types of

objects, such as Hecke algebras and certain Lie algebras. The number n = |I| is called the

rank of the Coxeter group (or other object) associated to D. For each pair of indices (i, j)
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we associate a positive integer m(i, j), equal to two plus the number of edges connecting i

and j in the Dynkin diagram. (Technically, this is the Coxeter diagram, but in our case the

two coincide.) Then W has a generating set S = {s1, . . . , sn}, satisfying relations:

(2.1)

s2i = 1 for all i ∈ I ,

sisjsisjsi · · ·︸ ︷︷ ︸
m(i,j)

= sjsisjsisj · · ·︸ ︷︷ ︸
m(i,j)

for all i, j ∈ I ,

For example, the Dynkin diagram for the symmetric group Sn+1 is simply the chain on

n vertices. Then Sn+1 is generated by a collection of {s1, . . . , sn} which can be identified

with the simple transpositions (in disjoint cycle notation, given by (i, i+ 1)). The relations

for Sn+1 are:

• Reflection: s2i = 1,

• Commutation: sisj = sjsi for |i− j| > 1,

• Braid relation: sisi+1si = si+1sisi+1.

The Hecke Algebra CHq(W ) is a q-deformation of the group algebra of W , generated

by elements {Ti | i ∈ I} satisfying relations dependent on a complex parameter q:

(2.2)

T 2
i = ((q − 1)Ti + q for all i ∈ I ,

TiTjTiTjTi · · ·︸ ︷︷ ︸
m(i,j)

= TjTiTjTiTj · · ·︸ ︷︷ ︸
m(i,j)

for all i, j ∈ I ,

At q = 0, we obtain the 0-Hecke Algebra, denoted CH0(W ). By making the substitution

πi := −Ti and considering the monoid generated by the πi, we obtain the 0-Hecke monoid,

which we will denote simply by H or H0(W ) if there is any chance of confusion over the

originating Coxeter group. It is clear that the monoid-algebra of H0(W ) is CH0(W ).

Words for W and H0(W ) Elements. Given a list w = {w1, w2, . . . , wk} with wi ∈ I, and

a given collection of generators {gi} indexed by I, we can form the word gw = gw1 · · · gwk
.

For compactness of notation, we will often write words as sequences subscripting the symbol

for the generating set. Thus, π1π2π3 = π123. (This notation is unambiguous, as we will not

explicitly compute any examples of rank greater than nine.)

Elements of the 0-Hecke monoid are indexed by elements of W : Any reduced word

s = si1 · · · sik for σ ∈ W is also a reduced word in the 0-Hecke monoid, πi1 · · ·πik . A
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well-known property of Coxeter groups is that given two reduced words w and v for an

element σ, w is related to v by a sequence of braid and commutation relations [BB05].

These relations still hold in the 0-Hecke monoid, so πw = πv. From this, we can see that

the 0-Hecke monoid has |W | elements, and that the 0-Hecke algebra has dimension |W | as

a vector space.

We can obtain a parabolic subgroup (resp. submonoid, subalgebra) by considering the

object whose generators are indexed by a subset J ⊂ I, retaining the original relations.

Such subgroups will be denoted WJ . The Dynkin diagram of the corresponding object

is obtained by deleting the relevant nodes (and incident edges) from the original Dynkin

diagram. It is well known that every Coxeter group (and thus 0-Hecke monoid) contains a

unique longest element, being an element whose length is maximal amongst all elements of

the subgroup. Since the parabolic subgroups (submonoids) are still Coxeter groups, there is

a unique longest element in each parabolic subgroup and corresponding submonoid, which

we will denote by sJ ∈ W or π+J ∈ H0(W ). We will use Ĵ to denote the complement of J

in I. For example, in H0(S8) with J = {1, 2, 6}, then w+
J = π1216, and w+

Ĵ
= π3453437.

The 0-Hecke monoid is aperiodic, meaning that for any x ∈ H0(W ), there exists a finite

positive integer k such that xk = xk+1. In particular, for any element x ∈ H0(W ) we may

define:

J(x) := {i ∈ I | s.t. i appears in some reduced word for x}.

This set is well defined because if i appears in some reduced word for x then it must appear

in every reduced word for x. Then xω = w+
J(x). Additonally, this element is, by construction,

idempotent.

The Algebra Automorphism Ψ of CH0(SN ). The algebra CH0(W ) is alternatively gen-

erated by elements π−i := (1 − πi), which satisfy the same relations as the πi generators.

There is a unique automorphism Ψ of CH0(W ) defined by sending πi → (1− πi).

For any longest element w+
J , the image Ψ(w+

J ) is a longest element in the (1 − πi)

generators; this element is denoted w−J .

Dynkin Diagram Automorphisms of CH0(W ). Any automorphism of the underlying

graph of a Dynkin diagram induces an automorphism of the Hecke algebra. For the Dynkin

diagram of SN , there is exactly one non-trivial automorphism, sending the node i toN−i+1.
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This diagram automorphism induces an automorphism of the symmetric group, sending

the generator si to sN−i. Similarly, there is an automorphism of the 0-Hecke monoid sending

the generator πi to πN−i.

2.2. Representation Theory of H0(W )

The representation theory of CH0(SN ) was described in [Nor79] and expanded to any

finite Coxeter groups in [Car86]. A more general approach to the representation theory can

be taken by approaching the 0-Hecke algebra as a monoid algebra, as per [GMS09]. The

main results are reproduced here for ease of reference.

For any subset J ⊂ I, let λJ denote the one-dimensional representation of CH0(W )

defined by the action of the generators:

λJ(πi) =


0 if i ∈ J,

1 if i /∈ J.

For W of rank n, the λJ are 2n non-isomorphic representations, all one-dimensional and

thus simple. In fact, these are all of the simple representations of CH0(W ), which can be

verified by forming a composition series for H0(W ).

Definition 2.2.1. For each i ∈ I, define the evaluation maps Φ+
i and Φ+

i on generators

by:

Φ+
N : CH0(W )→ CH0(WI\{i})

Φ+
N (πi) =


1 if i = N ,

πi if i 6= N .

Φ−N : CH0(W )→ CH0(WI\{i})

Φ−N (πi) =


0 if i = N ,

πi if i 6= N .

One can easily check that these maps extend to algebra morphisms from H0(W ) →

H0(WI\i). For any J , define Φ+
J as the composition of the maps Φ+

i for i ∈ J , and define Φ−J

analogously. Then the simple representations of H0(W ) are given by the maps λJ = Φ+
J ◦Φ

−
Ĵ

,

where Ĵ = I \ J .
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The map Φ+
J is also known as the parabolic map [BFL99], which sends an element x to

an element y such that y is the longest element less than x in Bruhat order in the parabolic

submonoid with generators indexed by J .

The nilpotent radical N in CH0(SN ) is spanned by elements of the form x − w+
J(x),

where x ∈ H0(W ). This element w+
J(x) is always idempotent. If y is already idempotent,

then y = w+
J(y), and so y−w+

J(y) = 0 contributes nothing to N . However, all other elements

x− w+
J(x) for x not idempotent are linearly independent, and thus give a basis of N .

Norton further showed that

CH0(SN ) =
⊕
J⊂I

H0(SN )w−J w
+

Ĵ

is a direct sum decomposition of CH0(SN ) into indecomposable left ideals, a result which

Carter expanded to general Coxeter groups.

Theorem 2.2.2 (Norton, 1979). Let {pJ |J ⊂ I} be a family of mutually orthogonal prim-

itive idempotents with pJ ∈ CH0(SN )w−J w
+

Ĵ
for all J ⊂ I such that

∑
J⊂I pJ = 1.

Then CH0(SN )w−J w
+

Ĵ
= CH0(SN )pJ , and if N is the nilpotent radical of CH0(SN ),

Nw−J w
+

Ĵ
= NpJ is the unique maximal left ideal of CH0(SN )pJ , and CH0(SN )pJ/NpJ

affords the representation λJ .

Finally, the semisimple quotient is commutative and may be described thusly:

CH0(SN )/N =
⊕
J⊂I

CH0(SN )pJ/NpJ = C2N−1
.

The elements w−J w
+

Ĵ
are neither orthogonal nor idempotent; the proof of Norton’s the-

orem is non-constructive, and does not give a formula for the idempotents.

2.3. Diagram Demipotents

The elements πi and (1 − πi) are idempotent. There are actually 2N−1 idempotents

in H0(SN ), namely the elements w+
J for any J ⊂ I. These idempotents are clearly not

orthogonal, though. The goal of this chapter is to give a formula for a collection of orthogonal

idempotents in CH0(SN ).

For our purposes, it will be convenient to index subsets of the index set I (and thus also

simple and projective representations) by signed diagrams.
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1+ 2+ 3− 4− 5− 6+ 7−

Figure 2.1. A signed Dynkin diagram for S8.

Definition 2.3.1. A signed diagram is a Dynkin diagram in which each vertex is labeled

with a + or −.

Figure 2.1 depicts the signed diagram for type A7, corresponding to H0(S8) with J =

{1, 2, 6}. For brevity, a diagram can be written as just a string of signs. For example, the

signed diagram in the Figure is written + + − − − + −. For k ∈ I, and a fixed choice of

signed diagram D, the sgn(k) is the sign labeling k in D.

We now construct a diagram demipotent corresponding to each signed diagram. Let

P be a set partition of the index set I obtained from a signed diagram D by grouping

together sets of adjacent pluses and minuses. For the diagram in Figure 2.1, we would

have P = {{1, 2}, {3, 4, 5}, {6}, {7}}. Let Pk denote the kth subset in P . For each Pk,

let w
sgn(k)
Pk

be the longest element of the parabolic sub-monoid associated to the index set

Pk, constructed with the generators πi if sgn(k) = + and constructed with the (1 − πi)

generators if sgn(k) = −.

Definition 2.3.2. Let D be a signed diagram with associated composition P = P1∪· · ·∪Pm.

Set:

LD = w
sgn(1)
P1

w
sgn(2)
P2

· · ·wsgn(m)
Pm

, and

RD = w
sgn(m)
Pm

w
sgn(m−1)
Pm−1

· · ·wsgn(1)P1
.

The diagram demipotent CD associated to the signed diagram D is then LDRD. The

opposite diagram demipotent C ′D is RDLD.

Thus, the diagram demipotent for the diagram in Figure 2.1 is

π+121π
−
345343π

+
6 π
−
7 π

+
6 π
−
345343π

+
121.

It is not immediately obvious that these elements are demipotent; this is a direct result

of Lemma 2.4.3, below.
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For N = 1, there is only the empty diagram, and the diagram demipotent is just the

identity.

For N = 2, there are two diagrams, + and −, and the two diagram demipotents are

π1 and 1 − π1 respectively. Notice that these form a decomposition of the identity, as

πi + (1− πi) = 1.

For N = 3, we have the following list of diagram demipotents. The first column gives

the diagram, the second gives the element written as a product, and the third expands the

element as a sum. For brevity, words in the πi or π−i generators are written as strings in

the subscripts. Thus, π1π2 is abbreviated to π12.

D CD CD Expanded

++ π121 π121

+− π1π
−
2 π1 π1 − π121

−+ π−1 π2π
−
1 π2 − π12 − π21 + π121

−− π−121 1− π1 − π2 + π12 + π21 − π121

Observations:

• The idempotent π−121 is an alternating sum over the monoid. This is a general phe-

nomenon: By [Nor79], w−J is the length-alternating signed sum over the elements

of the parabolic sub-monoid with generators indexed by J .

• The shortest element in each expanded sum is an idempotent in the monoid with πi

generators; this is also a general phenomenon. The shortest term is just the product

of longest elements in nonadjacent parabolic sub-monoids, and is thus idempotent.

Then the shortest term of CD is π+J , where J is the set of nodes in D marked with

a +. Each diagram yields a different leading term, so we can immediately see that

the 2N−1 idempotents in the monoid appear as a leading term for exactly one of

the diagram demipotents, and that they are linearly independent.

• For many purposes, one only needs to explicitly compute half of the list of diagram

demipotents; the other half can be obtained via the automorphism Ψ. A given dia-

gram demipotent x is orthogonal to Ψ(x), since one has left and right π1 descents,

and the other has left and right π−1 descents, and π1π
−
1 = 0.
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• The diagram demipotents are fixed under the automorphism determined by πσ →

πσ−1 . In particular, LD is the reverse of RD, and CD can be expressed as a

palindrome in the alphabet {πi, π−i }.

• The diagram demipotents CD and CE for D 6= E do not necessarily commute.

Non-commuting demipotents first arise with N = 6. However, the idempotents

obtained from the demipotents are orthogonal and do commute.

• It should also be noted that these demipotents (and the resulting idempotents)

are not in the projective modules constructed by Norton, but generate projective

modules isomorphic to Norton’s.

• The diagram demipotents CD listed here are not fixed under the automorphism

induced by the Dynkin diagram automorphism. In particular, the “opposite” di-

agram demipotents C ′D = RDLD really are different elements of the algebra, and

yield an equally valid but different set of orthogonal idempotents. For purposes of

comparison, the diagram demipotents for the reversed Dynkin diagram are listed

below for N = 3.

D C ′D C ′D Expanded

++ π212 π212

+− π2π
−
1 π2 π2 − π212

−+ π−2 π1π
−
2 π1 − π12 − π21 + π212

−− π−212 1− π1 − π2 + π12 + π21 − π212

For N ≤ 4, the diagram demipotents are actually idempotent and orthogonal. For larger

N , raising the diagram demipotent to a sufficiently large power yields an idempotent (see

below, Theorem 2.4.7); in other words, the diagram demipotents are indeed demipotent.

The power that an diagram demipotent must be raised to in order to obtain an actual

idempotent is called its nilpotence degree; we demonstrate below that the nilpotence degree

is always ≤ N − 3.

For N = 5, two of the diagram demipotents need to be squared to obtain an idempotent.

For N = 6, eight elements must be squared. For N = 7, there are four elements that must

be cubed, and many others must be squared. Some pretty good upper bounds on the

nilpotence degree of the diagram demipotents are given in Section 2.5. As a preview, for
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N > 4 the nilpotence degree is always ≤ N − 3, and conditions on the diagram can often

greatly reduce this bound.

As an alternative to raising the demipotent to some power, we can express the idem-

potent as a product of diagram demipotents for smaller diagrams. Let Dk be the signed

diagram obtained by taking only the first k nodes of D. Then, as we will see, the idempotent

can also be expressed as the product CD1CD2CD3 · · ·CDN−1
= CND .

Right Weak Order. Let m be a standard basis element of the 0-Hecke algebra in the πi

basis. Then for any i ∈ DL(m), πim = m, and for any i 6∈ DL(m), πim ≥R m in left

weak order. This is an adaptation of a standard fact in the theory of Coxeter groups to the

0-Hecke setting.

Corollary 2.3.3 (Diagram Demipotent Triangularity). Let CD be a diagram demipotent

and m an element of the 0-Hecke monoid in the πi generators. Then CDm = λm+x, where

x is an element of H0(SN ) spanned by monoid elements lower in right weak order than m,

and λ ∈ {0, 1}. Furthermore, λ = 1 if and only if DL(m) is exactly the set of nodes in D

marked with pluses.

Proof. The diagram demipotent CD is a product of πi’s and (1− πi)’s. �

Proposition 2.3.4. Each diagram demipotent is the sum of a non-zero idempotent part

and a nilpotent part. That is, all eigenvalues of a diagram demipotent are either 1 or 0.

Proof. Assign a total ordering to H0(SN ) as generated by the πi respecting Bruhat

order. Then by Corollary 2.3.3, the matrix MD of any diagram demipotent CD is lower

triangular, and each diagonal entry of MD is either one or zero. A lower triangular matrix

with diagonal entries in {0, 1} has eigenvalues in {0, 1}; thus CD is the sum of an idempotent

and a nilpotent part.

To show that the idempotent part is non-zero, consider any element m of the monoid

such that DL(m) is exactly the set of nodes in D marked with pluses. Then CDm = m+ x

shows that CD has a 1 on the diagonal, and thus has 1 as an eigenvalue. Hence the

idempotent part of CD is non-zero. (This argument still works if D has no plusses, since

the associated diagram demipotent fixes the identity.) �
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2.4. Branching

There is a convenient and useful branching of the diagram demipotents for H0(SN ) into

diagram demipotents for H0(SN+1).

Lemma 2.4.1. Let J = {i, i+ 1, . . . , N − 1} Then w+
J πNw

+
J is the longest element in the

generators i through N . Likewise, w+
J πi−1w

+
J is the longest element in the generators i− 1

through N − 1. Similar statements hold for w−J π
−
Nw
−
J and w−J π

−
i−1w

−
J .

Proof. Let J = {i, i+ 1, . . . , N − 1}.

The lexicographically minimal reduced word for the longest element in consecutive gen-

erators 1 through k is obtained by concatenating the ascending sequences π1...k−i for all

0 < i < k. For example, the longest element in generators 1 through 4 is π1234123121.

Now form the product m = w+
J πNw

+
J (for example π1234123121π5π1234123121). This con-

tains a reduced word for w+
J as a subword, and is thus m ≥ w+

J in the (strong) Bruhat

Order. But since w+
J is the longest element in the given generators, m and w+

J must be

equal.

For the second statement, apply the same methods using the lexicographically maximal

word for the longest elements.

The analogous statement follows directly by applying the automorphism Ψ. �

Recall that each diagram demipotent CD is the product of two elements LD and RD.

For a signed diagram D, let D+ denote the diagram with an extra + adjoined at the end.

Define D− analogously.

Corollary 2.4.2. Let CD = LDRD be the diagram demipotent associated to the signed

diagram D for SN . Then CD+ = LDπNRD and CD− = LDπ
−
NRD. In particular, CD+ +

CD− = CD. Finally, the sum of all diagram demipotents for H0(SN ) is the identity.

Proof. The identities

CD+ = LDπNRD and CD− = LDπ
−
NRD

are consequences of Lemma 2.4.1, and the identity CD+ + CD− = CD follows directly.
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r

q

p p̄

x y x̄ ȳ

+

+ −

+ − + −

Figure 2.2. Relationship of Elements in the Proof of the Sibling Rivalry Lemma.

To show that the sum of all diagram demipotents for fixed N is the identity, recall

that the diagram demipotent for the empty diagram is the identity, then apply the identity

CD+ + CD− = CD repeatedly. �

Next we have a key lemma for proving many of the remaining results in this paper:

Lemma 2.4.3 (Sibling Rivalry). Sibling diagram demipotents commute and are orthogonal:

CD−CD+ = CD+CD− = 0. Equivalently,

CDCD+ = CD+CD = C2
D+ and CDCD− = CD−CD = C2

D−.

Proof. We proceed by induction, using two levels of branching. Thus, we want to show

the orthogonality of two diagram demipotents x and y which are branched from a parent

p and grandparent q. Without loss of generality, let q be the positive child of an element

r. Call q’s other child p̄, which in turn has children x̄ and ȳ. The relations between the

elements is summarized in Figure 2.2.

The goal, then, is to prove that yx = 0 and ȳx̄ = 0. Since p = x + y, we have that

yx = (p − x)x = px − x2. Thus, we can equivalently go about proving that px = x2 or

py = y2. It will be easier to show px = x2. We will also show that p̄x̄ = x̄2. Once this

is done, we will have proven the result for diagrams ending in + + +, + + −, + − +, and

+−−. By applying the automorphism Ψ, we obtain the result for the other four cases.

One can obtain the reverse equalities xy = 0, x̄p̄ = 0, and so on, either by performing

equivalent computations, or else by another use of the Ψ automorphism. For the latter,

suppose that we know CD+CD− = 0 for arbitrary D. Then applying Ψ to this equation

gives CD̂−CD̂+ = 0, where D̂ is the signed diagram D with all signs reversed. Since D was

arbitrary, D̂ is also arbitrary, so CD−CD+ = 0 for arbitrary D.
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The remainder of this proof will provide the induction argument. For the base case, we

have C∅ = 1, and C+ = π1, so clearly C∅C+ = C∅C+ = C+ = C2
+, with analagous statement

for C−. For the rank two cases, one can confirm the statement manually using the diagram

demipotents listed in Section 2.3.

Let r = LR, dropping the D subscript for convenience, generated with i in the index

set I. Let the three new generators be πa, πb and πc. Notice that πb, π
−
b , πc, and π−c all

commute with L and R.

The inductive hypothesis tells us that pq = qp = p2 and p̄q = qp̄ = p̄2. We also have

the following identities:

• q = LπaR,

• p = LπaπbπaR = πbqπb,

• x = LπabaπcπabaR = πcbcqπcbc,

• pq = qπbqπb = p2 = πbqπbqπb.

Then we compute directly:

px = πbqπbπcbcqπcbc

= πbqπcbcqπcbc

= πbc(qπbqπb)πcbc

= πbc(πbqπbqπb)πcbc

= πbcb(qπbq)πcbc

= πcbc(qπcbcq)πcbc

= x2.

To complete the proof, we need to show that p̄x̄ = x̄2. To do so, we use the following

identities:

• q = LπaR,

• p̄ = Lπa(1− πb)πaR,

• x̄ = Lπa(1− πb)πc(1− πb)πaR.
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Then we expand the following equation:

p̄x̄ = Lπa(1− πb)πaRLπa(1− πb)πc(1− πb)πaR.

We expand this as follows:

p̄x̄ = q2πc − qp̄πc − qπcp̄+ qπcp̄πc − p̄qπc + p̄2πc + p̄πcp̄− p̄πcp̄πc.

Meanwhile,

x̄ = L(πac − πabca − πacba + πabcba)R

= πcq − p̄πc − πcp̄+ πcp̄πc

Expanding x̄2 in terms of p̄ and q is a lengthy but straightforward calculation, which

yields:

x̄2 = q2πc − qp̄πc − qπcp̄+ qπcp̄πc − p̄qπc + p̄2πc + p̄πcp̄− p̄πcp̄πc

= p̄x̄

This completes the proof of the lemma. �

Corollary 2.4.4. The diagram demipotents CD are demipotent.

This follows immediately by induction: if CkD = Ck+1
D , then CD+C

k
D = CD+C

k+1
D , and

by sibling rivalry, Ck+1
D+ = Ck+2

D+ .

Now we can say a bit more about the structure of the diagram demipotents.

Proposition 2.4.5. Let p = CD, x = CD+, y = CD−, so p = x+ y and xy = 0. Let v be an

element of H. Furthermore, let p, x, and y have abstract Jordan decomposition p = pi + pn,

x = xi + xn, y = yi + yn, with pipn = pnpi and p2i = pi, p
k
n = 0 for some k, and similar

relations for the Jordan decompositions of x and y.

Then we have the following relations:

(1) If there exists k such that pkv = 0, then xk+1v = yk+1v = 0.

(2) If pv = v, then x(x− 1)v = 0

(3) If (x− 1)kv = 0, then (x− 1)v = 0

(4) If pv = v and xkv = 0 for some k, then yv = v.
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(5) If xv = v, then yv = 0 and pv = v.

(6) Let uxi be a basis of the 1-space of x, so that xuxi = uxi , yuxi = 0 and puxi = v,

and uyj a basis of the 1-space of y. Then the collection {uxi , u
y
j} is a basis for the

1-space of p.

(7) pi = xi + yi, pn = xn + yn, xiyi = 0.

Proof. (1) Multiply the relation pv = (x+ y)v = 0 by x, and recall that xy = 0.

(2) Multiply the relation pv = (x+ y)v = v by x, and recall that xy = 0.

(3) Multiply (x − 1)kv = 0 by y to get yv = 0. Then pv = xv. Then (x − 1)kv =

(p − 1)kv = 0. By the induction hypothesis, (p − 1)kv = (p − 1)v implies that

pv = v, but then xv = pv = v, so the result holds.

(4) By (2), we have x2v = xv, so in fact, xkv = xv = 0. Then v = pv = xv + yv = yv.

(5) If xv = v, then multiplying by y immediately gives 0 = yxv = yv. Since yv = 0,

then pv = (x+ y)v = xv = v.

(6) From the previous item, it is clear that the bases vix and vjy exist with the desired

properties. All that remains to show is that they form a basis for the 1-space of p.

Suppose v is in the 1-space of p, so pv = v. Then let xv = a and yv = b so that

pv = (x+y)v = a+ b = v. Then a = xv = x(a+ b) = x2v+xyv = x2v = xa. Then

a is in the 1-space of x, and, simlarly, b is in the 1-space of y. Then the 1-space of

p is spanned by the 1-spaces of x and y, as desired.

(7) Let Mp, Mx and My be matrices for the action of p, x and y on H. Then the

above results imply that the 0-eigenspace of p is inherited by x and y, and that

the 1-eigenspace of p splits between x and y.

We can thus find a basis {uxk, u
y
l , u

0
m} of H such that: pu0k = xu0k = yu0k = 0,

xuxk = uxk, puxk = uxk, yuxk = 0, yuyk = uyk, pu
y
k = uyk, and xuyk = 0. In this basis, p

acts as the identity on {uxk, u
y
l }, and x and y act as orthogonal idempotents. This

proves that pi = xi + yi and xiyi = 0. Since p = pi + pn = xi + xn + yi + yn, then

it follows that pn = xn + yn.

�

Corollary 2.4.6. There exists a linear basis vjD of CH0(SN ), indexed by a signed diagram

D and some numbers j, such that the idempotent ID obtained from the abstract Jordan
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decomposition of CD fixes every vjD. For every signed diagram E 6= D, the idempotent IE

kills vjD.

The proof of this corollary further shows that this basis respects the branching from

H0(SN−1) to H0(SN ). In particular, finding this linear basis for H0(SN ) allows the easy

recovery of the bases for the indecomposable modules for any M < N .

Proof. Any two sibling idempotents have a linear basis for their 1-spaces as desired,

such that the union of these two bases form a basis for their parent’s 1-space. Then the

union of all such bases gives a basis for the 1-space of the identity element, which is all of

H.

All that remains to show is that for every signed diagram E 6= D with a fixed number

of nodes, the idempotent IE kills vjD. Let F be last the common ancestor of D and E under

the branching of signed diagrams, so that F+ is an ancestor of (or equal to) D and F− is

an ancestor of (or equal to) E. Then IF+ fixes every vjD, since the collection vjD extends to

a basis of the 1-space of IF+. Likewise, IF− kills every vjD, by the previous theorem. �

We now state the main result. For D a signed diagram, let Di be the signed sub-diagram

consisting of the first i entries of D.

Theorem 2.4.7. Each diagram demipotent CD (see Definition 2.3.2) for H0(SN ) is demipo-

tent, and yields an idempotent ID = CD1CD2 · · ·CD = CND . The collection of these idempo-

tents {ID} form an orthogonal set of primitive idempotents that sum to 1.

Proof. We can completely determine an element of CH0(SN ) by examining its natural

action on all of CH0(SN ), since if xv = yv for all v ∈ CH0(SN ), then (x− y)v = 0 for every

v, and 0 is the only element of CH0(SN ) that kills every element of CH0(SN ).

The previous results show that the characteristic polynomial of each diagram demipotent

is Xa(X−1)b for some non-negative integers a and b, with all nilpotence associated with the

0-eigenvalue. This establishes that the diagram demipotents CD are actually demipotent,

in the sense that there exists some k such that (CD)k is idempotent. Theorem 2.4.5 shows

that this k grows by at most one with each branching, and thus k ≤ N . A prior corollary

shows that the idempotents sum to the identity.
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Figure 2.3. Nilpotence degree of diagram demipotents. The root node
denotes the diagram demipotent with empty diagram (the identity). In all
computed example, sibling diagram demipotents have the same nilpotence
degree; the lowest row has been abbreviated accordingly for readability.

The previous corollary establishes a basis for CH0(SN ) such that each idempotent ID

either kills or fixes each element of the basis, and that for each E 6= D, IE kills the 1-space

of ID. Since ID is in the 1-space of ID, then IE must also kill ID. This shows that the

idempotents are orthogonal, and completes the theorem. �

2.5. Nilpotence Degree of Diagram Demipotents

Take any m in the 0-Hecke monoid whose descent set is exactly the set of positive

nodes in the signed diagram D. Then CDm = m + (lower order terms), by a previ-

ous lemma, and IDm = (CD)k(m) = m + (lower order terms). The set {IDm|DL(m) =

{positive nodes in D}} is thus linearly independent in H0(SN ), and gives a basis for the

projective module corresponding to the idempotent ID.

We have shown that for any diagram demipotent CD, there exists a minimal integer k

such that (CD)k is idempotent. Call k the nilpotence degree of CD. The nilpotence degree

of all diagram demipotents for N ≤ 7 is summarized in Figure 2.3.

The diagram demipotent C+···+ with all nodes positive is given by the longest word

in the 0-Hecke monoid, and is thus already idempotent. The same is true of the diagram
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demipotent C−···− with all nodes negative. As such, both of these elements have nilpotence

degree 1.

Lemma 2.5.1. The nilpotence degree of sibling diagram demipotents CD+ and CD− are

either equal to or one greater than the nilpotence degree k of the parent CD. Furthermore,

the nilpotence degree of sibling diagram demipotents are equal.

Proof. Let x and y be the sibling diagram demipotents, with parent diagram demipo-

tent p, so p = CD = LDRD, x = CD+ = LDπNRD, y = CD− = LD(1− πN )RD. Let p have

nilpotence degree k, so that pk = pk+1. We have already seen that the nilpotence degree of

x and y is at most k + 1. We first show that the nilpotence degree of x or y cannot be less

than the nilpotence degree of p.

Recall the following quotients of CH0(SN ):

Φ+
N : CH0(SN )→ CH0(SN−1)

Φ+
N (πi) =


1 if i = N ,

πi if i 6= N .

Φ−N : CH0(SN )→ CH0(SN−1)

Φ−N (πi) =


0 if i = N ,

πi if i 6= N .

given by introducing the relation πN = 1. One can easily check that these are both mor-

phisms of algebras. Notice that Φ+
N (x) = p, and Φ−N (y) = p. Then if the nilpotence degree

of x is l < k, we have pl = Φ+
N (xl) = Φ+

N (xl+1) = pl+1, implying that the nilpotence degree

of p was actually l, a contradiction. The same argument can be applied to y using the

quotient Φ−n .
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Suppose one of x and y has nilpotence degree k. Assume it is x without loss of generality.

Then:

pk = pk+1

⇔ xk + yk = xk+1 + yk+1

⇔ xk+1 + yk = xk+1 + yk+1

⇔ yk = yk+1

Then the nilpotence degree of y is also k.

Finally, if neither x nor y have nilpotence degree k, then they both must have nilpotence

degree k + 1. �

Computer exploration suggests that siblings always have equal nilpotence degree, and

that nilpotence degree either stays the same or increases by one after each branching.

Lemma 2.5.2. Let D be a signed diagram with a single sign change, or the sibling of such

a diagram. Then CD is idempotent (and thus has nilpotence degree 1).

Proof. We prove the statement for a diagram with single sign change, since siblings

automatically have the same nilpotence degree. Without loss of generality let the diagram

of D be −−· · ·−−++ · · ·++. Let L the subset of the index set with negative marks in D.

Let i be the minimal element of the index set with a positive mark, and let H = I \(L∪{i}).

Then:

CD = w−Lw
+
Hπiw

+
Hw
−
L .

Notice that w+
H and w−L commute.

Set y = w−Lw
+
H(1− πi)w+

Hw
−
L , and p = CD + y = w−Lw

+
Hw

+
Hw
−
L = w+

Hw
−
L .

Now y is not a diagram demipotent, though p could be considered a diagram demipotent

for disconnected Dynkin Diagram with the ith node removed.

It is immediate that:

p2 = p, CDp = CD = pCD yp = y = py
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Now we can establish orthogonality of CD and y:

CDy = (w−Lw
+
Hπiw

+
Hw
−
L )(w−Lw

+
H(1− πi)w+

Hw
−
L )

= w−L (w+
Hπiw

+
H)(w−L (1− πi)w−L )w+

H

= w−Lπ
+
H∪iπ

−
L∪iw

+
H

= 0

The product of π+H∪i and π−L∪i is zero, since π+H∪i has a πi descent, and π−L∪i has a p̄i descent.

Then CD = pCD = (CD + y)CD = (CD)2, so we see that CD is idempotent. �

In particular, this lemma is enough to see why there is no nilpotence before N = 5; every

signed Dynkin diagrams with three or fewer nodes has no sign change, one sign change, or

is the sibling of a diagram with one sign change.

Proposition 2.5.3. Let D be any signed diagram with n nodes, and let E be the largest

prefix diagram such that E has a single sign change, or is the sibling of a diagram with a

single sign change. Then if E has k nodes, the nilpotence degree of D is at most n− k.

Proof. This result follows directly from the previous lemma and the fact that the

nilpotence degree can increase by at most one with each branching. �

This bound is not quite sharp for H0(SN ) with N ≤ 7: The diagrams +−++, +−+++,

and + − + + ++ all have nilpotence degree 2. However, at N = 7, the highest expected

nilpotence degree is 3 (since every diagram demipotent with three or fewer nodes is idem-

potent), and this degree is attained by 4 of the demipotents. These diagram demipotents

are + +−+ ++, +−+−++, and their siblings.

An open problem is to find a formula for the nilpotence degree directly in terms of the

diagram of a demipotent.

2.6. Further Directions

2.6.1. Conjectural Demipotents with Simpler Expression. Computer explo-

ration has suggested a collection of demipotents that are simpler to describe than those

we have presented here.
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For a word w = (w1w2 · · ·wk) with wi in the index set and a signed diagram D, we obtain

the masked word wD by applying the sign of i in D to each instance of i in w. For example,

for the word w = (1, 2, 1, 3, 1, 2) andD = +−+, the masked word is wD = (1,−2, 1, 3, 1,−2).

A masked word yields an element of H0(SN ) in the obvious way: we write

πDw :=
∏

πsgn(i)wi
,

where sgn(i) is the sign of i in D.

Some masked words are demipotent and others are not. We call a word universal if:

• w contains every letter in I at least once, and

• wD is demipotent for every signed diagram D.

Conjecture 2.6.1. The word uN = (1, 2, . . . , N − 2, N − 1, N − 2, . . . , 2, 1) is universal.

Computer exploration has shown that uN are universal up to CH0(S9), and that the

idempotents thus obtained are the same as the idempotents obtained from the diagram

demipotents CD. However, these demipotents uDN , though they branch in the same way as

the diagram demipotents, fail to have the sibling rivalry property. Thus, another method

should be found to show that these elements are demipotent.

An important quotient of the 0-Hecke monoid is the monoid of Non-Decreasing Parking

Functions, NDPFN . These are the functions f : [N ]→ [N ] satisfying

• f(i) ≤ i, and

• For any i ≤ j, then f(i) ≤ f(j).

This monoid can be obtained from H0(SN ) by introducing the additional relation:

πiπi+1πi = πiπi+1.

The lattice of idempotents of the monoid NDPFN is identical to the lattice of idempotents

in H0(SN ). We have shown that every masked word uDN is idempotent in the algebra of

NDPFN , supporting Conjecture 2.6.1. For the full exploration of NDPFN , including the

proof of the claim that uDN is idempotent in CNDPFN , see 3.

2.6.2. Direct Description of the Idempotents. A number of questions remain

concerning the idempotents we have constructed.
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First, uniqueness of the idempotents described in this paper is unknown. In fact, there

are many families of orthogonal idempotents in H0(SN ). The idempotents we have con-

structed are invariant as a set under the automorphism Ψ, and compatible with the branch-

ing from SN−1 to SN according to the choice of orientation of the Dynkin diagram.

Second, computer exploration has shown that, over the complex numbers, the idem-

potents obtained from the diagram demipotents have ±1 coefficients. This phenomenon

has been observed up to N = 9. This seems to be peculiar to the construction we have

presented, as we have found other idempotents that do not have this property. It would be

interesting to have an even more direct construction of the idempotents, such as a rule for

directly determining the coefficients of each idempotent.

It should be noted that a general ‘lifting’ construction has long been known, which

constructs orthogonal idempotents in the algebra. (See [CR06, Chapter 77]) A particu-

lar implementation of this lifting construction for algebras of J -trivial monoids is given

in [DHST11]. This lifting construction starts with the idempotents in the monoid, which

in the semisimple quotient have the multiplicative structure of a lattice. In the case of a

0-Hecke algebra with index set I, these idempotents are just the long elements w+
J , for any

J ⊂ I. Then the multiplication rule in the semisimple quotient for two such idempotents

w+
J , w+

K is just w+
Kw

+
J = w+

J∪K . Each idempotent in the semisimple quotient is in turn lifted

to an idempotent in the algebra, and forced to be orthogonal to all idempotents previously

lifted. Many sets of orthogonal idempotents can be thus obtained, but the process affords

little understanding of the combinatorics of the underlying monoid.

The ±1 coefficients that have been observed in the idempotents thus far constructed

suggest that there are still interesting combinatorics to be learned from this problem.

2.6.3. Generalization to Other Types. A combinatorial construction for idempo-

tents in the 0-Hecke algebra for general Coxeter groups would be desirable. It is simple to

construct idempotents for any rank 2 Dynkin diagram. The author has also constructed

idempotents for type B3 and D4, but has not been able to find a satisfactory formula for

general type BN or DN .

A major obstruction to the direct application of our construction to other types arises

from our expressions for the longest elements in type AN . For the index set J ∪ {k} ⊂ I,
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where k is larger (or smaller) than any index in J we have expressed the longest element for

J∪{πk} as w+
J πkw

+
J . This expression contains only a single πk. In every other type, expres-

sions for the longest element generally require at least two of any generator corresponding

to a leaf of the Dynkin diagram. This creates an obstruction to branching demipotents in

the way we have described for type AN .

For example, in type D4, a reduced expression for the longest element is π423124123121.

The generators corresponding to leaves in the Dynkin diagram are π1, π3, and π4, all of

which appear at least twice in this expression. (In fact, this is true for any of the 2316

reduced words for the longest element in D4.) Ideally, to branch easily from type A3, we

would be able to write the long element in the form w+
J π4w

+
J , where 4 6∈ J , but this is

clearly not possible.
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CHAPTER 3

Representation Theory of J -Trivial Monoids

We describe the general representation theory of J -trivial monoids, which includes the

zero-Hecke monoids. We analyze specific examples of J -trivial monoids, including semi-

lattices, the monoid of order-preserving functions on a poset, and non-decreasing parking

functions. The non-decreasing parking functions may be obtained as a quotient of the

zero-Hecke monoid; using this fact, we obtain a formula for orthogonal idempotents and

applications to pattern avoidance. We also conjecture an algorithm for obtaining a family

of orthogonal idempotents in the algebra of order-preserving functions on a poset.

The results in this chapter originally appeared in the Séminaire Lotharingien de Combi-

natoire [DHST11]. Section 3.2 is an abridgement of the version that appears in [DHST11],

but the other sections are identical.

The chapter is arranged as follows. In Section 3.1 we recall the definition of a number

of classes of monoids, including the J -trivial monoids, define some running examples of

J -trivial monoids, and establish notation.

In Section 3.2 we recount a few results on the representation theory of J -trivial monoids

(a full version of this section, with proofs and more results, may be found in [DHST11]),

and illustrate them in the context of the 0-Hecke monoid. All the constructions and proofs

involve only combinatorics in the monoid. Due to this, the results do not depend on the

ground field K. In fact, we have checked that all the arguments pass to K = Z and therefore

to any ring. It sounds likely that the theory would apply mutatis-mutandis to semi-rings,

in the spirit of [IRS11].

Finally, in Section 3.3, we examine the monoid of order preserving regressive functions

on a poset P , which generalizes the monoid of nondecreasing parking functions on the set

{1, . . . , N}. We give combinatorial constructions for idempotents in the monoid and also

prove that the Cartan matrix is upper triangular. In the case where P is a meet semi-lattice
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Figure 3.1. Classes of finite monoids, with examples

(or, in particular, a lattice), we establish an idempotent generating set for the monoid, and

present a conjectural recursive formula for orthogonal idempotents in the algebra.

3.1. Background and Notation

A monoid is a set M together with a binary operation · : M × M → M such that

we have closure (x · y ∈ M for all x, y ∈ M), associativity ( (x · y) · z = x · (y · z) for all

x, y, z ∈M), and the existence of an identity element 1 ∈M (which satistfies 1·x = x·1 = x

for all x ∈ M). In this paper, unless explicitly mentioned, all monoids are finite. We use

the convention that A ⊆ B denotes A a subset of B, and A ⊂ B denotes A a proper subset

of B.

Monoids come with a far richer diversity of features than groups, but collections of

monoids can often be described as varieties satisfying a collection of algebraic identities and

closed under subquotients and finite products (see e.g. [Pin86, Pin10] or [Pin10, Chapter

VII]). Groups are an example of a variety of monoids, as are all of the classes of monoids

described in this paper. In this section, we recall the basic tools for monoids, and describe

in more detail some of the varieties of monoids that are relevant to this paper. A summary

of those is given in Figure 3.1.
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In 1951 Green introduced several preorders on monoids which are essential for the study

of their structures (see for example [Pin10, Chapter V]). Let M be a monoid and define

≤R,≤L,≤J ,≤H for x, y ∈M as follows:

x ≤R y if and only if x = yu for some u ∈M

x ≤L y if and only if x = uy for some u ∈M

x ≤J y if and only if x = uyv for some u, v ∈M

x ≤H y if and only if x ≤R y and x ≤L y.

These preorders give rise to equivalence relations:

x R y if and only if xM = yM

x L y if and only if Mx = My

x J y if and only if MxM = MyM

x H y if and only if x R y and x L y.

We further add the relation ≤B (and its associated equivalence relation B) defined as

the finest preorder such that x ≤B 1, and

(3.1) x ≤B y implies that uxv ≤B uyv for all x, y, u, v ∈M .

(One can view ≤B as the intersection of all preorders with the above property; there exists

at least one such preorder, namely x ≤ y for all x, y ∈M).

Beware that 1 is the largest element of these (pre)-orders. This is the usual convention

in the semi-group community, but is the converse convention from the closely related notions

of left/right/Bruhat order in Coxeter groups.

Definition 3.1.1. A monoid M is called K-trivial if all K-classes are of cardinality one,

where K ∈ {R,L,J ,H,B}.
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An equivalent formulation of K-triviality is given in terms of ordered monoids. A monoid

M is called:

right ordered if xy ≤ x for all x, y ∈M

left ordered if xy ≤ y for all x, y ∈M

left-right ordered if xy ≤ x and xy ≤ y for all x, y ∈M

two-sided ordered if xy = yz ≤ y for all x, y, z ∈M with xy = yz

ordered with 1 on top if x ≤ 1 for all x ∈M , and x ≤ y

implies uxv ≤ uyv for all x, y, u, v ∈M

for some partial order ≤ on M .

Proposition 3.1.2. M is right ordered (resp. left ordered, left-right ordered, two-sided

ordered, ordered with 1 on top) if and only if M is R-trivial (resp. L-trivial, J -trivial,

H-trivial, B-trivial).

When M is K-trivial for K ∈ {R,L,J ,H,B}, then ≤K is a partial order, called K-

order. Furthermore, the partial order ≤ is finer than ≤K: for any x, y ∈M , x ≤K y implies

x ≤ y.

Proof. We give the proof for right-order as the other cases can be proved in a similar

fashion.

Suppose M is right ordered and that x, y ∈ M are in the same R-class. Then x = ya

and y = xb for some a, b ∈M . This implies that x ≤ y and y ≤ x so that x = y.

Conversely, suppose that all R-classes are singletons. Then x ≤R y and y ≤R x imply

that x = y, so that the R-preorder turns into a partial order. Hence M is right ordered

using xy ≤R x. �

3.1.1. Aperiodic and R-trivial monoids. The class of H-trivial monoids coincides

with that of aperiodic monoids (see for example [Pin10, Proposition 4.9]): a monoid is called

aperiodic if for any x ∈M , there exists some positive integer N such that xN = xN+1. The

element xω := xN = xN+1 = xN+2 = · · · is then an idempotent (the idempotent xω can

in fact be defined for any element of any monoid [Pin10, Chapter VI.2.3], even infinite
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monoids; however, the period k such that xN = xN+k need no longer be 1). We write

E(M) := {xω | x ∈M} for the set of idempotents of M .

Our favorite example of a monoid which is aperiodic, but not R-trivial, is the biHecke

monoid studied in [HST10b, HST10a]. This is the submonoid of functions from a finite

Coxeter group W to itself generated simultaneously by the elementary bubble sorting and

antisorting operators πi and πi

(3.2) M(W ) := 〈π1, π2, . . . , πn, π1, π2, . . . , πn〉 .

See [HST10b, Definition 1.1] and [HST10b, Proposition 3.8].

The smaller class ofR-trivial monoids coincides with the class of so-called weakly ordered

monoids as defined by Schocker [Sch08]. Also, via the right regular representation, any R-

trivial monoid can be represented as a monoid of regressive functions on some finite poset

P (a function f : P → P is called regressive if f(x) ≤ x for every x ∈ P ); reciprocally any

such monoid is R-trivial. We now present an example of a monoid which is R-trivial, but

not J -trivial.

Example 3.1.3. Take the free left regular band B generated by two idempotents a, b.

Multiplication is given by concatenation taking into account the idempotent relations, and

then selecting only the two left factors (see for example [Sal07]). So B = {1, a, b, ab, ba}

and 1B = B, aB = {a, ab}, bB = {b, ba}, abB = {ab}, and baB = {ba}. This shows that all

R-classes consist of only one element and hence B is R-trivial.

On the other hand, B is not L-trivial since {ab, ba} forms an L-class since b · ab = ba

and a · ba = ab. Hence B is also not J -trivial.

3.1.2. J -trivial monoids. The most important for our paper is the class of J -trivial

monoids. In fact, our main motivation stems from the fact that the submonoid M1 =

{f ∈ M | f(1) = 1} of the biHecke monoid M in (3.2) of functions that fix the identity, is

J -trivial (see [HST10b, Corollary 4.2] and [HST10a]).

Example 3.1.4. The following example of a J -trivial monoid is given in [ST88]. Take

M = {1, x, y, z, 0} with relations x2 = x, y2 = y, xz = zy = z, and all other products

are equal to 0. Then M1M = M , MxM = {x, z, 0}, MyM = {y, z, 0}, MzM = {z, 0},

and M0M = {0}, which shows that M is indeed J -trivial. Note also that M is left-right
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ordered with the order 1 > x > y > z > 0, which by Proposition 3.1.2 is equivalent to

J -triviality.

3.1.3. Ordered monoids (with 1 on top). Ordered monoids M with 1 on top form

a subclass of J -trivial monoids. To see this suppose that x, y ∈M are in the same R-class,

that is x = ya and y = xb for some a, b ∈ M . Since a ≤ 1, this implies x = ya ≤ y

and y = xb ≤ x so that x = y. Hence M is R-trivial. By analogous arguments, M is

also L-trivial. Since M is finite, this implies that M is J -trivial (see [Pin10, Chapter V,

Theorem 1.9]).

The next example shows that ordered monoids with 1 on top form a proper subclass of

J -trivial monoids.

Example 3.1.5. The monoid M of Example 3.1.4 is not ordered. To see this suppose that

≤ is an order on M with maximal element 1. The relation y ≤ 1 implies 0 = z2 ≤ z =

xzy ≤ xy = 0 which contradicts z 6= 0.

It was shown by Straubing and Thérien [ST88] and Henckell and Pin [HP00] that every

J -trivial monoid is a quotient of an ordered monoid with 1 on top.

In the next two subsections we present two important examples of ordered monoids

with 1 on top: the 0-Hecke monoid and the monoid of regressive order preserving functions,

which generalizes nondecreasing parking functions.

3.1.4. 0-Hecke monoids. Let W be a finite Coxeter group. It has a presentation

(3.3) W = 〈 si for i ∈ I | (sisj)
m(si,sj), ∀i, j ∈ I 〉 ,

where I is a finite set, m(si, sj) ∈ {1, 2, . . . ,∞}, and m(si, si) = 1. The elements si with

i ∈ I are called simple reflections, and the relations can be rewritten as:

(3.4)

s2i = 1 for all i ∈ I ,

sisjsisjsi · · ·︸ ︷︷ ︸
m(si,sj)

= sjsisjsisj · · ·︸ ︷︷ ︸
m(si,sj)

for all i, j ∈ I ,

where 1 denotes the identity in W . An expression w = si1 · · · si` for w ∈W is called reduced

if it is of minimal length `. See [BB05, Hum90] for further details on Coxeter groups.
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The Coxeter group of typeAn−1 is the symmetric group Sn with generators {s1, . . . , sn−1}

and relations:

(3.5)

s2i = 1 for 1 ≤ i ≤ n− 1 ,

sisj = sjsi for |i− j| ≥ 2 ,

sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n− 2 ;

the last two relations are called the braid relations.

Definition 3.1.6 (0-Hecke monoid). The 0-Hecke monoid H0(W ) = 〈πi | i ∈ I〉 of a

Coxeter group W is generated by the simple projections πi with relations

(3.6)

π2i = πi for all i ∈ I,

πiπjπiπj · · ·︸ ︷︷ ︸
m(si,sj)

= πjπiπjπi · · ·︸ ︷︷ ︸
m(si,sj)

for all i, j ∈ I .

Thanks to these relations, the elements of H0(W ) are canonically indexed by the elements

of W by setting πw := πi1 · · ·πik for any reduced word i1 . . . ik of w.

Bruhat order is a partial order defined on any Coxeter group W and hence also the

corresponding 0-Hecke monoid H0(W ). Let w = si1si2 · · · si` be a reduced expression for

w ∈W . Then, in Bruhat order ≤B,

u ≤B w if there exists a reduced expression u = sj1 · · · sjk
where j1 . . . jk is a subword of i1 . . . i`.

In Bruhat order, 1 is the minimal element. Hence, it is not hard to check that, with reverse

Bruhat order, the 0-Hecke monoid is indeed an ordered monoid with 1 on top.

In fact, the orders ≤L, ≤R, ≤J , ≤B on H0(W ) correspond exactly to the usual (reversed)

left, right, left-right, and Bruhat order on the Coxeter group W .

3.1.5. Monoid of regressive order preserving functions. For any partially or-

dered set P , there is a particular J -trivial monoid which has some very nice properties and

that we investigate further in Section 3.3. Notice that we use the right action in this paper,

so that for x ∈ P and a function f : P → P we write x.f for the value of x under f .
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Definition 3.1.7 (Monoid of regressive order preserving functions). Let (P,≤P ) be

a poset. The set OR(P ) of functions f : P → P which are

• order preserving, that is, for all x, y ∈ P, x ≤P y implies x.f ≤P y.f

• regressive, that is, for all x ∈ P one has x.f ≤P x

is a monoid under composition.

Proof. It is trivial that the identity function is order preserving and regressive and

that the composition of two order preserving and regressive functions is as well. �

According to [GM09, 14.5.3], not much is known about these monoids.

When P is a chain on N elements, we obtain the monoid NDPFN of nondecreasing

parking functions on the set {1, . . . , N} (see e.g. [Sol96]; it also is described under the

notation Cn in e.g. [Pin10, Chapter XI.4] and, together with many variants, in [GM09,

Chapter 14]). The unique minimal set of generators for NDPFN is given by the family

of idempotents (πi)i∈{1,...,n−1}, where each πi is defined by (i + 1).πi := i and j.πi := j

otherwise. The relations between those generators are given by:

πiπj = πjπi for all |i− j| > 1 ,

πiπi−1 = πiπi−1πi = πi−1πiπi−1 .

It follows that NDPFn is the natural quotient of H0(Sn) by the relation πiπi+1πi = πi+1πi,

via the quotient map πi 7→ πi [HT06, HT09, GM10]. Similarly, it is a natural quotient of

Kiselman’s monoid [GM10, KM09].

To see that OR(P ) is indeed a subclass of ordered monoids with 1 on top, note that we

can define a partial order by saying f ≤ g for f, g ∈ OR(P ) if x.f ≤P x.g for all x ∈ P . By

regressiveness, this implies that f ≤ id for all f ∈ OR(P ) so that indeed id is the maximal

element. Now take f, g, h ∈ OR(P ) with f ≤ g. By definition x.f ≤P x.g for all x ∈ P

and hence by the order preserving property (x.f).h ≤P (x.g).h, so that fh ≤ gh. Similarly

since f ≤ g, (x.h).f ≤P (x.h).g so that hf ≤ hg. This shows that OR(P ) is ordered.

The submonoid M1 of the biHecke monoid (3.2), and H0(W ) ⊂M1, are submonoids of

the monoid of regressive order preserving functions acting on the Bruhat poset.
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3.1.6. Monoid of unitriangular Boolean matrices. Finally, we define the J -trivial

monoid Un of unitriangular Boolean matrices, that is of n× n matrices m over the Boolean

semi-ring which are unitriangular: m[i, i] = 1 and m[i, j] = 0 for i > j. Equivalently

(through the adjacency matrix), this is the monoid of the binary reflexive relations con-

tained in the usual order on {1, . . . , n} (and thus antisymmetric), equipped with the usual

composition of relations. Ignoring loops, it is convenient to depict such relations by acyclic

digraphs admitting 1, . . . , n as linear extension. The product of g and h contains the edges

of g, of h, as well as the transitivity edges i→k obtained from one edge i→j in g and one

edge j→k in h. Hence, g2 = g if and only if g is transitively closed.

The family of monoids (Un)n (resp. (NDPFn)n) plays a special role, because any J -

trivial monoid is a subquotient of Un (resp. NDPFn) for n large enough [Pin10, Chap-

ter XI.4]. In particular, NDPFn itself is a natural submonoid of Un.

Remark We now demonstrate how NDPFn can be realized as a submonoid of relations.

For simplicity of notation, we consider the monoid OR(P ) where P is the reversed chain

{1 > · · · > n}. Otherwise said, OR(P ) is the monoid of functions on the chain {1 < · · · < n}

which are order preserving and extensive (x.f ≥ x). Obviously, OR(P ) is isomorphic to

NDPFn.

The monoid OR(P ) is isomorphic to the submonoid of the relations A in Un such that

i→j ∈ A implies k→l ∈ A whenever i ≥ k ≥ l ≥ j (in the adjacency matrix: (k, l) is to

the south-west of (i, j) and both are above the diagonal). The isomorphism is given by the

map A 7→ fA ∈ OR(P ), where

u · fA := max{v | u→v ∈ A} .

The inverse bijection f ∈ OR(P ) 7→ Af ∈ Un is given by

u→v ∈ Af if and only if u · f ≤ v .
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For example, here are the elements of OR({1 > 2 > 3}) and the adjacency matrices of the

corresponding relations in U3:

1 1

2 2

3 3

1 1

2 2

3 3

1 1

2 2

3 3

1 1

2 2

3 3

1 1

2 2

3 3


1 0 0

0 1 0

0 0 1




1 1 0

0 1 0

0 0 1




1 0 0

0 1 1

0 0 1




1 1 0

0 1 1

0 0 1




1 1 1

0 1 1

0 0 1

 .

3.2. Essential Features of the Representation Theory

In this section we study the representation theory of J -trivial monoids M , using the

0-Hecke monoid H0(W ) of a finite Coxeter group as running example. In Section 3.2.1 we

construct the simple modules of M and derive a description of the radical radKM of the

monoid algebra of M . We then introduce a star product on the set E(M) of idempotents in

Theorem 3.2.4 which makes it into a semi-lattice, and prove in Corollary 3.2.7 that the semi-

simple quotient of the monoid algebra KM/ radKM is the monoid algebra of (E(M), ?).

3.2.1. Simple modules, radical, star product, and semi-simple quotient. The

goal of this subsection is to construct the simple modules of the algebra of a J -trivial

monoid M , and to derive a description of its radical and its semi-simple quotient. The

proof techniques are similar to those of Norton [Nor79] for the 0-Hecke algebra. However,

putting them in the context of J -trivial monoids makes the proofs more transparent. In

fact, most of the results in this section are already known and admit natural generalizations

in larger classes of monoids (R-trivial, ...). For example, the description of the radical

is a special case of Almeida-Margolis-Steinberg-Volkov [AMSV09], and that of the simple

modules of [GMS09, Corollary 9].

Also, the description of the semi-simple quotient is often derived alternatively from the

description of the radical, by noting that it is the algebra of a monoid which is J -trivial

and idempotent (which is equivalent to being a semi-lattice; see e.g. [Pin10, Chapter VII,

Proposition 4.12]).
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Proposition 3.2.1. Let M be a J -trivial monoid and x ∈M . Let Sx be the 1-dimensional

vector space spanned by an element εx, and define the right action of any y ∈M by

(3.7) εxy =


εx if xy = x,

0 otherwise.

Then Sx is a right M -module. Moreover, any simple module is isomorphic to Sx for some

x ∈M and is in particular one-dimensional.

Note that some Sx may be isomorphic to each other, and that the Sx can be similarly

endowed with a left M -module structure.

Proof. Recall that, if M is J -trivial, then ≤J is a partial order called J -order (see

Proposition 3.1.2). Let (x1, x2, . . . , xn) be a linear extension of J -order, that is an enu-

meration of the elements of M such that xi ≤J xj implies i ≤ j. For 0 < i ≤ n, define

Fi = K{xj | j ≤ i} and set F0 = {0K}. Clearly the Fi’s are ideals of KM such that the

sequence

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ Fn

is a composition series for the regular representation Fn = KM of M . Moreover, for any

i > 0, the quotient Fi/Fi−1 is a one-dimensional M -module isomorphic to Sxi . Since any

simple M -module must appear in any composition series for the regular representation, it

has to be isomorphic to Fi/Fi−1 ∼= Sxi for some i. �

Corollary 3.2.2. Let M be a J -trivial monoid. Then, the quotient of its monoid algebra

KM by its radical is commutative.

Note that the radical radKM is not necessarily generated as an ideal by {gh − hg |

g, h ∈ M}. For example, in the commutative monoid {1, x, 0} with x2 = 0, the radical is

K(x − 0). However, thanks to the following this is true if M is generated by idempotents

(see Corollary 3.2.8).

The following proposition gives an alternative description of the radical of KM .

Proposition 3.2.3. Let M be a J -trivial monoid. Then

(3.8) {x− xω | x ∈M\E(M)}
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is a basis for radKM .

Moreover (Se)e∈E(M) is a complete set of pairwise non-isomorphic representatives of

isomorphism classes of simple M -modules.

Proof. For any x, y ∈ M , either yx = y and then yxω = y, or yx <J y and then

yxω <J y. Therefore x − xω is in radKM because for any y the product εy(x − xω)

vanishes. Since xω ≤ x, by triangularity with respect to J -order, the family

{x− xω | x ∈M\E(M)} ∪ E(M)

is a basis of KM . There remains to show that the radical is of dimension at most the number

of non-idempotents in M , which we do by showing that the simple modules (Se)e∈E(M) are

not pairwise isomorphic. Assume that Se and Sf are isomorphic. Then, since εee = εe, it

must be that εef = εe so that ef = e. Similarly fe = f , so that e and f are in the same

J -class and therefore equal. �

The following theorem elucidates the structure of the semi-simple quotient of the monoid

algebra KM .

Theorem 3.2.4. Let M be a J -trivial monoid. Define a product ? on E(M) by:

(3.9) e ? f := (ef)ω .

Then, the restriction of ≤J on E(M) is a lattice such that

(3.10) e ∧J f = e ? f ,

where e ∧J f is the meet or infimum of e and f in the lattice. In particular (E(M), ?) is

an idempotent commutative J -trivial monoid.

We start with two preliminary easy lemmas (which are consequences of e.g. [Pin10,

Chapter VII, Proposition 4.10]).

Lemma 3.2.5. If e ∈ E(M) is such e = ab for some a, b ∈M , then

e = ea = be = ae = eb .
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Proof. For e ∈ E(M), one has e = e3 so that e = eabe. As a consequence, e ≤J

ea ≤J e and e ≤J be ≤J e, so that e = ea = be. In addition e = e2 = eab = eb and

e = e2 = abe = ae. �

Lemma 3.2.6. For e ∈ E(M) and y ∈M , the following three statements are equivalent:

(3.11) e ≤J y, e = ey, e = ye .

Proof. Suppose that e, y are such that e ≤J y. Then e = ayb for some a, b ∈ M .

Applying Lemma 3.2.5 we obtain e = ea = be so that eye = eaybe = eee = e since

e ∈ E(M). A second application of Lemma 3.2.5 shows that ey = eye = e and ye = eye = e.

The converse implications hold by the definition of ≤J . �

Proof of Theorem 3.2.4. We first show that, for any e, f ∈ E(M) the product e ? f

is the greatest lower bound e ∧J f of e and f so that the latter exists. It is clear that

(ef)ω ≤J e and (ef)ω ≤J f . Take now z ∈ E(M) satisfying z ≤J e and z ≤J f . Applying

Lemma 3.2.6, z = ze = zf , and therefore z = z(ef)ω. Applying Lemma 3.2.6 backward,

z ≤J (ef)ω, as desired.

Hence (E(M),≤J ) is a meet semi-lattice with a greatest element which is the unit of M .

It is therefore a lattice (see e.g. [Sta97]). Since lower bound is a commutative associative

operation, (E(M), ?) is a commutative idempotent monoid. �

We can now state the main result of this section.

Corollary 3.2.7. Let M be a J -trivial monoid. Then, (KE(M), ?) is isomorphic to

KM/ radKM and φ : x 7→ xω is the canonical algebra morphism associated to this quo-

tient.

Proof. Denote by ψ : KM → KM/ radKM the canonical algebra morphism. It

follows from Proposition 3.2.3 that, for any x (idempotent or not), ψ(x) = ψ(xω) and that

{ψ(e) | e ∈ E(M)} is a basis for the quotient. Finally, ? coincides with the product in the

quotient: for any e, f ∈ E(M),

ψ(e)ψ(f) = ψ(ef) = ψ((ef)ω) = ψ(e ? f) . �
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Corollary 3.2.8. Let M be a J -trivial monoid generated by idempotents. Then the radical

radKM of its monoid algebra is generated as an ideal by

(3.12) {gh− hg | g, h ∈M} .

Proof. Denote by C the ideal generated by {gh − hg | g, h ∈ M}. Since radKM is

the linear span of (x− xω)x∈M , it is sufficient to show that for any x ∈ M one has x ≡ x2

(mod C). Now write x = e1 · · · en where ei are all idempotent. Then,

x ≡ e21 · · · e2n ≡ e1 · · · ene1 · · · en ≡ x2 (mod C) . �

Example 3.2.9 (Representation theory of H0(W )). Consider the 0-Hecke monoid H0(W )

of a finite Coxeter group W , with index set I = {1, 2, . . . , n}. For any J ⊆ I, we can consider

the parabolic submonoid H0(WJ) generated by {πi | i ∈ J}. Each parabolic submonoid

contains a unique longest element πJ . The collection {πJ | J ⊆ I} is exactly the set of

idempotents in H0(W ).

For each i ∈ I, we can construct the evaluation maps Φ+
i and Φ−i defined on generators

by:

Φ+
i : CH0(W )→ CH0(WI\{i})

Φ+
i (πj) =


1 if i = j,

πj if i 6= j,

and

Φ−i : CH0(W )→ CH0(WI\{i})

Φ−i (πj) =


0 if i = j,

πj if i 6= j.

One can easily check that these maps extend to algebra morphisms fromH0(W )→ H0(WI\{i}).

For any J , define Φ+
J as the composition of the maps Φ+

i for i ∈ J , and define Φ−J analo-

gously (the map Φ+
J is the parabolic map studied by Billey, Fan, and Losonczy [BFL99]).

Then, the simple representations of H0(W ) are given by the maps λJ = Φ+
J ◦ Φ−

Ĵ
, where

Ĵ = I \ J . This is clearly a one-dimensional representation.
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3.2.1.1. Projective modules. An important result is that the projective modules for a

J -trivial monoid are combinatorial. This result uses the derivation of the Cartan matrix,

which can be found in the full paper [DHST11]. Thus, we state the theorem here without

proof, and then examine the result in the context of the zero-Hecke monoid.

Theorem 3.2.10. For any idempotent e denote by R(e) = eM ,

R=(e) = {x ∈ eM | lfix(x) = e} and R<(e) = {x ∈ eM | lfix(x) <R e} .

Then, the projective module Pe associated to Se is isomorphic to KR(e)/KR<(e). In par-

ticular, the projective module Pe is combinatorial: taking as basis the image of R=(e) in the

quotient, the action of m ∈M on x ∈ R=(e) is given by:

(3.13) x ·m =


xm if lfix(xm) = e,

0 otherwise.

Corollary 3.2.11. The family {bx | lfix(x) = e} is a basis for the right projective module

associated to Se.

Example 3.2.12 (Representation theory of H0(W ), continued). The right projective mod-

ules of H0(W ) are combinatorial, and described by the decomposition of the right order

along left descent classes, as illustrated in Figure 3.2. Namely, let PJ be the right projec-

tive module of H0(W ) corresponding to the idempotent πJ . Its basis bw is indexed by the

elements of w having J as left descent set. The action of πi coincides with the usual right

action, except that bw.πi = 0 if w.πi has a strictly larger left descent set than w.

Here we reproduce Norton’s construction of PJ [Nor79], as it is close to an explicit

description of the isomorphism in the proof of Theorem 3.2.10. First, notice that the

elements {π−i = (1 − πi) | i ∈ I} are idempotent and satisfy the same Coxeter relations as

the πi. Thus, the set {π−i } generates a monoid isomorphic to H0(W ). For each J ⊆ I, let

π−J be the longest element in the parabolic submonoid associated to J generated by the π−i

generators, and π+J = πJ . For each subset J ⊆ I, let Ĵ = I \ J . Define fJ = π−
Ĵ
π+J . Then,

fJπw = 0 if J ⊂ DL(w). It follows that the right module fJH0(W ) is isomorphic to PJ and

its basis {fJπw | DL(w) = J} realizes the combinatorial module of PJ .
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Figure 3.2. The decomposition of H0(S4) into indecomposable right pro-
jective modules. This decomposition follows the partition of S4 into left
descent classes, each labelled by its descent set J . The blue, red, and green
lines indicate the action of π1, π2, and π3 respectively. The darker circles
indicate idempotent elements of the monoid.

One should notice that the elements π−
Ĵ
π+J are, in general, neither idempotent nor

orthogonal. Furthermore, π−
Ĵ
π+J H0(W ) is not a submodule of πJH0(W ) as in the proof of

Theorem 3.2.10.

The description of left projective modules is symmetric.
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3.3. Monoid of order preserving regressive functions on a poset P

In this section, we discuss the monoid OR(P ) of order preserving regressive functions on

a poset P . Recall that this is the monoid of functions f on P such that for any x ≤ y ∈ P ,

x.f ≤ x and x.f ≤ y.f .

In Section 3.3.1, we discuss constructions for idempotents in OR(P ) in terms of the

image sets of the idempotents, as well as methods for obtaining lfix(f) and rfix(f) for any

given function f . In Section 3.3.2, we show that the Cartan matrix for OR(P ) is upper uni-

triangular with respect to the lexicographic order associated to any linear extension of P . In

Section 3.3.3, we specialize to OR(L) where L is a meet semi-lattice, describing a minimal

generating set of idempotents. Finally, in Section 3.3.4, we describe a simple construction

for a set of orthogonal idempotents in NDPFN , and present a conjectural construction for

orthogonal idempotents for OR(L).

3.3.1. Combinatorics of idempotents. The goal of this section is to describe the

idempotents in OR(P ) using order considerations. We begin by giving the definition of

joins, even in the setting when the poset P is not a lattice.

Definition 3.3.1. Let P be a finite poset and S ⊆ P . Then z ∈ P is called a join of S if

x ≤ z holds for any x ∈ S, and z is minimal with that property.

We denote Joins(S) the set of joins of S, and Joins(x, y) for short if S = {x, y}. If

Joins(S) (resp. Joins(x, y)) is a singleton (for example because P is a lattice) then we

denote
∨
S (resp. x ∨ y) the unique join. Finally, we define Joins(∅) to be the set of

minimal elements in P .

Lemma 3.3.2. Let P be some poset, and f ∈ OR(P ). If x and y are fixed points of f , and

z is a join of x and y, then z is a fixed point of f .

Proof. Since x ≤ z and y ≤ z, one has x = x.f ≤ z.f and y = y.f ≤ z.f . Since

furthermore z.f ≤ z, by minimality of z the equality z.f = z must hold. �

Lemma 3.3.3. Let I be a subset of P which contains all the minimal elements of P and is

stable under joins. Then, for any x ∈ P , the set {y ∈ I | y ≤ x} admits a unique maximal

element which we denote by supI(x) ∈ I. Furthermore, the map supI : x 7→ supI(x) is an

idempotent in OR(P ).
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Proof. For the first statement, suppose for some x 6∈ I there are two maximal elements

y1 and y2 in {y ∈ I | y ≤ x}. Then the join y1 ∧ y2 < x, since otherwise x would be a join

of y1 and y2, and thus x ∈ I since I is join-closed. But this contradicts the maximality of

y1 and y2, so the first statement holds.

Using that supI(x) ≤ x and supI(x) ∈ I, e := supI is a regressive idempotent by con-

struction. Furthermore, it is is order preserving: for x ≤ z, x.e and z.e must be comparable

or else there would be two maximal elements in I under z. Since z.e is maximal under z,

we have z.e ≥ x.e. �

Reciprocally, all idempotents are of this form:

Lemma 3.3.4. Let P be some poset, and f ∈ OR(P ) be an idempotent. Then the image

im(f) of f satisfies the following:

(1) All minimal elements of P are contained in im(f).

(2) Each x ∈ im(f) is a fixed point of f .

(3) The set im(f) is stable under joins: if S ⊆ im(f) then Joins(S) ⊆ im(f) .

(4) For any x ∈ P , the image x.f is the upper bound supim(f)(x).

Proof. Statement (1) follows from the fact that x.f ≤ x so that minimal elements

must be fixed points and hence in im(f).

For any x = a.f , if x is not a fixed point then x.f = (a.f).f 6= a.f , contradicting the

idempotence of f . Thus, the second statement holds.

Statement (3) follows directly from the second statement and Lemma 3.3.2.

If y ∈ im(f) and y ≤ x then y = y.f ≤ x.f . Since this holds for every element of

{y ∈ im(f) | y ≤ x} and x.f is itself in this set, statement (4) holds. �

Thus, putting together Lemmas 3.3.3 and 3.3.4 one obtains a complete description of

the idempotents of OR(P ).

Proposition 3.3.5. The idempotents of OR(P ) are given by the maps supI , where I ranges

through the subsets of P which contain the minimal elements and are stable under joins.

For f ∈ OR(P ) and y ∈ P , let f−1(y) be the fiber of y under f , that is, the set of all

x ∈ P such that x.f = y.
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Definition 3.3.6. Given S a subset of a finite poset P , set C0(S) = S and Ci+1(S) =

Ci(S) ∪ {x ∈ P | x is a join of some elements in Ci(S)}. Since P is finite, there exists

some N such that CN (S) = CN+1(S). The join closure is defined as this stable set, and

denoted C(S). A set is join-closed if C(S) = S. Define

F (f) :=
⋃
y∈P
{x ∈ f−1(y) | x minimal in f−1(y)}

to be the collection of minimal points in the fibers of f .

Corollary 3.3.7. Let X be the join-closure of the set of minimal points of P . Then X is

fixed by every f ∈ OR(P ).

Lemma 3.3.8 (Description of left and right symbols). For any f ∈ OR(P ), there exists a

minimal idempotent fr whose image set is C(im(f)), and fr = rfix(f). There also exists a

minimal idempotent fl whose image set is C(F (f)), and fl = lfix(f).

Proof. The rfix(f) must fix every element of im(f), and the image of rfix(f) must be

join-closed by Lemma 3.3.4. fr is the smallest idempotent satisfying these requirements,

and is thus the rfix(f).

Likewise, lfix(f) must fix the minimal elements of each fiber of f , and so must fix all

of C(F (f)). For any y 6∈ F (f), find x ≤ y such that x.f = y.f and x ∈ F (f). Then

x = x.fl ≤ y.fl ≤ y. For any z with x ≤ z ≤ y, we have x.f ≤ z.f ≤ y.f = x.f , so z is in

the same fiber as y. Then we have (y.fl).f = y.f , so fl fixes f on the left. Minimality then

ensures that fl = lfix(f). �

Let P be a poset, and P ′ be the poset obtained by removing a maximal element x of

P . Then, the following rule holds:

Proposition 3.3.9 (Branching of idempotents). Let e = supI be an idempotent in OR(P ′).

If I ⊆ P is still stable under joins in P , then there exist two idempotents in OR(P ) with

respective image sets I and I ∪ {x}. Otherwise, there exists an idempotent in OR(P ) with

image set I ∪ {x}. Every idempotent in OR(P ) is uniquely obtained by this branching.

Proof. This follows from straightforward reasoning on the subsets I which contain the

minimal elements and are stable under joins, in P and in P ′. �
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3.3.2. The Cartan matrix for OR(P ) is upper uni-triangular. We have seen

that the left and right fix of an element of OR(P ) can be identified with the subsets of P

closed under joins. We put a total order ≤lex on such subsets by writing them as bit vectors

along a linear extension p1, . . . , pn of P , and comparing those bit vectors lexicographically.

Proposition 3.3.10. Let f ∈ OR(P ). Then, im(lfix(f)) ≤lex im(rfix(f)), with equality if

and only if f is an idempotent.

Proof. Let n = |P | and p1, . . . , pn a linear extension of P . For k ∈ {0, . . . , n} set

respectively Lk = im(lfix(f)) ∩ {p1, . . . , pk} and Rk = im(rfix(f)) ∩ {p1, . . . , pk}.

As a first step, we prove the property (Hk): if Lk = Rk then f restricted to {p1, . . . , pk}

is an idempotent with image set Rk. Obviously, (H0) holds. Take now k > 0 such that

Lk = Rk; then Lk−1 = Rk−1 and we may use by induction (Hk−1).

Case 1: pk ∈ F (f), and is thus the smallest point in its fiber. This implies that pk ∈ Lk,

and by assumption, Lk = Rk. By (Hk−1), pk.f <lex pk gives a contradiction: pk.f ∈ Rk−1,

and therefore pk.f is in the same fiber as pk. Hence pk.f = pk.

Case 2: pk ∈ C(F (f)) = im(lfix(f)), but pk 6∈ F (f). Then pk is a join of two smaller

elements x and y of Lk = Rk; in particular, pk ∈ Rk. By induction, x and y are fixed by f ,

and therefore pk.f = pk by Lemma 3.3.2.

Case 3: pk 6∈ C(F (f)) = im(lfix(f)); then pk is not a minimal element in its fiber; taking

pi <lex pk in the same fiber, we have (pk.f).f = (pi.f).f = pi.f = pk.f . Furthermore,

Rk = Rk−1 = {p1, . . . , pk−1}.f = {p1, . . . , pk}.f .

In all three cases above, we deduce that f restricted to {p1, . . . , pk} is an idempotent

with image set Rk, as desired.

If Ln = Rn, we are done. Otherwise, take k minimal such that Lk 6= Rk. Assume

that pk ∈ Lk but not in Rk. In particular, pk is not a join of two elements x and y in

Lk−1 = Rk−1; hence pk is minimal in its fiber, and by the same argument as in Case 3

above, we get a contradiction. �

Corollary 3.3.11. The Cartan matrix of OR(P ) is upper uni-triangular with respect to

the lexicographic order associated to any linear extension of P .
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Problem 3.3.12. Find larger classes of monoids where this property still holds. Note that

this fails for the 0-Hecke monoid which is a submonoid of an OR(B) where B is Bruhat

order.

3.3.3. Restriction to meet semi-lattices. For the remainder of this section, let L be

a meet semi-lattice and we consider the monoid OR(L). Recall that L is a meet semi-lattice

if every pair of elements x, y ∈ L has a unique meet.

For a ≥ b, define an idempotent ea,b in OR(L) by:

x.ea,b =


x ∧ b if x ≤ a,

x otherwise.

Remark The function ea,b is the (pointwise) largest element of OR(L) such that a.f = b.

For a ≥ b ≥ c, ea,beb,c = ea,c. In the case where L is a chain, that is OR(L) = NDPF|L|,

those idempotents further satisfy the following braid-like relation: eb,cea,beb,c = ea,beb,cea,b =

ea,c.

Proof. The first statement is clear. Take now a ≥ b ≥ c in a meet semi-lattice. For

any x ≤ a, we have x.ea,b = x∧ b ≤ b, so x.(ea,beb,c) = x∧ b∧ c = x∧ c, since b ≥ c. On the

other hand, x.ea,c = x ∧ c, which proves the desired equality.

Now consider the braid-like relation in NDPF|L|. Using the previous result, one gets

that eb,cea,beb,c = eb,cea,c and ea,beb,cea,b = ea,cea,b. For x > a, x is fixed by ea,c, ea,b and

eb,c, and is thus fixed by the composition. The other cases can be checked analogously. �

Proposition 3.3.13. The family (ea,b)a,b, where (a, b) runs through the covers of L, mini-

mally generates the idempotents of OR(L).

Proof. Given f idempotent in OR(L), we can factorize f as a product of the idempo-

tents ea,b. Take a linear extension of L, and recursively assume that f is the identity on all

elements above some least element a of the linear extension. Then define a function g by:

x.g =


a if x = a,

x.f otherwise.
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We claim that f = gea,a.f , and g ∈ OR(L). There are a number of cases that must be

checked:

• Suppose x < a. Then x.gea,a.f = (x.f).ea,a.f = x.f ∧a.f = x.f , since x < a implies

x.f < a.f .

• Suppose x > a. Then x.gea,a.f = (x.f).ea,a.f = x.ea,a.f = x = x.f , since x is fixed

by f by assumption.

• Suppose x not related to a, and x.f ≤ a.f . Then x.gea,a.f = (x.f).ea,a.f = x.f .

• Suppose x not related to a, and a.f ≤ x.f ≤ a. By the idempotence of f we have

a.f = a.f.f ≤ x.f.f ≤ a.f , so x.f = a.f , which reduces to the previous case.

• Suppose x not related to a, but x.f ≤ a. Then by idempotence of f we have

x.f = x.f.f ≤ a.f , reducing to a previous case.

• For x not related to a, and x.f not related to a or x.f > a, we have x.f fixed by

ea,a.f , which implies that x.gea,a.f = x.f .

• Finally for x = a we have a.gea,a.f = a.ea,a.f = a ∧ a.f = a.f .

Thus, f = gea,a.f .

For all x ≤ a, we have x.f ≤ a.f ≤ a, so that x.g ≤ a.g = a. For all x > a, we have x

fixed by g by assumption, and for all other x, the OR(L) conditions are inherited from f .

Thus g is in OR(L).

For all x 6= a, we have x.g = x.f = x.f.f . Since all x > a are fixed by f , there is no y

such that y.f = a. Then x.f.f = x.g.g for all x 6= a. Finally, a is fixed by g, so a = a.g.g.

Thus g is idempotent.

Applying this procedure recursively gives a factorization of f into a composition of

functions ea,a.f . We can further refine this factorization using Remark 3.3.3 on each ea,a.f

by ea,a.f = ea0,a1ea1,a2 · · · eak−1,ak , where a0 = a, ak = a.f , and ai covers ai−1 for each i.

Then we can express f as a product of functions ea,b where a covers b.

This set of generators is minimal because ea,b where a covers b is the pointwise largest

function in OR(L) mapping a to b. �

As a byproduct of the proof, we obtain a canonical factorization of any idempotent

f ∈ OR(L).
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Example 3.3.14. The set of functions ea,b do not in general generate OR(L). Let L be the

Boolean lattice on three elements. Label the nodes of L by triples ijk with i, j, k ∈ {0, 1},

and abc ≥ ijk if a ≤ i, b ≤ j, c ≤ k.

Define f by f(000) = 000, f(100) = 110, f(010) = 011, f(001) = 101, and f(x) = 111

for all other x. Simple inspection shows that f 6= gea,a.f for any choice of g and a.

3.3.4. Orthogonal idempotents. For {1, 2, . . . , N} a chain, one can explicitly write

down orthogonal idempotents for NDPFN . Recall that the minimal generators for NDPFN

are the elements πi = ei+1,i and that NDPFN is the quotient of H0(Sn) by the extra relation

πiπi+1πi = πi+1πi, via the quotient map πi 7→ πi. By analogy with the 0-Hecke algebra, set

π+i = πi and π−i = 1− πi.

We observe the following relations, which can be checked easily.

Lemma 3.3.15. Let k = i− 1. Then the following relations hold:

(1) π+i−1π
+
i π

+
i−1 = π+i π

+
i−1,

(2) π−i−1π
−
i π
−
i−1 = π−i−1π

−
i ,

(3) π+i π
−
i−1π

+
i = π+i π

−
i−1,

(4) π−i π
+
i−1π

−
i = π+i−1π

−
i ,

(5) π+i−1π
−
i π

+
i−1 = π−i π

+
i−1,

(6) π−i−1π
+
i π
−
i−1 = π−i−1π

+
i .

Definition 3.3.16. Let D be a signed diagram, that is an assignment of a + or − to each

of the generators of NDPFN . By abuse of notation, we will write i ∈ D if the generator πi

is assigned a + sign. Let P = {P1, P2, . . . , Pk} be the partition of the generators such that

adjacent generators with the same sign are in the same set, and generators with different

signs are in different sets. Set ε(Pi) ∈ {+,−} to be the sign of the subset Pi. Let π
ε(Pi)
Pi

be

the longest element in the generators in Pi, according to the sign in D. Define:

• LD := π
ε(P1)
P1

π
ε(P2)
P2

· · ·πε(Pk)
Pk

,

• RD := π
ε(Pk)
Pk

π
ε(Pk−1)
Pk−1 · · ·πε(P1)

P1
,

• and CD := LDRD.

Example 3.3.17. Let D = + + + + − − − + +. Then P = {{1, 2, 3, 4}, {5, 6, 7}, {8, 9}},

and the associated long elements are: π+P1
= π+4 π

+
3 π

+
2 π

+
1 , π−P2

= π−5 π
−
6 π
−
7 , and π+P3

= π+9 π
+
8 .
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Then

LD = π+P1
π−P2

π+P3
= (π+4 π

+
3 π

+
2 π

+
1 )(π−5 π

−
6 π
−
7 )(π+9 π

+
8 ),

RD = π+P3
π−P2

π+P1
= (π+9 π

+
8 )(π−5 π

−
6 π
−
7 )(π+4 π

+
3 π

+
2 π

+
1 ).

The elements CD are the images, under the natural quotient map from the 0-Hecke alge-

bra, of the diagram demipotents constructed in [Den10, Den11]. An element x of an algebra

is demipotent if there exists some finite integer n such that xn = xn+1 is idempotent. It was

shown in [Den10, Den11] that, in the 0-Hecke algebra, raising the diagram demipotents to

the power N yields a set of primitive orthogonal idempotents for the 0-Hecke algebra. It

turns out that, under the quotient to NDPFN , these elements CD are right away orthogonal

idempotents, which we prove now.

Remark Fix i, and assume that f is an element in the monoid generated by π−i+1, ..., π
−
N

and π+i+1, ..., π
+
N . Then, applying repeatedly Lemma 3.3.15 yields

π−i fπ
−
i = π−i f and π+i fπ

+
i = fπ+i .

The following proposition states that the elements CD are also the images of Norton’s

generators of the projective modules of the 0-Hecke algebra through the natural quotient

map to NDPFN .

Proposition 3.3.18. Let D be a signed diagram. Then,

CD =
∏

i=1,...,n, i6∈D
π−i

∏
i=n,...,1, i∈D

π+i .

In other words CD reduces to one of the following two forms:

• CD = (π−P1
π−P3
· · ·π−P2k±1

)(π+P2
π+P4
· · ·π+P2k

), or

• CD = (π−P2
π−P4
· · ·π−P2k

)(π+P1
π+P3
· · ·π+P2k±1

).

Proof. Let D be a signed diagram. If it is of the form −E, where E is a signed diagram

for the generators π2, . . . , πN−1, then using Remark 3.3.4,

CD = π−1 CEπ
−
1 = π−1 CE .
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Similarly, if it is of the form +E, then:

CD = π+1 CEπ
+
1 = CEπ

+
1 .

Using induction on the isomorphic copy of NDPFN−1 generated by π2, . . . , πN−1 yields the

desired formula. �

Proposition 3.3.19. The collection of all CD forms a complete set of orthogonal idempo-

tents for NDPFN .

Proof. First note that CD is never zero; for example, it is clear from Proposition 3.3.18

that the full expansion of CD has coefficient 1 on
∏
i=n,...,1, i∈D π

+
i .

Take now D and D′ two signed diagrams. If they differ in the first position, it is clear

that CDCD′ = 0. Otherwise, write D = εE, and D′ = εE′. Then, using Remark 3.3.4 and

induction,

CDC
′
D = πε1CEπ

ε
1π

ε
1CE′π

ε
1 = πε1CEπ

ε
1CE′π

ε
1

= πε1CECE′π
ε
1 = πε1δE,E′CEπ

ε
1 = δD,D′CD .

Therefore, the CD’s form a collection of 2N−1 nonzero orthogonal idempotents, which has

to be complete by cardinality. �

One can interpret the diagram demipotents for NDPFN as branching from the diagram

demipotents for NDPFN−1 in the following way. For any CD = LDRD in NDPFN−1, the

leading term of CD will be the longest element in the generators marked by plusses in D.

This leading idempotent has an image set which we will denote im(D) by abuse of notation.

Now in NDPFN we can associated two ‘children’ to CD:

CD+ = LDπ
+
NRD and CD− = LDπ

−
NRD.

Then we have

CD+ + CD− = CD, im(D+) = im(D)and im(D−) = im(D)
⋃
{N}.



3.3. MONOID OF ORDER PRESERVING REGRESSIVE FUNCTIONS ON A POSET P 57

We now generalize this branching construction to any meet semi-lattice to derive a

conjectural recursive formula for a decomposition of the identity into orthogonal idempo-

tents. This construction relies on the branching rule for the idempotents of OR(L), and

the existence of the maximal idempotents ea,b of Remark 3.3.3.

Let L be a meet semi-lattice, and fix a linear extension of L. For simplicity, we assume

that the elements of L are labelled 1, . . . , N along this linear extension. Recall that, by

Proposition 3.3.5, the idempotents are indexed by the subsets of L which contain the mini-

mal elements of L and are stable under joins. In order to distinguish subsets of {1, . . . , N}

and subsets of, say, {1, . . . , N − 1}, even if they have the same elements, it is convenient

to identify them with +− diagrams as we did for NDPFN . The valid diagrams are those

corresponding to subsets which contain the minimal elements and are stable under joins. A

prefix of length k of a valid diagram is still a valid diagram (for L restricted to {1, . . . , k}),

and they are therefore naturally organized in a binary prefix tree.

Let D be a valid diagram, e = supD be the corresponding idempotent. If L is empty,

D = {}, and we set L{} = R{} = 1. Otherwise, let L′ be the meet semi-lattice obtained by

restriction of L to {1, . . . , N − 1}, and D′ the restriction of D to {1, . . . , N − 1}.

Case 1 N is the join of two elements of im(D′) (and in particular, N ∈ im(D)). Then, set

LD = LD′ and RD = RD′ .

Case 2 N ∈ im(D). Then, set LD = LD′πN,N.e and RD = πN,N.eRD′ .

Case 3 N 6∈ im(D). Then, set LD = LD′(1− πN,N.e) and RD = (1− πN,N.e)RD′ .

Finally, set CD = LDRD.

Branching rule Fix now D′ a valid diagram for L′. If N is the join of two elements of I ′,

then CD′ = CD′+. Otherwise CD′ = CD′− + CD′+.

Hence, in the prefix tree of valid diagrams, the two sums of all CD’s at depth k and at

depth k+ 1 respectively coincide. Branching recursively all the way down to the root of the

prefix tree, it follows that the elements CD form a decomposition of the identity. Namely,

1 =
∑

D valid diagram

CD .
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Conjecture 3.3.20. Let L be a meet semi-lattice. Then, the set {CD | D valid diagram}

forms a set of demipotent elements for OR(L) which, raised each to a sufficiently high

power, yield a set of primitive orthogonal idempotents.

This conjecture is supported by Proposition 3.3.19, as well as by computer exploration

on all 1377 meet semi-lattices with at most 8 elements and on a set of meet semi-lattices of

larger size which were considered likely to be problematic by the authors. In all cases, the

demipotents were directly idempotents, which might suggest that Conjecture 3.3.20 could

be strengthened to state that the collection {CD | D valid diagram} forms directly a set of

primitive orthogonal idempotents for OR(L).
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CHAPTER 4

Non-Decreasing Parking Functions and Pattern Avoidance

In this chapter, we discuss some results relating the NDPF quotient of the 0-Hecke

monoid for the symmetric group to pattern avoidance results.

In Section 4.2 we introduce width systems on permutation patterns as a potential sys-

tem for understanding pattern containment algebraically. The main results of this section

describe a class of permutation patterns σ such that any permutation x containing σ factors

as x = yσ′z, with `(x) = `(y)+`(σ)+`(z). Here σ′ is a “shift” of σ, and some significant re-

strictions on y and z are established. The main results are contained in Propositions 4.2.13,

4.2.14, 4.2.15,4.2.17, and Corollary 4.2.16.

Pattern containment also has connection to the strong Bruhat order; in particular,

Tenner showed that a principal order ideal of a permutation is Boolean if and only if the

permutation avoids the patterns [321] and [3412] [Ten07].

We apply these ideas directly in Section 4.3 while analyzing the fiber of a certain quotient

of the 0-Hecke monoid of the symmetric group. In Theorem 4.3.3, we show that each fiber

of the quotient contains a unique [321]-avoiding permutation and a unique [231]-avoiding

permutation. We then apply an involution and study a slightly different quotient in which

fibers contain a unique [321]-avoiding permutation and a unique [312]-avoiding permutation

(Theorem 4.3.7). In Section 4.4, we consider a different monoid-morphism of the 0-Hecke

monoid for which each fiber contains a unique [4321]-avoiding permutation (Theorem 4.4.4).

We then define the Affine Nondecreasing Parking Functions in Section 4.5, and estab-

lish these as a quotient of the 0-Hecke monoid of the affine symmetric group. We prove

the existence of a unique [321]-avoiding affine permutation in each fiber of this quotient

(Theorem 4.5.15).

4.1. Background on Pattern Avoidance

Pattern avoidance phenomena have been studied extensively, originally by Knuth in his

1973 classic, The Art of Computer Programming [Knu97]. A thorough introduction to the
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subject may be found in the book “Combinatorics of Permutations” by Bona [Bo04]. A

pattern σ is a permutation in Sk for some k; given a permutation x ∈ SN , we say that

x contains the pattern σ if, in the one-line notation for x = [x1, . . . , xN ], there exists a

subsequence [xi1 , . . . , xik ] whose elements are in the same relative order as the elements in

p. If x does not contain σ, then we say that x avoids σ, or that x is σ-avoiding. (Note

that if k > N , x must avoid σ.)

For example, the pattern [1, 2] appears in any x such that there exists a xi < xj for

some i < j. The only [12]-avoiding permutation in SN , then, is the long element, which is

strictly decreasing in one-line notation. As a larger example, the permutation [3,4, 5,2, 1, 6]

contains the pattern [231] at the bold positions. In fact, this permutation contains six

distinct instances of the pattern [231].

An interesting and natural question is, given a pattern σ, how many permutations in

SN avoid σ? It has been known since Knuth’s original work that for any pattern in S3,

there are Catalan-many permutations in SN avoiding σ [Knu97].

The [321]-avoiding permutations are of particular importance. It was shown in [BJS93]

that a permutation x ∈ SN is [321]-avoiding if and only if x is ‘braid free.’ In particular,

this means that there is no reduced word for x containing the consecutive subsequence of

sisi+1si (or si+1sisi+1, equivalently), where the si are the simple transpositions generating

SN . Such permutations are called fully commutative.

Lam [Lam06] and Green [Gre02] separately showed that this result extends to the affine

symmetric group. The affine symmetric group (see Definition 4.5.1) is a subset of the

permutations of Z, satisfying some periodicity conditions. Pattern avoidance for the affine

symmetric group works exactly as in a finite symmetric group. The one-line notation for

x is the doubly infinite sequence x = [. . . , x−1, x0, x1, . . . , xN , xN+1, . . .]. Then x contains

a pattern σ if any subsequence of x in one-line notation has the same relative order as

σ. Fully commutative elements of the affine symmetric group are those which have

no reduced word containing the consecutive subsequence sisi+1si, where the indices are

considered modulo N . Green showed that the fully commutative elements of the affine

symmetric group coincide with the [321]-avoiding affine permutations.

Fan and Green [Fan96, FG99] previously studied the quotient of the full Hecke algebra

Hq(W ) for W simply-laced, by the ideal I generated by Tsts + Tst + Tts + Ts + Tt + 1 for



4.2. WIDTH SYSTEMS, PATTERN CONTAINMENT, AND FACTORIZATIONS. 61

s and t generators of W satisfying a braid relation sts = tst. This quotient H/I yields the

Temperley-Lieb Algebra. Fan showed that this quotient has a basis indexed by fully

commutative elements of W , and in further work with Richard Green derived information

relating this quotient to the Kazhdan-Lusztig basis for Hq(W ).

A further application of pattern avoidance occurs in the study of rational smoothness

of Schubert varieties; an introduction to this topic may be found in [BL00]. The Schubert

varieties Xw in Type A are indexed by permutations; a result of Billey [Bil98] shows that

Xw is smooth if and only if w is simultaneously [3412]- and [4231]-avoiding. More recently,

Billey and Crites have extended this result to affine Schubert varieties (for affine Type

A) [BC10], showing that an affine Schubert variety Xw is rationally smooth if and only if

w is simultaneously [3412]- and [4231]-avoiding or is a special kind of affine permutation,

called a “twisted spiral.”

4.2. Width Systems, Pattern Containment, and Factorizations.

In this section we introduce width systems on permutation patterns, which sometimes

provide useful factorizations of a permutation containing a given pattern. The results

established here will be directly applied in Sections 4.3 and 4.4.

Definition 4.2.1. Let x be a permutation and σ ∈ Sk a pattern. We say that x factorizes

over σ if there exist permutations y, z, and σ′ such that:

(1) x = yσ′z,

(2) σ′ has a reduced word matching a reduced word for σ with indices shifted by some

j,

(3) The permutation y satisfies y−1(j) < · · · < y−1(j + k),

(4) The permutation z satisfies z(j) < · · · < z(j + k),

(5) `(x) = `(y) + `(σ′) + `(z).

Set W = SN and J ⊂ I, with I the generating set of W . An element x ∈ W has a

right descent i if `(xsi) < `(x), and has a left descent i if `(six) < `(x). Equivalently,

x has a right (resp., left) descent at i if and only if some reduced word for x ends (resp.,

begins) with i. Let W J be the set of elements in W with no right descents in J . Similarly,
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JW consists of those elements with no left descents in J . Finally, WJ is the parabolic

subgroup of W generated by {si | i ∈ J}.

Recall that a reduced word or reduced expression for a permutation x is a minimal-

length expression for x as a product of the simple transpositions si. Throughout this

chapter, we will use double parentheses enclosing a sequence of indices to denote words.

For example, ((1, 3, 2)) corresponds to the element s1s2s3 in S4. Note that same expression

can also indicate an element of H0(S4), with ((1, 3, 2)) corresponding to the element π1π2π3.

Context should make usage clear.

Definition 4.2.2. Let σ be a permutation pattern in Sk, with reduced word ((i1, . . . , im)).

Let J = {j, j + 1, . . . , j + l} for some l ≥ k − 1 and σ′ ∈ WJ with reduced word ((i1 +

j, . . . , im + j)). Then we call σ′ a J-shift or shift of σ.

Proposition 4.2.3. A permutation x ∈ SN factorizes over σ if and only if x admits a

factorization x = yσ′z with y ∈W J , σ′ ∈WJ , and z ∈ JW , and `(x) = `(y) + `(σ′) + `(z).

Proof. This is simply a restatement of the definition of factorization over σ. In par-

ticular, y ∈W J and z ∈ JW . �

This condition is illustrated diagrammatically in Figure 4.1 using a string-diagram for

the permutation x factorized as yσ′z. In the string diagram of a permutation x, a vertical

string connects each j to x(j), with strings arranged so as to have as few crossings as

possible. Composition of permutations is accomplished by vertical concatenation of string

diagrams. In the diagram, x is the vertical concatenation (and product of) of y, σ′ and z.

The permutation y−1 preserves the order of {j, j + 1, . . . , j + k}, and thus the strings

leading into the elements {j, j + 1, . . . , j + k} do not cross. Likewise, z preserves the order

of {j, j + 1, . . . , j + k}, and thus the strings leading out of {j, j + 1, . . . , j + k} in z do not

cross. In between, σ′ rearranges {j, j + 1, . . . , j + k} according to the pattern σ.

By the above discussion, it is clear that if x admits a factorization yσ′z with y ∈

W J , σ′ ∈WJ , and z ∈ JW then x contains σ. The question, then, is when this condition is

sharp. This question is interesting because it provides an algebraic description of pattern

containment. For example, a permutation x which contains a [321]-pattern is guaranteed

to have a reduced expression which contains a braid. Braid containment can be re-stated
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j j+1 ... j+k

... ... ......

... ... ... ... ...

...

j j+1 ... j+k

z(j) z(j+1) z(...) z(j+k)

y  (j)-1 y  (j+1)-1 y  (...)-1 y  (j+k)-1

σ

y

z

Figure 4.1. Diagrammatic representation of a permutation x factorizing
over a pattern σ as x = yσz by composition of string diagrams.

as a factorization over [321]. When the factorization question is sharp, (ie, x contains σ

if and only if x factorizes over σ) one obtains an algebraic description of σ-containment.

The class of patterns with this property is rather larger than just [321], as we will see in

Propositions 4.2.13, 4.2.14, and 4.2.15.

Problem 4.2.4. For which patterns σ does x contain σ if and only if x ∈W Jσ′JW , where

σ′ is a J-shift of σ for some J?

As a tool for attacking this problem, we introduce the notion of a width system for a

pattern.

Definition 4.2.5. Suppose x contains σ at positions (i1, . . . , ik); the tuple P = (P1, . . . , Pk)

is called an instance of the pattern σ, and we denote the set of all instances of σ in x by

Px.

Definition 4.2.6. A width on an instance P of σ is a difference Pj − Pi with j > i. A

width system w for a permutation pattern σ ∈ Sk is a function assigning a tuple of widths

to each instance of σ in x. An instance P of a pattern in x is minimal (with respect to

σ and w) if w(P ) is lexicographically minimal amongst all instances of σ in x. Finally,
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an instance P = (P1, . . . , Pk) is locally minimal if P is the minimal instance of σ in the

partial permutation [xP1 , xP1+1, . . . , xPk−1, xPk
].

Example 4.2.7. Consider the pattern [231] and let P = (p, q, r) be an arbitrary instance

of σ in a permutation x. We choose to consider the width system w(P ) = (r − p, q − p).

(Other width systems include u(P ) = (r − q, q − p) and v(P ) = (r − q), for example.)

The permutation x = [3, 4, 5, 2, 1, 6] contains six [231] patterns. The following table

records each [231]-instance P and the width of the instance w(P ):

P w(P )

[3,4, 5,2, 1, 6] (1, 2, 4) (3, 1)

[3,4, 5, 2,1, 6] (1, 2, 5) (4, 1)

[3, 4,5,2, 1, 6] (1, 3, 4) (3, 2)

[3, 4,5, 2,1, 6] (1, 3, 5) (4, 2)

[3,4,5,2, 1, 6] (2, 3, 4) (2, 1)

[3,4,5, 2,1, 6] (2, 3, 5) (3, 1)

Thus, under the width system w the instance (2, 3, 4) is the minimal [231]-instance; it is

also the only locally minimal [231]-instance.

In the permutation y = [1, 4, 8, 5, 2, 7, 6, 3], we have the following instances and widths

of the pattern [231]:

P w(P )

[1,4,8, 5,2, 7, 6, 3] (2, 3, 5) (3, 1)

[1,4,8, 5, 2, 7, 6,3] (2, 3, 8) (6, 1)

[1,4, 8,5,2, 7, 6, 3] (2, 4, 5) (3, 2)

[1,4, 8,5, 2, 7, 6,3] (2, 4, 8) (6, 2)

[1,4, 8, 5, 2,7, 6,3] (2, 6, 8) (6, 4)

[1,4, 8, 5, 2, 7,6,3] (2, 7, 8) (6, 5)

[1, 4, 8,5, 2,7, 6,3] (4, 6, 8) (4, 2)

[1, 4, 8,5, 2, 7,6,3] (4, 7, 8) (4, 3)

Here, the instance (2, 3, 5) is minimal under w. Additionally, the instance (4, 6, 8) is locally

minimal, since it is the minimal instance of [231] in the partial permutation [5, 2,7, 6,3].
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2 3 1

b:=q-p

xp xq xr

a:=r-p

tx < 1 sx > 2

Figure 4.2. A diagram of a minimal [231] pattern. The circled numbers
represent elements (xp, xq, xr) filling the roles of the pattern; the widths are
denoted a and b, and the restrictions on xt with p < t < q and xs with
s < q < r implied by minimality of the pair (a, b) are also recorded. The
red arrows record the fact that shifting the end elements towards the center
using a sequence of simple transpositions reduces the length of the permu-
tation.

For certain width systems, minimality provides a natural factorization of x over σ.

Example 4.2.8. We consider the width system for the pattern [231] depicted in Figure 4.2.

Let x = [x1, x2, . . . , xN ] ∈ SN containing a [231]-pattern, and let (p < q < r) be the

indices of a minimal-width [231]-pattern in x under the width system w = (r − p, q − p).

(So xr < xp < xq.)

Minimality of the total width (r − p) implies that for every s with q < s < r, we

have xs > xp(> xr), as otherwise (xp, xq, xs) would be a [231]-pattern of smaller width.

Then multiplying x on the right by u1 = sr−1sr−2 . . . sq+1 yields a permutation of length

`(x)− (r − q − 1), with

xu1 = [x1, . . . , xp, . . . , xq, xr, xq+1 . . . , xN ].

Minimality of the inner width (q − p) implies that for every t with p < t < q, then

xt < xr. (If xp < xt < xq, then (xt, xq, xr) would form a [231]-pattern of lower width.

If xp > xt, then q was not chosen minimally.) Then multiplying xu1 on the right by

u2 = spsp+1 . . . sq−2 yields a permutation of length `(xu1)− (q− p− 1) = `(x)− r+ p+ 2).

This permutation is:

xu1u2 = [x1, . . . , xq−1, xp, xq, xr, xq+1 . . . , xN ].

Since [xp, xq, xr] form a [231]-pattern, we may further reduce the length of this per-

mutation by multiplying on the right by sqsq−1. The resulting permutation has no right

descents in the set J := {q − 1, q}.
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3 2 1

b:=q-p

xp xq xr

a:=r-p

tx < 1 sx > 2

Figure 4.3. A diagram of a left-minimal [321] pattern, labeled analogously
to the labeling in Figure 4.2.

We then set y = xu1u2sqsq−1, σ
′ = sq−1sq, and z = (u1u2)

−1. Notice that z has no left

descents in {q− 1, q} by construction, since it preserved the left-to-right order of xp, xq and

xr. Then x = yσ′z is a factorization of x over σ.

One may use a similar system of minimal widths to show that any permutation con-

taining a [321]-pattern contains a braid, replicating a result of Billey, Jockusch, and Stan-

ley [BJS93]. The corresponding system of widths is depicted in Figure 4.3.

Definition 4.2.9. Let σ be a permutation with a width system. The width system is boun-

tiful if for any x containing a locally minimal σ at positions (p1, . . . , pk), any xt with

pi < t < pi+1 has either xt < xpk for all pk < t or xt > xpk for all pk > t.

Proposition 4.2.10. If a pattern σ admits a bountiful width system, then any x containing

σ factorizes over σ.

Proof. By definition, any xt with pi < t < pi+1 has either xt < xpk for all pk < t or

xt > xpk for all pk > t. Then using methods exactly as in Example 4.2.8, we may vacate

the elements xt by multiplying on the right by simple transpositions, moving “small” xt

out to the left and moving “large” xt out to the right. This brings the minimal instance

of the pattern σ together into adjacent positions (j, j + 1, . . . , j + k), while simultaneously

creating a reduced word for the right factor z in the factorization. Then we set J =

{j, j + 1, . . . , j + k − 1}, and let σ′ be the J-shift of σ. Set y = xz−1σ′−1. Then by

construction x = yσ′z is a factorization of x over σ. �

Thus, establishing bountiful width systems allows the direct factorization of x containing

σ as an element of W Jσ′JW .

Problem 4.2.11. Characterize the patterns which admit bountiful width systems.
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b
3 2 1
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2 1 3
ab

1 3 2
bb

2 3 1

a

b
3 1 2

a

a

Figure 4.4. Diagrams of bountiful width systems for the five patterns in
S3 which admit bountiful width systems.

Example 4.2.12. The permutation x = [1324] = s2 contains a [123]-pattern, but does not

factor over [123]. To factor over [123], we have x ∈W J1J
JW , with J = {1, 2} or J = {2, 3}.

Both choices for J contain 2, so it is impossible to write x as such a product.

Proposition 4.2.13. Both patterns in S2 admit bountiful width systems.

Proof. Any minimal [12]- or [21]-pattern must be adjacent, and so the conditions for

a bountiful width system hold vacuously. �

Proposition 4.2.14. All of the patterns in S3 except [123] admit a bountiful width system,

as depicted in Figure 4.4.

Proof. A bountiful width systems has already been provided for the pattern [231]. We

only provide the details of the proof that the [213] pattern is bountiful, as the proofs that

the width systems for the patterns [132], [312] and [321] are bountiful are analogous.

Let x ∈ SN contain a [213] pattern at positions (xp, xq, xr), and choose the width system

(a, b) = (r − q, q − p).

Suppose that (xp, xq, xr) is lexicographically minimal in this width system, and consider

xt with p < t < q and xs with q < s < r. Then a = 1:

• If xs < xp, then (xp, xs, xr) is a [213] pattern with a smaller.

• If xp < xs, then (xp, xq, xs) is a [213] pattern with a smaller.

Thus, we must have r − q = 1.
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Since b is minimal, we must also have that xt > xq or xt < xp for every t with p < t < q.

This completes the proof that the width system is bountiful. �

Proposition 4.2.15. Let σ be a pattern in SK−1 with a bountiful width system, and let

σ+ = [K,σ1, . . . , σK−1]. Then σ+ admits a bountiful width system.

Similarly, let σ− = [σ1 + 1, . . . , σK−1 + 1, 1]. Then σ− admits a bountiful width system.

Proof. Let w = (w1, w2, . . . , wk−2) be a bountiful width system on σ (so wi is the

difference between indices of an instance of σ in a given permutation). Let x contain σ+ in

positions (xp, . . . , xq). For σ+, we show that the width system w+ = (w1, w2, . . . , wk−2, q−p)

is bountiful, where wi measures widths of elements in σ as in w.

Consider a σ+-pattern in a permutation x that is minimal under the width system w+,

appearing at indices given by the tuple p := (i1, . . . , ik+1). Then x contains a σ-pattern at

positions (i2, . . . , ik+1). This pattern may not be minimal under w but, by the choice of

width system, is as close as possible to being w-minimal, in the following sense.

We examine two cases.

• If there are no indices t with i2 < t < ik+1 such that xt > xi1 , then σ must be

w-minimal on the range i2, . . . , ik+1. (Otherwise, a w-minimal σ-pattern in that

space would extend to a pattern that was less than p in the w+ width system.)

Then bountifulness of the σ pattern ensures that for any t with ij < t < ij+1 with

j ≥ 2; then xt < xik for all ik < t or xt > xik for all ik > t. (The “small” elements

are still smaller than the “large” element xi1 .)

• On the other hand, if there exist some t with i2 < t < ik+1 such that xt > xi1 ,

we may move these xt out of the σ pattern to the right by a sequence of simple

transpositions, each decreasing the length of the permutation by one. Let u be

the product of this sequence of simple transpositions. Then xu fulfills the previous

case. Each of the xt were larger than all pattern elements to the right, so we see

that σ+ fulfills the requirements of a bountiful pattern.

The proof that σ− admits a bountiful width system is similar. �

Corollary 4.2.16. Let σ ∈ SK be a permutation pattern, where the length of σ is at most

one less than the length of the long element in SK . Then σ admits a bountiful width system.
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a:=r-p

xp xr
tx < K-1

K-1

xq

σ1 K-2σK ...

or
tx > K

b:=r-q

sx < K-1

xqxp

σ1 K-1σK ...

a:=q-p

tx < K-1

Figure 4.5. Diagram of extensions of a bountiful width system w by the
additional widths a or (a, b), as described in the proofs of Propositions 4.2.15
and 4.2.17.

Proof. This follows inductively from Proposition 4.2.15, and the fact that the patterns

[12] and [21] both admit bountiful width systems. �

Proposition 4.2.17. Let σ be a pattern in SK−2 with a bountiful width system, and let

σ++ = [K − 1,K, σ1, . . . , σK−1]. Then σ++ admits a bountiful width system.

Similarly, let σ−− = [σ1 + 2, . . . , σK−2 + 2, 1, 2]. Then σ−− admits a bountiful width

system.

Proof. The proof of this proposition closely mirrors the proof of Proposition 4.2.15.

Let w = (w1, w2, . . . , wk−2) a bountiful width system on σ. Let x contain σ++ in positions

(xp, xr, xs, . . . , xq). For σ++, we claim that the width system w++ = (w1, w2, . . . , wk−2, q−

p, s−r) is bountiful, where wi measures widths of elements in σ as in w. (The width system

w++ is depicted in Figure 4.5.)

Again, local minimality of σ ensures that all xt with s < t < q with xt not in the

instance of σ++ are either smaller than all pattern elements to the left of xt, or larger than

all pattern elements to the right of xt. The choice of w++ ensures that all xt with p < t < r

are either less than xp or larger than xr, and that all xt with r < t < s are less than xp.

Then w++ is bountiful.

The proof that σ−− is bountiful is analogous. �
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4.2.1. Further Directions. Preliminary investigation suggests that patterns admit-

ting a bountiful width system are somewhat rare, though there are more than those de-

scribed by Corollary 4.2.16. Weakening the definition of a factorization over a permutation

may provide an additional avenue of investigation, though.

Definition 4.2.18. A permutation x ∈W = SN left-factorizes over a pattern σ ∈ SK if

x = yσ′z with:

• σ′ ∈WJ , with J = {j, j + 1, . . . , j + k} and σ′ containing a σ-pattern,

• y ∈W J ,

• `(x) = `(y) + `(σ) + `(z).

This definition drops the requirement that z ∈ JW . This definition may be too weak,

though, since one can show that any permutation containing the pattern [K,K − 1, . . . , 1]

left-factors over every pattern in SK .

On the other hand, consider Example 4.2.12. The permutation x = [1, 3, 2, 4] = s2

admits a factorization S{1,3}1{1,3}
{1,3}S, and the element 1{1,3} contains a [123]-pattern.

Allowing factorizations over arbitrary subgroups – and obtaining a combinatorial charac-

terization of these factorizations – may provide a way forward.

Problem 4.2.19. Find a general characterization of pattern containment in terms of fac-

torizations of a permutation.

4.3. Pattern Avoidance and the NDPF Quotient

In this section, we consider certain quotients of the 0-Hecke monoid of the symmetric

group, and relate the fibers of the quotient to pattern-avoidance. The 0-Hecke monoid

H0(SN ) is defined in Definition 3.1.4, and the Non-decreasing Parking Function NDPFN

quotient is discussed in Section 3.1.5, in its guise as the the monoid of order-preserving

regressive functions on a chain.

Definition 4.3.1. For x ∈ H0(SN ), we say x contains a braid if some reduced word for

x contains a contiguous subword πiπi+1πi.

The permutation x contains an unmatched ascent if some reduced word for x contains

a contiguous subword πiπi+1 that is not part of a braid. More precisely, if inserting a πi
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directly after the πiπi+1 increases the length of x, then x contains an unmatched ascent.

Equivalently, x may be factorized as x = yπiπi+1z, where y has no right descents in {i, i+1},

and z has no left descents in {i, i+ 1}, and `(x) = `(y) + 2 + `(z).

An unmatched descent is analogously defined as a contiguous subword πi+1πi such

that insertion of a πi immediately before this subword increases the length of x. Equivalently,

x may be factorized as x = yπi+1πiz, where y has no right descents in {i, i+ 1}, and z has

no left descents in {i, i+ 1}, and `(x) = `(y) + 2 + `(z).

Lemma 4.3.2. For x ∈ SN , x contains a [231]-pattern if and only if x has an unmatched

ascent. Likewise, x contains a [312]-pattern if and only if x has an unmatched descent.

Proof. This is a straightforward application of the bountiful width system for the

patterns [231] and [312]. The resulting factorization contains an unmatched ascent (resp.,

descent). �

This process of inserting an si can be made more precise in the symmetric group setting:

suppose sj1 . . . sisi+1 . . . sjk is a reduced expression for x ∈ SN . Then write x = x1sisi+1x2.

To insert si, multiply x on the right by x−12 six2. As such, this insertion can be realized as

multiplication by some reflection.

This insertion is generally not a valid operation in H0(SN ), since inverses do not exist.

However, the operation does make sense in the NDPF setting: the NDPF relation simply

allows one to exchange a braid for an unmatched ascent or vice-versa.

Theorem 4.3.3. Each fiber of the map φ : H0(SN ) → NDPFN contains a unique [321]-

avoiding element of minimal length and a unique [231]-avoiding element of maximal length.

Proof. The first part of the theorem follows directly from a result of Billey, Jockusch,

and Stanley [BJS93], which states that a symmetric group element contains a braid if and

only if the corresponding permutation contains a [321]. Alternatively, one can use the width

system for [321] established in Proposition 4.2.14 to obtain a factorization including a braid.

Then for any x in the fiber of φ, one can remove braids obtained from minimal-width [321]-

patterns using the NDPF relation and obtain a [321]-avoiding element. Each application

of the NDPF-relation reduces the length of the permutation by one, so this process must

eventually terminate in a [321]-avoiding element. Uniqueness follows since there are exactly
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Figure 4.6. Fibers of the NDPF quotient for H0(S4).

CN [321]-avoiding elements in SN , where CN is the Nth Catalan number, and are thus in

bijection with elements of NDPFN .

For the second part, we use the bountiful [231] width system established in Exam-

ple 4.2.8. Let x contain a [231]-pattern. The width system allows us to write a factorization

x = yπiπi+1z, where y has no right descents in {i, i+1} and z has no left descents in {i, i+1}.

Then we may apply the NDPF relation to insert a πi, turning the [231]-pattern into a [321]

pattern, and increasing the length of x by one. Since we are in a finite symmetric group,

there is an upper bound on the length one may obtain by this process, and so the process

must terminate with a [231]-avoiding element. Recall that [231]-avoiding permutations are

also counted by the Catalan numbers [Knu97], and apply the same reasoning as above to

complete the theorem. �

Recall that the right action of SN acts on positions. A permutation y has a right descent

at position i if the two consecutive elements yi, yi+1 are out of order in one-line notation.

Then multiplying on the right by si puts these two positions back in order and reduces

the length of y by one. Likewise, if y does not have a right descent at i, multiplying by si

increases the length by one.

Example 4.3.4 (Fibers of the NDPF quotient). For S4, the fibers of the NDPF quotient

can be found in Figure 4.6.

As a larger example, let σ = [3, 6, 4, 5, 7, 2, 1] ∈ S7. For Lemma 4.3.2, we find minimal-

width [231]-patterns, with the element corresponding to the 3 chosen as far to the left as

possible. (The subsequence (5, 7, 2) of σ is such a minimal [231]-pattern.) Then applying

the transformation [231] → [321] on that instance of the pattern preserves the fiber of

the NDPF quotient, and increases the length of the permutation by 1. By sequentially

removing eight such minimal [231]-patterns, one obtains the long element in S7, which is
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[231]-avoiding. The fiber containing the long element also contains a [321]-avoiding element

[2, 3, 4, 5, 6, 7, 1], which has length 6, and is the shortest element in its fiber.

We now fix bountiful width system for [231]- and [321]-patterns, which we will use for

the remainder of this section.

Definition 4.3.5. Let x ∈ SN , x = [x1, . . . , xN ] in one-line notation, and consider all [231]-

patterns (xp, xq, xr) in x. The width of a [231]-pattern (xp, xq, xr) is the pair (r− p, q− p).

The pattern is a minimally chosen [231]-pattern if the width is lexicographically minimal

amongst all [231]-patterns in x.

On the other hand, call a [321]-pattern (xp, xq, xr) left minimal if for all t with p <

t < q, xt < xr, and for all s with q < s < r, xs > xq.

The following is a direct result of the proof of Lemma 4.3.2.

Corollary 4.3.6. Let x ∈ SN . Let (xp, xq, xr) be a minimally chosen [231]-pattern in x.

Then the permutation

[x1, . . . , xp−1, xq, xp+1, . . . , xq−1, xp, xq+1, . . . , xr, . . . , xN ],

obtained by applying the transposition tp,q, is in the same NDPF-fiber as x. The result of

applying this transposition is a left-minimal [321]-pattern.

4.3.1. Involution. Let Ψ be the involution on the symmetric group induced by con-

jugation by the longest word. Then Ψ acts on the generators by sending si → sN−i. This

descends to an isomorphism of H0(SN ) by exchanging the generators in the same way:

πi → πN−i.

We can thus obtain a second map from H0(SN )→ NDPFN by pre-composing with Ψ.

This has the effect of changing the NDPF relation to a statement about unmatched descents

instead of unmatched ascents. Then applying the NDPF relation allows one to exchange

braids for unmatched descents and vice-versa, giving the following theorem.

Theorem 4.3.7. Each fiber of the map φ ◦ Ψ : H0(SN ) → NDPFN contains a unique

[321]-avoiding element for minimal length and a unique [312]-avoiding element of maximal

length.
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The proof is exactly the mirror of the proof in previous section.

We fix bountiful width system for [312]-patterns, and a second bountiful width system

for [321]-patterns, which we will use for the remainder of this section.

Definition 4.3.8. Let x ∈ SN , x = [x1, . . . , xN ] in one-line notation, and consider all [312]-

patterns (xp, xq, xr) in x. The width of a [312]-pattern (xp, xq, xr) is the pair (r− p, r− q).

The pattern is a minimally chosen [312]-pattern if the width is lexicographically minimal

amongst all [312]-patterns in x.

Likewise, call a [321]-pattern (xp, xq, xr) right minimal if the right width (p−r, r−q)

is lexicographically minimal amongst all [321]-patterns in x. On the other hand, call a [321]-

pattern (xp, xq, xr) right minimal if for all t with p < t < q, xt < xq, and for all s with

q < s < r, xs > xp.

Corollary 4.3.9. Let x ∈ SN . Let (xp, xq, xr) be a minimally chosen [312]-pattern in x.

Then the permutation

[x1, . . . , xp−1, xq, xp+1, . . . , xq−1, xp, xq+1, . . . , xr, . . . , xN ],

obtained by applying the transposition tp,q, is in the same NDPF ◦Ψ-fiber as x. The result

of applying this transposition is a right-minimal [321]-pattern.

4.4. Type B NDPF and [4321]-Avoidance

In this section, we establish a monoid morphism of H0(SN ) whose fibers each contain a

unique [4321]-avoiding permutation. To motivate this map, we begin with a discussion of

Non-Decreasing Parking Functions of Type B.

The Weyl Group of Type B may be identified with the signed symmetric group SBN ,

which is discussed (for example) in [BB05]. Combinatorially, SBN may be understood as a

group permuting a collection of N labeled coins, each of which can be flipped to heads or

tails. The size of SBN is thus 2NN !. A minimal set of generators of this group are exactly

the simple transpositions {ti | i ∈ {1, . . . , N − 1}} interchanging the coins labeled i and

i+ 1, along with an extra generator tN which flips the last coin.

The group SBN can be embedded into S2N by identifying the ti with sis2N−i for each

i ∈ {1, . . . , N − 1}, and tN with sN .
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Definition 4.4.1. The Type B Non-Decreasing Parking Functions BNDPFN are the

elements of the submonoid of NDPF2N generated by the collection µi := πiπ2N−i for i in

the set {1, . . . , N}.

Note that µN = π2N = πN .

The number of BNDPFN has been explicitly computed up to N = 9, though a proof for

a general enumeration has proven elusive, in the absence of a more conceptual description

of the full set of functions generated thusly. The sequence obtained (starting with the 0-th

term) is

(1, 2, 7, 33, 183, 1118, 7281, 49626, 349999, 253507, . . .),

which agrees with the sequence
N∑
j=0

(
N

j

)2

Cj

so far as it has been computed. This appears in Sloane’s On-Line Encyclopedia of Integer

Sequences as sequence A086618 [Se03], and was first noticed by Hivert and Thiéry [HT09].

Conjecture 4.4.2.

|BNDPFN | =
N∑
j=0

(
N

j

)2

Cj .

Let X be some object (group, monoid, algebra) defined by generators S and relations

R. Recall that a parabolic subobject XJ is generated by a subset J of the set S of simple

generators, retaining the same relations R as the original object. Let BNDPFN,N̂ denote

the parabolic submonoid of of BNDPFN retaining all generators but µN .

Consider the embedding of BNDPFN,N̂ in NDPF2N . Then a reduced word for an

element of BNDPFN,N̂ can be separated into a pairing of NDPFN elements as follows:

µi1µi2 . . . µik = πi1π2N−i1π2N−i2πi2 . . . πikπ2N−ik(4.1)

= πi1πi2 . . . πikπ2N−i1π2N−i2 . . . π2N−ik(4.2)

In particular, one can take any element x ∈ H0(SN ) and associate it to the pair:

ω(x) := (φ(x), φ ◦Ψ(x)),

recalling that Ψ is the Dynkin automorphism on H0(SN ), described in Section 4.3.1.
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Given the results of the earlier section, one naturally asks about the fiber of ω. It is

easy to do some computations and see that the situation is not quite so nice as before. In

H0(S4) the only fiber with order greater than one contains the elements [4321] and [4231].

Notice what happens here: [4231] contains both a [231]-pattern and a [312]-pattern, which

is straightened into two [321]-patterns. On the level of reduced words, two reduced words

for [4231] are ((3, 2, 1, 2, 3)) = ((1, 2, 3, 2, 1)), one of which ends with the unmatched ascent

[2, 3] while the other ends with the unmatched descent [2, 1]. Multiplying on the right by

the simple transposition s2 matches both of these simultaneously.

In fact, this is a perfectly general operation. Let x ∈ H0(SN ). For any minimally-chosen

[231]-pattern in x, one can locate an unmatched ascent in x that corresponds to the pattern.

Here the smaller element to the right remains fixed while the two ascending elements to

the left are exchanged. Then applying the NDPF relation to turn the [231] into a [321]

preserves the fiber of φ. Likewise, one can turn a minimal [312] into a [321] and preserve

the fiber of φ ◦ Ψ(x). Here the larger element to the left is fixed while the two ascending

elements to the right are exchanged. Hence, to preserve the fiber of ω, one must find a pair

of ascending elements with a large element to the left and a small element to the right: this

is exactly a [4231]-pattern.

One may make this more precise by defining a system of widths under which minimal

[4231]-patterns contain a locally minimal [231]-pattern and a locally-minimal [321]-pattern.

The results of Section 4.2 imply that this is possible. Applying the NDPF relation, this

becomes a [4321].

On the other hand, we can define a minimal [4321]-pattern by a tuple of widths analogous

to the constructions of minimal [231]-patterns. The construction of this tuple, and the

constraints implied when the tuple is minimal, is depicted in Figure 4.7. Such a minimal

pattern may always be turned into a [4231]-pattern while preserving the fiber of ω.

Let x ∈ SN and P = (xp, xq, xr, xs) a [4321]-pattern in x. For the remainder of this

section, we fix the width system (q − p, r − q, s − r), and use the same width system for

[4231]-patterns. One may check directly that this is a bountiful width system in both cases.

Lemma 4.4.3. Let x contain a minimal [4321]-pattern P = (xp, xq, xr, xs), and let x′ =

xtr,s, where tr,s is the transposition exchanging xr and xs. Then ω(x′) = ω(x).
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3 2 1

c:=r-q

xq xr xs

a:=s-r

bx < 1
4

xp

cx > 2

b:=q-p

ax < 3

Figure 4.7. A diagram of a minimal [4321] pattern, labeled analogously to
the labeling in Figure 4.2.

Proof. Since the width system on [4321]-patterns is bountiful, we can factor x = yxJz,

with `(x) = `(y) + `(xJ) + `(z) where

xJ = ss−2ss−1ssss−1ss−2ss−1.

By the discussion above, the trailing ss−1 in xJ may be removed to simultaneously yield

an unmatched ascent and an unmatched descent. Then this removal preserves the fiber of

both φ and Ψ ◦ φ, and thus also preserves the fiber of ω. �

Note that there need not be a unique [4231]-avoiding element in a given fiber of ω.

The first example of this behavior occurs in N = 7, where there is a fiber consisting of

[5274163], [5472163], and [5276143]. In this list, the first element is [4321]-avoiding, and the

two latter elements are [4231]-avoiding. In the first element, there are [4231] patterns [5241]

and [7463] which can be respectively straightened to yield the other two elements. Notice

that either transposition moves the 4 past the bounding element of the other [4231]-pattern,

thus obstructing the second transposition.

Theorem 4.4.4. Each fiber of ω contains a unique [4321]-avoiding element.

Proof. Given any element of H0(SN ), we have seen that we can preserve the fiber

of ω by turning locally minimal [4321]-patterns into [4231]-patterns. Each such operation

reduces the length of the element being acted upon, and thus this can only be done so many

times. Furthermore, any minimal-length element in the fiber of ω will be [4321]-avoiding.

We claim that this element is unique.

First, note that one can impose a partial order on the fiber of ω with x covering y if x is

obtained from y by turning a locally minimal [4321]-pattern into a [4231]-pattern. Then the

partial order is obtained by taking the transitive closure of the covering relation. Note that

if x covers y then x is longer than y. The Hasse diagram of this poset is connected, since
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any element of the fiber can be obtained from another by a sequence of NDPF relations

respecting both the fiber of φ and φ ◦Ψ(x).

Let x be an element of H0(SN ) containing (at least) two locally minimal [4321]-patterns,

in positions (xa, xb, xc, xd) and (xp, xq, xr, xs), with a < b < c < d, p < q < r < s. Then one

can exchange xb with xc or xq with xr and preserve the fiber of ω. Let y be the element

obtained from exchanging xb with xc, and z obtained by exchanging xq with xr. Then we

claim that there exists w covered by both y and z. (In other words, the poset structure on

each fiber is a meet semilattice.)

If the tuples (a, b, c, d) and (p, q, r, s) are disjoint, then the claim is clearly true. Likewise,

if a = p and/or d = s the claim holds. A complete but perhaps unenlightening proof of

the claim can be accomplished by showing that it holds for all BNDPFN,N̂ with N < 8,

where every possible intermingling of the tuples with every possible ordering of the entries

x. occurs at least once. It is best to perform this check with a computer, given that there are

2761 elements in BNDPF7,7̂, with 7! = 5040 elements in the fibers, and indeed a computer

check shows that the claim holds. The code accomplishing this is provided below.

Let’s look at a couple cases, though, to get a feeling for why this should be true. Refer

to the extremal elements at the edge of the [4321] pattern as the “boundary,” and the

elements to be transposed as the “interior.” The main cases are the following:

Case c = r: Just take the smaller of xs and xd to be the common right boundary for

both patterns.

Case c = q: The problem for [4231] patterns was that one could apply a transposition

that obstructed the other transposition by moving one of the interior elements past its

boundary. But here, we have xd < xc and xs < xq = xd, so we can use s as the boundary

for both patterns, and the obstruction is averted. In this case, though, the two transpositions

generate six elements in the fiber, instead of four. We can still find a common meet, though.

[xaxbxqxrxs] becomes [xaxqxbxrxs] and [xaxbxrxqxs], which both cover [xaxrxbxqxs], for

example.

Case r = d or q = d: Again, just take s as a common boundary for the two patterns.

And so on. Many cases are symmetric to the three considered above, and every inter-

esting case is solved by changing the boundary of one of the patterns.
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Now that every pair of elements have a common meet, we are almost done. Suppose

there exist two different [4321]-avoiding elements A1 and A2 in some fiber. Then since the

fiber is connected, we can find a minimal element x where a branching occurred, so that

x covers both y > A1 and z > A2, and x is of minimal length. But if both y and z were

obtainable from x, then there exists a w of shorter length below them both. Now w sits

above some [4321]-avoiding element, as well. If w > A1 but not A2, then in fact a branching

occurred at z, contradicting the minimality of x. The same reasoning holds if w > A2 but

not A1. If w is above both A1 and A2, then in fact y was comparable to A2 and z was

comparable to A1, and there was not a branching at x at all. �

4.4.1. Code for Theorem 4.4.4. Here we provide code for checking the claim of

Theorem 4.4.4 that each fiber of ω contains a unique [4321]-avoiding element. The code is

written for the Sage computer algebra system, which has extensive built-in functions for

combinatorics of permutations, including detecting the presence of permutation patterns.

The code below constructs a directed graph (see the function omegaFibers) whose

connected components are fibers of ω. The vertices of this graph are permutations, and the

edges correspond to straightening locally-minimal [4231]-patterns into [4321] patterns. A

component is ‘bad’ if it does not contain exactly one [4321]-avoiding permutation.

def width4231(p):

"""

This function returns the width of a [4231]-instance p.

"""

return (p[1]-p[0], p[2]-p[1], p[3]-p[2])

def min4231(x):

"""

This function takes a permutation x and finds all minimal-width

4231-patterns in x, and returns them as a list.

"""

P=x.pattern_positions([4,2,3,1])

if P==[]:
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return None

minimal=[P[0]]

for i in [1..len(P)-1]:

if width4231(P[i])<width4231(minimal[0]):

minimal = [ P[i] ]

else:

if width4231(P[i])==width4231(minimal[0]):

minimal.append(P[i])

return minimal

def localMin4231(x):

"""

This function finds all locally-minimal 4231-patterns in a

permutation x, and returns them as a list.

"""

P=x.pattern_positions([4,2,3,1])

if P==[]:

return None

localMin=[]

for p in P:

xp=Permutation(x[ p[0]:p[3]+1 ])

qp=[i - p[0] for i in p]

qmin=min4231(xp)

if qp in qmin: localMin.append(p)

return localMin

def omegaFibers(N):

"""

Given N, this function builds a digraph whose vertices are given by

permutations of N, and with an edge a->b whenever b is obtained

from a by straightening a locally minimal 4231-pattern into a
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4321-pattern.

The connected components of G are the fibers of the map omega.

"""

S=Permutations(N)

G=DiGraph()

G.add_vertices(S.list())

for x in S:

if x.has_pattern([4,2,3,1]):

# print x, localMin4231(x)

#add edges to G for each locally minimal 4231.

Q=localMin4231(x)

for q in Q:

y=Permutation((q[1]+1,q[2]+1))*x

G.add_edge(x,y)

return G

def headCount(G):

"""

This function takes the diGraph G produced by the omegaFibers

function, and finds any connected components with more than one

4321-pattern. It returns a list of all such connected components.

"""

bad=[]

for H in G.connected_components_subgraphs():

total=0

for a in H:

if not a.has_pattern([4,3,2,1]): total+=1

if total != 1:

#prints if any fiber has more than one 4321-av elt

print H, total

bad.append(H)
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print "N =", N

print "\tTotal connected components: \t", count

print "\tBad connected components: \t", len(bad), ’\n’

return bad

As explained in Theorem 4.4.4, we should check that each fiber of ω contains a unique

[4321]-avoiding element for each N ≤ 7. This is accomplished by running the following

commands:

sage: for N in [1..7]:

sage: G=omegaFibers(N)

sage: HH=headCount(G)

The output of this loop is as follows:

N = 1

Total connected components: 1

Bad connected components: 0

N = 2

Total connected components: 2

Bad connected components: 0

N = 3

Total connected components: 6

Bad connected components: 0

N = 4

Total connected components: 23

Bad connected components: 0

N = 5

Total connected components: 103

Bad connected components: 0



4.5. AFFINE NDPF AND AFFINE [321]-AVOIDANCE 83

N = 6

Total connected components: 513

Bad connected components: 0

N = 7

Total connected components: 2761

Bad connected components: 0

There are no bad components, and thus the theorem holds.

The sequence (1, 2, 6, 23, 103, 513, 2761) is the beginning of the sequence counting [4321]-

avoiding permutations. This sequence also counts [1234]-avoiding permutations (reversing

a [1234]-avoiding permutation yields a [4321]-avoiding permutation, and vice versa), and

is listed in that context in Sloane’s On-Line Encyclopedia of Integer Sequences (sequence

A005802) [Se03].

The author executed this code on a computer with a 900-mhz Intel Celeron processor

(blazingly fast by 1995 standards) and 2 gigabytes of RAM. On this machine, the N = 6

case took 3.86 seconds of CPU time, and the N = 7 case took just over one minute (62.06s)

of CPU time. The N = 8 case (which is unnecessary to the proof) correctly returns 15767

connected components, none of which are bad, and took 1117.24 seconds (or 18.6 minutes)

to run.

4.5. Affine NDPF and Affine [321]-Avoidance

The affine symmetric group is the Weyl group of type A
(1)
N , whose Dynkin diagram is

given by a cycle with N nodes. All subscripts on generators for type A
(1)
N in this section

will be considered (mod N). A combinatorial realization of this Weyl group is given below.

Definition 4.5.1. The affine symmetric group S̃N is the set of bijections σ : Z → Z

satisfying:

• Skew-Periodicity: σ(i+N) = σ(i) +N , and

• Sum Rule:
∑N

i=1 σ(i) =
(
N+1
2

)
.
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We will often denote elements of S̃N in the window notation, which is a one-line

notation where we only write (σ(1), σ(2), . . . , σ(N)). Due to the skew-periodicity restriction,

writing the window notation for σ specifies σ on all of Z.

The generators si of S̃N are indexed by the set I = {0, 1, . . . , N − 1}, and si acts by

exchanging j and j + 1 for all j ≡ i(mod N). These satisfy the relations:

• Reflection: s2i = 1,

• Commutation: sjsi = sisj when |i− j| > 1, and

• Braid Relations: sisi+1si = si+1sisi+1.

In these relations, all indices should be considered mod N .

Since the Dynkin diagram is a cycle, it admits a dihedral group’s worth of automor-

phisms. One can implement a “flip” automorphism Φ by fixing s0 and sending si → sN−i

for all i 6= 0, extending the automorphism used in the finite case. A “rotation” automor-

phism ρ can be implemented by simply sending each generator si → si+1. Combinatorially,

this corresponds to the following operation. Given the window notation (σ1, σ2, . . . , σN ),

we have:

ρ(σ) = (σN −N + 1, σ1 + 1, σ2 + 1, . . . , σN−1 + 1).

This can be thought of as shifting the base window one place to the left, and then adding

one to every entry. It is clear that this operation preserves the skew periodicity and sum

rules for affine permutations, and it is also easy to see that ρN = 1.

As before, we can define the Hecke algebra of S̃N , and the 0-Hecke algebra, generated

by πi with πi idempotent anti-sorting operators, exactly mirroring the case for the finite

symmetric group. As in the finite case, elements of the 0-Hecke algebra are in bijection with

affine permutations. We can also define the NDPF quotient of H0(S̃N ), by introducing the

relation

πi+1πiπi+1 = πi+1πi.

This allows us to give combinatorial definition for the affine NDPF, which we will prove to

be equivalent to the quotient.

Definition 4.5.2. The extended affine non-decreasing parking functions are the functions

f : Z→ Z which are:
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• Regressive: f(i) ≤ i,

• Order Preserving: i ≤ j ⇒ f(i) ≤ f(j), and

• Skew Periodic: f(i+N) = f(i) +N .

Define the shift functions sht as the functions sending i→ i− t for every i.

The affine non-decreasing parking functions ÑDPFN are obtained from the ex-

tended affine non-decreasing parking functions by removing the shift functions for all t 6= 0.

Notice that the definition implies that

f(N)− f(1) ≤ N.

Furthermore, since the shift functions are not in ÑDPFN , there is always some j ∈ {0, 1, . . . , N}

such that f(j) 6= f(j + 1) unless f is the identity.

We now state the main result of this section, which will be proved in pieces throughout

the remainder of the chapter.

Theorem 4.5.3. The affine non-decreasing parking functions ÑDPFN are a J -trivial

monoid which can be obtained as a quotient of the 0-Hecke monoid of the affine symmetric

group by the relations πjπj+1πj = πjπj+1, where the subscripts are interpreted modulo N .

Each fiber of this quotient contains a unique [321]-avoiding affine permutation.

Proposition 4.5.4. As a monoid, ÑDPFN is generated by the functions fi defined by:

fi(j) =

 j − 1 : j ≡ i+ 1(mod N)

j : j 6≡ i+ 1(mod N).

These functions satisfy the relations:

f2i = fi

fifj = fjfi when |i− j| > 1, and

fifi+1fi = fi+1fifi+1 = fi+1fi when |i− j| = 1,

where the indices are understood to be taken (mod N).

Proof. One can easily check that these functions fi satisfy the given relations. We

then check that any f ∈ ÑDPFN maybe written as a composition of the fi.
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Let f ∈ ÑDPFN . If there is no j ∈ {0, . . . , N} such that f(j) = f(j + 1), then f is a

shift function, and is thus the identity.

Otherwise, we have some j such that f(j) = f(j + 1). We can then build f using fi’s

by the following procedure. Notice that, if any g ∈ ÑDPF has g(j) = g(j + 1) for some

j, we can emulate a shift function by concatenating g with fjfj+1 · · · fj+N−1, where the

subscripts are understood to be taken (mod N). In other words, we have:

g sh1 = gfjfj+1 · · · fj+N−1.

Suppose, without loss of generality, that f(N) 6= f(N + 1), so that N and N + 1 are

in different fibers of f , and N is maximal in its fiber. (If the “break” occurs elsewhere, we

simply use that break as the ‘top’ element for the purposes of our algorithm. Alternately,

we can apply the Dynkin automorphism to f until ρkf(N) 6= ρkf(N + 1). for some k. We

can use this algorithm to construct ρkf , and then apply ρ N − k times to obtain f .) Begin

with g = 1, and construct g algorithmically as follows.

• Collect together the fibers. Set g′ to be the shortest element in NDPFN such

that the fibers of g′ match the fibers of f in the base window. Let g0 be the

affine function obtained from a reduced word for g′. This is the pointwise maximal

function in ÑDPFN with fibers equal to the fibers of f .

• Now that the fibers are collected, post-compose g0 with fi’s to move the images

into place. We begin with g := g0 and apply the following loop:

while g 6= f :

for i in {1, . . . , N} :

if g(i+ 1) > f(i+ 1) and g−1(g(i+ 1)− 1) = ∅ :

g := g.fi.

This process clearly preserves the fibers of g0 (which coincide with the fibers of

f), and terminates only if g = f . We need to show that the algorithm eventually

halts.
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Recall that g0(i) ≥ f(i) for all i, and then notice that it is impossible to obtain

any g in the evaluation of the algorithm with g(i) < f(i), so that we always have

g(i)−f(i) > 0. With each application of a fj , the sum
∑N

i=1(g(i)−f(i)) decreases

by one.

Suppose the loop becomes stuck; then for every i either f(i+ 1) = g(i+ 1) or

g−1(g(i+ 1)− 1) 6= ∅. If there is no i with f(i+ 1) = g(i+ 1), then there must be

some i with g−1(g(i+ 1)− 1) = ∅, since g(N)− g(1) ≤ N and g 6= 1. Then we can

find a minimal i ∈ {1, . . . , N} with f(i+ 1) = g(i+ 1).

Now, find j minimal such that f(i + j) 6= g(i + j), so that f(i + j − 1) =

g(i + j − 1). In particular, notice that i + j − 1 and i + j must be in different

fibers for both f and g. If g−1(g(i + j) − 1) = ∅, then the loop would apply

a fi+j−1 to g, but the loop is stuck, so this does not occur and we have that

f(i+ j − 1) = g(i+ j − 1) = g(i+ j)− 1 < f(i+ j) ≤ g(i+ j) = g(i+ j − 1) + 1.

This then forces g(i+ j) = f(i+ j), contradicting the condition on j.

Thus, the loop must eventually terminate, with g = f .

We have not yet shown that these relations are all of the relations in the monoid; this

must wait until we have developed more of the combinatorics of ÑDPFN . In fact, ÑDPFN

is a quotient of the 0-Hecke monoid of S̃N by the relations πiπi+1πi = πiπi+1 for each i ∈ I,

where subscripts are understood to be taken mod N . To prove this (and simultaneously

prove that we have in fact written all the relations in ÑDPFN ), we will define three maps,

P,Q, and R (illustrated in Figure 4.8). The map P : H0(S̃N ) → ÑDPFN is the algebraic

quotient on generators sending πi → fi. The map Q : H0(S̃N )→ ÑDPFN is a combinatorial

algorithm that assigns an element of ÑDPFN to any affine permutation. In Lemma 4.5.12

we show that P = Q. Additionally, we have already shown that P is onto (since the fi

generate ÑDPFN ), so Q is onto as well.

The third map R : ÑDPFN → H0(S̃N ) assigns a [321]-avoiding affine permutation to an

f ∈ ÑDPFN . In fact, R ◦ P is the identity on the set of [321]-avoiding affine permutations,

and P ◦R is the identity on ÑDPFN . This then implies that there are no additional relations

in ÑDPFN . �
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Figure 4.8. Maps between H0(S̃N ) and ÑDPFN .

Corollary 4.5.5. The map P : H0(S̃N ) → ÑDPFN , defined by sending πi → fi and

extending multiplicatively, is a monoid morphism.

Proof. The generators fi satisfy all relations in the 0-Hecke algebra, so P is a quotient

of H0(S̃N ) by whatever additional relations exist in ÑDPFN . �

Lemma 4.5.6. Any function f ∈ ÑDPFN is entirely determined by its set of fibers, set of

images, and one valuation f(i) for some i ∈ Z.

Proof. This follows immediately from the fact that f is regressive and order preserving.

�

Lemma 4.5.7. Let f ∈ ÑDPFN , and Ff = {mj} be the set of maximal elements of

the fibers of f . Each pair of distinct elements mj ,mk of the set Ff ∩ {1, 2, . . . , N} has

f(mj) 6≡ f(mk)(mod N).

Proof. Suppose not. Then f(mj) − f(mi) = kN for some k ∈ Z, implying that

f(mj) = f(mi + kN). Since f(mj) − f(mi) ≤ N , we must have k = 0. But then mj and

mi are in the same fiber, providing a contradiction. �

Theorem 4.5.8. ÑDPFN is J -trivial.
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Figure 4.9. Example of the combinatorial quotient Qcl : H0(S5) →
NDPF5. The string diagram is read left-to-right, with the permutation
illustrated with black strings and the image function drawn in red. The
permutation in the left diagram, then, is x = [2, 4, 1, 5, 3] and Qcl(x) is
the function f = [1, 1, 1, 3, 3]. For the permutation on the right, we have
y = [4, 2, 1, 5, 3] and Qcl(y) = Qcl(x) = [1, 1, 1, 3, 3]. Notice that these two
permutations x and y are related by turning the [321]-pattern in y into a
[231]-pattern in x, preserving the fiber of Q.

Proof. Thi is a direct consequence of the regressiveness of functions in ÑDPFN . Let

M := ÑDPFN , and f ∈ M . Then each g ∈ MfM has g(i) ≤ f(i) for all i ∈ Z. Thus, if

MgM = MfM , we must have f = g. Then the J -equivalence classes of M are trivial, so

ÑDPFN is J -trivial. �

Note that ÑDPFN is not aperiodic in the sense of a finite monoid. (Aperiodicity was

defined in Section 3.1.) Take the function f where f(i) = 0 for all i ∈ {1, . . . , N}. Then

fk(1) = (1− k)N , so there is no k such that fk = fk+1.

4.5.1. Combinatorial Quotient. A direct combinatorial map from affine permuta-

tions to ÑDPFN is now discussed. This map directly constructs a function f from an arbi-

trary affine permutation x, with the same effect as applying the algebraic ÑDPF quotient

to the 0-Hecke monoid element indexed by x. We first define the combinatorial quotient in

the finite case and provide an example (Figure 4.9).

Definition 4.5.9. The combinatorial quotient Qcl : H0(SN ) → NDPFN is given by the

following algorithm, which assigns a function f to a permutation x.

(1) Set f(N) := x(N).

(2) Suppose i is maximal such that f(i) is not yet defined. If x(i) < x(i + 1), set

f(i) := f(i+ 1). Otherwise, set f(i) := x(i).

Note that the map Qcl is closely related to bijection of Simion and Schmidt between

[132]-avoiding permutations and [123]-avoiding permutations [SS85]. (The bijection is also
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covered very nicely in [Bo04]) This bijection operates by marking all left-to-right minima

(ie, elements smaller than all elements to their left) of a [132]-avoiding permutation, and

then reverse-sorting all elements which are not marked. The resulting permutation is [123]-

avoiding. For example, the permutation [5, 6,4, 7,1, 2, 3] avoids the pattern [132]; the bold

entries are the left-to-right minima. Sorting the non-bold entries, one obtains the permuta-

tion [5, 7,4, 6,1, 3, 2], which avoids the permutation [123]. Notice that the bold entries are

still left-to-right minima after anti-sorting the other entries.

The patterns [231] and [123] are the respective “reverses” of the patterns [132] and

[321], obtained by simply reversing the one-line notation. It is trivial to observe that x

avoids p if and only if the reverse of x avoids the reverse of p. Then the “reverse” of the

Simion-Schmidt algorithm (which marks right-to-left minima, and sorts the other entries)

gives a bijection between [231]- and [321]-avoiding permutations; in fact, this is the same

bijection given by the fibers of the NDPF quotient of the 0-Hecke monoid.

A similar combinatorial quotient may be defined from S̃N → ÑDPFN , generalizing the

map Qcl. This map will assign a function f to an affine permutation x.

Below, we will show that each fiber of the map Q contains a unique [321]-avoiding

affine permutation (Theorem 4.5.15). However, it is too much to expect a bijection between

affine [231]- and [321]-avoiding permutations. By a result of Crites, there are infinitely many

affine permutations that avoid a pattern σ if and only if σ contains the pattern [321] [Cri10].

Thus, there are infinitely many [321]-avoiding affine permutations, but only finitely many

[231]-avoiding affine permutations.

We first identify some k ∈ {1, 2, . . . , N} such that for every j > k, x(j) > x(k).

Lemma 4.5.10. Let k0 ∈ {1, 2, . . . , N} have x(k0) ≤ x(m) for every m ∈ {1, 2, . . . , N}.

Then for every j > k0, x(j) > x(k0).

Proof. Suppose j > k0 with x(j) < x(k0). Then there exists p ∈ N such that j−pN ∈

{1, 2, . . . , N}, so that x(j − pN) = x(j) − pN < x(k0), contradicting the minimality of

x(k0). �

Now the affine combinatorial quotient is defined by the following algorithm.

Definition 4.5.11. The combinatorial quotient Q : H0(S̃N ) → ÑDPFN is given by the

following algorithm, which assigns a function f to an affine permutation x.
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(1) Let k0 ∈ {1, 2, . . . , N} have x(k0) ≤ x(m) for every m ∈ {1, 2, . . . , N}. Set f(k0) =

x(k0).

(2) Choose i ∈ {1, 2, . . . , N − 1} minimal such that f(k0 − i) is not yet defined. If

x(k0− i+ 1) < x(k0− i), set f(k0− i) := f(k0− i+ 1). Otherwise, set f(k0− i) :=

x(k0 − i).

(3) Define f on all other i using skew periodicity.

Lemma 4.5.12. The affine combinatorial quotient Q agrees with the algebraic ÑDPF quo-

tient P .

Proof. We denote the combinatorial quotient by Q and the algebraic quotient by P .

One can easily check that Q(1) = P (1) = 1, and Q(πi) = P (πi) = fi. Since P is a

monoid morphism, we have that P (xπi) = P (x)P (πi) = ffi. We then assume that Q(x) =

P (x) = f , and consider Q(xπi). We will show that Q(xπi) = Q(x)fi = ffi = P (xπi).

If πi is a right descent of x then Q(xπi) = Q(x) = f = P (xπi), and we are done.

If πi is not a right descent of x, we have x(kN + i) < x(kN + i+ 1) for all k ∈ Z, and

xπi(j) =


x(j) for all j 6≡ i, i+ 1(mod N)

x(j + 1) for all j ≡ i(mod N)

x(j − 1) for all j ≡ i+ 1(mod N)

We examine the functions Q(xπi) and ffi on i and i + 1, since these functions are equal

on j 6≡ i, i+ 1(mod N), and the actions on i and i+ 1 then determine the functions on all

j ≡ i, i+ 1(mod N).

We consider two cases, depending on whether i and i+ 1 are in the same fiber of f .

• If i and i+ 1 are in the same fiber of f and i+ 1 is maximal in this fiber, we must

(by construction of Q) have x(i+ 1) < x(i), contradicting the assumption that πi

was not a right descent of x.

• If i and i + 1 are in the same fiber of f and i + 1 is not maximal in this fiber,

then there exists some (minimal) m > i + 1 > i with x(m) < x(i) and x(m) <

x(i + 1), maximal in the fiber of i and i + 1. Then x(m) < x(i + 1) = xπi(i) and

x(m) < x(i) = xπi(i+ 1). Since the maximal size of a fiber of f is N , we have that

m− i ≤ N . Then (since i+ 1 not maximal in the fiber of f) m 6≡ i+ 1(mod N).
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If m ≡ i(mod N), then i is maximal in its fiber, and we must have i and i+ 1

in different fibers, contrary to assumption.

If m 6≡ i(mod N), we have x(m) = xπi(m) < xπi(i), xπi(i + 1), and so by the

construction of Q, we have Q(xπi)(i) = Q(xπi)(i+ 1) = Q(xπi)(m) = Q(x)(m) =

x(m). Then in this case, Q(xπi) = f .

On the other hand, ffi(i) = f(i) = f(m) = ffi(m), and ffi(i + 1) = f(i) =

f(m) = ffi(m), so ffi = f .

• If i and i+ 1 are in different fibers of f , then we have i maximal in its fiber, and

take m (possibly equal to i + 1) to be the maximal element of the fiber in which

i + 1 sits. We note that if m ≡ i + 1(mod N), then we must have i and i + 1 in

the same fiber, reducing to the previous case.

Otherwise, applying the construction of Q, we find that Q(xπi)(i+ 1) = x(i),

and that Q(xπi)(i) = x(i); thus i+ 1 is removed from its fiber and merged into the

fiber with i. The resulting function is equal to ffi.

This exhausts all cases, completing the proof. �

Corollary 4.5.13. The finite type combinatorial quotient agrees with the NDPFN quotient

of H0(SN ) obtained by introducing the relations πiπi+1πi = πi+1πi for i ∈ {1, . . . , N − 2}.

Proof. This follows immediately from Lemma 4.5.12 by parabolic restriction to the

finite case. In the finite case, the index set is {1, 2, . . . , N − 1}, so we must have i ∈

{1, . . . , N − 2}. �

4.5.2. Affine [321]-Avoidance. An affine permutation x avoids a pattern σ ∈ Sk if

there is no subsequence of x in the same relative order as σ. This ostensibly means that an

infinite check is necessary, however one may show that only a finite number of comparisons

is necessary to determine if x contains a [321]-pattern. The following lemma is equivalent

to [Gre02, Lemma 2.6].

Lemma 4.5.14. Let x contain at least one [321]-pattern, with xi > xj > xk and i < j < k.

Then x contains a [321]-pattern xi′ > xj > xk′ such that i ≤ i′ < j < k′ ≤ k, j − i′ < N ,

and k′ − j < N .
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Figure 4.10. Diagram of a bountiful width system for the pattern [321] for
affine permutations. The pattern occurs at positions (xp, xq, xr), with width
system given by (r − p, q − p). In the case where r − p > N , there is an
‘overlap’ of j = r −N − p. Bountifulness of the width system ensures that
the elements in the overlap may be moved moved out of the interior of the
pattern instance by a sequence of simple transpositions, each decreasing the
length of the permutation by one, just as in the non-affine case.

Proof. We have xj > xk > xk−aN = xk − aN for a ∈ N, so if k − j > N , we can find

a [321] pattern replacing xk with xk−aN . A similar argument allows us to replace i with

i+ bN for the maximal b ∈ N such that j − (i+ bN) < N . �

As noted by Green, one can then check whether an affine permutation contains a [321]-

pattern using at most
(
N
3

)
comparisons. Green also showed that any affine permutation

containing a [321]-pattern contains a braid; we can actually replicate this result using a

width system on the affine permutation, as depicted in Figure 4.10. The Lemma ensures

that the width of a minimal [321]-pattern under this width system has a total width of at

most 2N − 2. One must consider the case when the total width of a minimal [321]-instance

is greater than N , but nothing untoward occurs in this case: the width system is bountiful

and allows a factorization of x over [321].

We now prove the main result of this section.

Theorem 4.5.15. Each fiber of the ÑDPFN quotient of S̃N contains a unique [321]-

avoiding affine permutation.

Proof. We first establish that each fiber contains a [321]-avoiding affine permutation,

and then show that this permutation is unique.

Recall the algebraic quotient map P : H0(S̃N )→ ÑDPFN , which introduces the relation

πiπi+1πi = πi+1πi.
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Choose an arbitrary affine permutation x; we show that the fiber Q−1 ◦Q(x) contains

a [321]-avoiding permutation. If x is itself [321]-avoiding, we are already done. So assume

x contains a [321]-pattern. As shown by Green [Gre02], an affine permutation x contains a

[321]-pattern if and only if x has a reduced word containing a braid; thus, x = yπiπi+1πiz

for some permutations y and z with `(x) = `(y) + 3 + `(z). Applying the ÑDPFN relations,

we may set x′ = yπi+1πiz, and have Q(x) = Q(x′), with `(x′) = `(x) − 1. If x′ contains a

[321], we apply this trick again, reducing the length by one. Since x is of finite length, this

process must eventually terminate; the permutation at which the process terminates must

then be [321]-avoiding. Then the fiber Q−1 ◦Q(x) contains a [321]-avoiding permutation.

We now show that each fiber contains a unique [321]-avoiding affine permutation, using

the combinatorial quotient map.

Let x be [321]-avoiding, and let Q(x) = f an affine non-decreasing parking function;

we use information from f to reconstruct x. Let {mi} be the set of elements of Z that are

maximal in their fibers under f . By the construction of the combinatorial quotient map, we

have x(mi) = f(mi) for every i. Since f is in ÑDPFN , we have x(mi) < x(mi′) whenever

i < i′; thus {x(mi)} is a strictly increasing sequence.

Let {mi,j} = f−1 ◦ f(mi) \ {mi}, with mi,j < mi,j+1 for every j. Notice that if i < i′

and j < j′ then mi,j < mi′,j′ .

We claim that if i < i′ and j < j′, then x(mi,j) < x(mi′,j′). If not, then we have

x(mi′) < x(mi′,j′) < x(mi,j), with mi,j < mi′,j′ < mi′ ,

in which case x contains a [321]-pattern, contrary to assumption. Thus, the sequence

{x(mi,j)} with i and j arbitrary is a strictly increasing sequence.

Now {f(mi) = x(mi)} and {x(mi,j)} are two increasing sequences. Since x is a bijection,

and every z ∈ Z is either an mi or an mi,j , x is determined by the choice of x(m1,1). A

valid choice for x(m1,1) exists, since every f arises as the image of some affine permutation

under Q, and every fiber contains some [321]-avoiding element.

One can show that the choice of x(m1,1) is uniquely determined by the following

argument. Suppose two valid possibilities exist for x(m1,1), giving rise to two differ-

ent [321]-avoiding affine permutations x and x′. Suppose without loss of generality that
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1 ≤ m1,1 ≤ N , and that x(m1,1) < x′(m1,1). Then:

(
N + 2

2

)
=

N∑
k=1

x(k)

=
∑

(x(mi) +
∑

x(mi,j)) where mi, mi,j ∈ {1, . . . , N}

<
∑

(x′(mi) +
∑

x′(mi,j)) where mi, mi,j ∈ {1, . . . , N}

=
N∑
k=1

x′(k)

=

(
N + 2

2

)
,

providing a contradiction. Hence x(m1,1) is uniquely determined, and thus each fiber of Q

contains a unique [321]-avoiding permutation. �
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CHAPTER 5

Some Results on Crystal Bases

We give a brief introduction to crystal bases, and discuss two results.

First, we give a complementary result to the work of Bandlow, Schilling, and Thiéry for

two-tensors of finite-dimensional affine crystals. Shimozono proved that in any crystal of

rectangular shape of Type An, there exists a unique promotion operator which implements

the Dynkin diagram automorphism in type A
(1)
n . The promotion operator allows one to

define an affine structure on the crystal; one may thus obtain the corresponding Kirillov-

Reshetikhin crystal [Shi02]. Bandlow, Schilling and Thiéry extended Shimozono’s result,

and showed that given a tensor product of two crystals of rectangular shape in type An, with

n ≥ 2, there exists a unique connected promotion operator, which in turn defines an affine

structure isomorphic to the structure of the tensor product of two Kirrilov-Reshetikhin

crystals [BST10]. When n = 1, there are, in general, many possible promotion operators

on a tensor product of crystals which define many affine structures on the tensor product.

This occurs because the promotion operator at n = 1 satisfies pr = pr−1, thus providing

less information than is available when n ≥ 2. However, we show (Theorem 5.2.8 that

of these many possible promotion operators, only two give affine structures arising from

representations of the quantum affine algebra of type A
(1)
1 .

In Section 5.3, we provide a computer implementation of Stembridge’s local axioms for

crystals arising from highest weight representations.

5.1. Background and Notation

We first fix a number of definitions that will be useful in the subsequent sections. Help-

ful books for this background are Hong and Kang’s Introduction to Quantum Groups and

Crystal Bases [HK02] and Klimyk and Schmüdgen’s Quantum Groups and Their Represen-

tations [KS97]. The notation in this chapter is chosen to agree with Hong and Kang.

Definition 5.1.1. A generalized Cartan matrix is a square matrix A = (aij) such that:
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• the diagonal entries aii = 2,

• the off diagonal entries aij ≤ 0,

• aij = 0 if and only if aji = 0,

• and there exist a diagonal matrix D and symmetric matrix S such that A = DS.

The generalized Cartan matrix encodes information which determines a number of im-

portant mathematical objects. In particular, there exists a classification of quantum groups

(defined below), which arise as deformations of the Universal enveloping algebra of a Kac-

Moody algebra, and their associated Weyl groups by their Cartan matrices. The matrices

in this classification are labeled by a capital letter between A and G, subscripted with the

rank of the matrix A, possibly with a superscript. This label is called the Cartan type.

(For example, B6, A
(1)
365, and D

(3)
4 all Cartan types.) When A is of full rank, then A is said

to be of finite type. When A contains only the entries 2, 0, and −1, then A is said to be

simply-laced. The index set is, for finite types, the set I := {1, 2, . . . , rank(A)}, and for

affine type, the set I := {0, 1, 2, . . . , rank(A)}.

The information in the Cartan matrix may also be encoded in the Dynkin diagram,

which is a graph with one node for each row of the Cartan matrix, with nodes labeled by

the index set I. Nodes i and j are connected by an edge whenever aij 6= 0; in simply laced

types, these entries aij are always −1, and the corresponding nodes in the Dynkin diagram

are connected by a single undirected edge.

Of particular interest in this chapter will be the cases of type AN and A
(1)
N . For type

AN , the Dynkin diagram is the chain with N vertices, and the Cartan matrix is:

A =



2 −1 0 0 · · · 0 0

−1 2 −1 0 · · · 0 0

0 −1 2 −1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 2 −1

0 0 0 0 · · · −1 2


.
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For the affine type A
(1)
N with N ≥ 2, the Dynkin diagram is a cycle with N + 1 vertices,

and Cartan matrix:

A′ =



2 −1 0 0 · · · 0 −1

−1 2 −1 0 · · · 0 0

0 −1 2 −1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 2 −1

−1 0 0 0 · · · −1 2


.

Given a Dynkin diagram, one may define the associated Weyl group W . This is a group

generated by reflections ri for i ∈ I. When i and j are not connected by an edge in the

Dynkin diagram, then W has the relation rirj = rjri. When i and j are connected by a

single edge (ie, aij = −1), then we have the relation rirjri = rjrirj . For affine types, the

restriction to the finite type yields the classical Weyl group Wcl. For type AN , the Weyl

group is isomorphic to the permutation group SN+1. For type A
(1)
N with N ≥ 2 the Weyl

group is the affine permutation group S̃N+1.

Type A
(1)
1 is often treated as a special case, as the behavior of the associated Weyl group

and quantum Kac-Moody algebra is quite distinct from that of A
(1)
N with N ≥ 2. In this

case N = 1, the Weyl group S̃2 is isomorphic to the infinite dihedral group. In the case

where N = 1, the Dynkin diagram for affine A
(1)
1 is given by two nodes connected by an

edge labeled ∞ (so this is not a simply laced type), and the Cartan matrix is:

A′ =

 2 −2

−2 2

 .

Given the Cartan matrix, we define the dual weight lattice P∨ to be a free Abelian

group of rank 2|I|−rankA, with basis {hi | i ∈ I}∪{ds | s = 1, . . . , |I|−rankA}. (The basis

elements ds are the grading element(s); for affine types, there is one grading element,

and for finite type there are none.) Since we are only concerned with finite and affine types,

we will henceforth assume that there is at most one grading element, labeled d. From P∨,

we construct the Cartan subalgebra h = C⊗ P∨. The weight lattice P for finite types

is defined as the Z-span of the set {Λi ∈ h∗ | i ∈ I,Λi(hj) = δij ,Λi(ds) = 0}; the Λi are the
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fundamental weights. For affine type, there is one additional fundamental weight, the

null root δ. In type A
(1)
N , the null root is given by δ = α0 + α1 + · · ·+ αN .

We then set the simple coroots Π∨ = {hi | i ∈ I}, and the simple roots

Π = {αi | i ∈ I, αi ∈ h∗, αi(hj) = aij , αi(d) = δi,0},

where aij is given by the Cartan matrix.

We may define the simple reflections si on h∗ by

ri(λ) = λ− λ(hi)αi.

The simple reflections generate a Coxeter group called the Weyl group. For type AN , the

Weyl group is that symmetric group SN+1, and for type A
(1)
N , the Weyl group is the affine

symmetric group S̃N+1.

Definition 5.1.2. Let A be a generalized Cartan Matrix such that there exists a diagonal

matrix Dii = si with DA symmetric. Let Π = {αi} be a collection of simple roots, Π∨ the

simple coroots, P be the weight lattice, and P∨ the dual weight lattice. Then the quantum

Kac-Moody algebra Uq associated with Cartan datum (A,P∨, P,Π∨,Π) is the associative

algebra over Q(q) with the unit 1 generated by the symbols ei, fi (i ∈ I) and qh (h ∈ P∨)

subject to the following defining relations :

q0 = 1, qhqh
′

= qh+h
′

(h, h′ ∈ P∨),

qheiq
−h = qαi(h)ei, qhfiq

−h = q−αi(h)fi,

eifj − fjei = δij
Ki −K−1i
qi − q−1i

, where Ki = qsihi ,

1−aij∑
r=0

(−1)r

1− aij

r


i

e
1−aij−r
i eje

r
i = 0 if aii = 2, i 6= j,

1−aij∑
r=0

(−1)r

1− aij

r


i

f
1−aij−r
i fjf

r
i = 0 if aii = 2, i 6= j,

eiej − ejei = 0, fifj − fjfi = 0 if aij = 0.

(5.1)

Here, Ki = qsihi, where si are the diagonal entries of the diagonal matrix D in the expression

A = DS. In particular, when A is simply-laced si = 1 for every i.
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At q = 1, this definition specializes to the enveloping algebra of a Lie algebra g; the

quantum Kac-Moody algebra which specializes to U(g) at q = 1 is denoted Uq(g). For type

AN , this specialization is the enveloping algebra U(slN+1). For affine types, we denote the

Lie algebra by ĝ, and the associated Lie algebra of finite type by g).

On the topic of q-deformations, we define the quantum integer for n ∈ N:

[n]q =
qn − q−n

q − q−1
,

and define the q-factorial and q-binomial coefficients as:

[n]q! =
n∏
i=1

[i]q,

(
n

k

)
q

=
[n]q!

[k]q![n− k]q!

for n, k ∈ N. At q = 1, these specialize to the usual integers, factorials, and binomial

coefficients. We note that the q-binomial coefficients satisfy the recurrence [HK02][Section

3.1]: (
n+m+ 1

n

)
q

= q−n
(
n+m+

n

)
q

+ qm
(
n+m

n− 1

)
q

.

The algebra Uq(g) carries a Hopf algebra structure, with comultiplication ∆, counit ε

and antipode S defined as follows:

∆Ki = Ki ⊗Ki, ∆K−1i = K−1i ⊗K
−1
i ,

∆fi = fi ⊗ 1 +Ki ⊗ fi, ∆ei = ei ⊗K−1i + 1⊗ ei,

εKi = 1, εei = εfi = 0,

S(Ki) = K−1i ,

S(ei) = −eiK−1i , S(fi) = Kifi.

We may define a slightly different beast by tweaking the weight and coweight lattices.

Set P̄∨ and P̄ to be the Z-spans of {hi | i ∈ I} and {Λi | i ∈ I} respectively, obtained by

throwing out the grading element and the null root. The Cartan datum (A, P̄∨, P̄ ,Π∨,Π)

is called the classical Cartan datum, and the quantum Kac-Moody algebra generated by

this set is the quantum affine algebra U ′q(ĝ). This may be regarded as the subalgebra of

Uq(ĝ) generated by ei, fi and K±1i for i ∈ I.
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Now we describe an important class of modules for Uq(ĝ). In what follows, we use the

terms “modules” and “representation” interchangeably.

Definition 5.1.3 (Weight Module). A Uq(ĝ) module V is a weight module if it admits a

weight space decomposition: V =
⊕

µ∈P Vµ, where

Vµ := {v ∈ V | qhv = qµ(h)v ∀h ∈ P∨}.

A vector v ∈ Vµ for some µ is called a weight vector, in which case µ is the weight of

v,denoted wt(v) = µ.

A weight module V is a highest weight module if there exists a vector vλ ∈ V of

weight λ such that vλ generates M as a Uq(ĝ) module, and eivλ = 0 for all i ∈ I.

We define a partial order on the weight lattice P by λ ≥ µ if and only if λ − µ ∈⊕
i∈I Z≥0αi. For a weight λ ∈ P , set D(λ) to be the set of µ ≤ λ.

Definition 5.1.4. A Uq(ĝ)-module V is in category Oqint if:

• V is a weight module, with V =
⊕

µ∈P Vµ and dimVµ <∞ for every µ,

• There exist a finite number of weights λ1, . . . , λk such that for every weight vector

v ∈ V , wt(v) ∈ D(λ1) ∪ · · · ∪D(λk),

• All ei and fi are locally nilpotent on V .

Modules in Oqint are also called integrable modules.

We now construct the Kashiwara operators, ẽi and f̃i, following the presentation of [HK02].

The divided operators f (n) = fn

[n]q !
are important for the crystal basis theory and the defi-

nition of the Kashiwara operators.

Lemma 5.1.5. Let V =
⊕

µ∈P Vµ be a weight module for Uq(ĝ). Then, for each i ∈ I,

every weight vector u ∈ Vµ may be uniquely expressed as

u = u0 + fiu1 + f
(2)
i u2 + · · ·+ f

(k)
i uk,

where k ∈ Z≥0 and uk ∈ Vµ+kαi
∪ ker ei.

The proof of this lemma may be found in [HK02, Chapter 4].
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Definition 5.1.6. The Kashiwara operators ẽi and f̃i on V are defined on a weight

vector u by:

ẽiu =
N∑
k=1

f
(k−1)
i uk, f̃iu =

N∑
k=0

f
(k+1)
i uk.

In particular, wt(ẽiu) = wt(u) + αi, and wt(f̃iu) = wt(u)− αi.

In the construction of the crystal basis, we first construct the crystal lattice. Set A0 to

be the ring of rational functions in q that evaluate at q = 0 :

A0 = {f
g
| f, g ∈ C[q], g(0) 6= 0}.

Definition 5.1.7. Let M an integrable U ′q(ĝ) module. A free A0-submodule L of M is a

crystal lattice if:

• L generates M as a vector space over F (q)

• L decomposes as a direct sum of weight spaces, compatible with those of M .

• ẽiL ⊂ L, f̃iL ⊂ L for all i ∈ I.

We can realize the crystal basis as a Q-basis of L\ qL, which is often thought of crudely

as a limit as q goes to 0.

Definition 5.1.8. A crystal basis for M is a pair (L,B) such that:

(1) L is a crystal lattice for M.

(2) B is a Q-basis of L \ qL ∼= Q⊗A0 L

(3) The elements of B are weight vectors.

(4) ẽiB ⊂ B
⋃

0, f̃iB ⊂ B
⋃

0 for all i ∈ I.

(5) For all i ∈ I, b, b′ ∈ B, we have f̃ib = b′ iff b = ẽib
′

In particular, we see that the Kashiwara operators must preserve the crystal basis as a

set; this will have consequences below.

As an abstraction of crystal bases, we have crystal graphs, which we define as follows.

Definition 5.1.9. A crystal graph associated to the Cartan datum (A,P∨, P,Π∨,Π) is

a set B and maps wt : B → P , ẽi, f̃i : B → B ∪ {∅}, and εi, φi : B → Z≥0 (with i ∈ I),

satisfying the following properties for all i ∈ I, b, b′ ∈ B:

(1) φi(b) = εi(b) + 〈hi,wt(b)〉,
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(2) wt(ẽib) = wt(b) + αi, wt(f̃ib) = wt(b)− αi when ẽib, f̃ib 6= ∅,

(3) εi(ẽib) = εi(b)− 1, φi(ẽib) = φi(b) + 1 when ẽib 6= ∅,

(4) εi(f̃ib) = εi(b) + 1, φi(f̃ib) = φi(b)− 1 when f̃ib 6= ∅,

(5) (Semiregular) εi(b) = max{k ≥ 0 | ẽikb ∈ B}, φi(b) = max{k ≥ 0 | f̃i
k
b ∈ B},

(6) f̃ib
′ = b if and only if b′ = ẽib.

We say that B is a Uq(g)-crystal, where Uq(g) is the quantum Kac-Moody algebra associated

to the Cartan datum (A,Π,Π∨, P, P∨). We set Bλ = {b ∈ B | wt(b) = λ}.

In effect, a crystal graph is an edge-colored directed graph with the map wt to the weight

lattice. By the last property, each vertex in the crystal graph has at most in-degree and

out-degree 1 in any particular color. Consider the sub-graph with the same vertex set but

with only the i-colored edges. This graph is a collection of directed chains, called i-strings.

The crystal graph admits a Weyl group action by W , the Weyl group associated to

the Cartan matrix A. The Weyl group is generated by reflections ri for i ∈ I; the action

of ri on an element b is to “flip” b in its i-string. More precisely, if the i-string of b has n

vertices, and ẽi
kb = ∅, then ri(b) is the vertex b′ in the same i-string satisfying f̃i

k
b′ = ∅.

Many different constructions of crystal graphs exist, explicitly designed to give graphs

which arise from crystal bases for actual Uq(g) representations. One such construction is

given by crystals of tableaux, which we will now partially describe.

A Ferrer’s Diagram of a partition λ = (λ1, λ2, . . . , λk) is a collection of “boxes shoved

in a corner,” with k rows and λi boxes in row i, and all rows “left-justified.” Thus, the total

number of boxes is n if λ is a partition of n. Also, since λ is a decreasing sequence, the

boxes appear to be “bottom-justified.” (Up to one’s choice of bottom, anyway. The French,

in a rare display of practicality, place the bottom at the bottom of the page. The English,

known for being wily and inscrutable, place the bottom at the top. The Russians, being

clever, rotate the French convention counter-clockwise by 45 degrees, so that the “corner”

is at the bottom of the page and all of the justification happens by gravity. Being neither

wily nor clever, the author will stick with the French convention.)

A Young tableaux T is an assignment of a positive integer to each box in a Ferrer’s

diagram λ, which is called the shape of the tableaux. T is semi-standard if:

• T has strictly increasing columns, read bottom-to-top, and
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Figure 5.1. Example of a crystal graph of type A2. The vertices are given
by semi-standard Young tableaux, and the edges are determined by a com-
binatorial algorithm. The weight of a tableaux T is the vector whose ith
entry is the number of i’s appearing in T .

• T has weakly-increasing rows, read left-to-right.

The crystal graph of type AN of shape λ, where λ is a partition, is an edge-

colored digraph whose vertex set is the set of all semi-standard Young tableaux of shape λ

whose entries are in the set {1, 2, . . . , N + 1}. The edges are determined by a combinatorial

algorithm, described in [HK02]. The weight of a tableaux T is simply the vector whose ith

coordinate is the number of i’s appearing in T . An example is shown in Figure 5.1, which

depicts the crystal of tableaux of highest weight λ = (2, 2) in type A2.

We say that a crystal is rectangular if it is a highest-weight crystal with highest weight

rΛs for r ∈ N and s ∈ I. This corresponds to a crystal of tableaux of shape λ where λ is a

rectangle of height s and width r.

5.1.1. Tensor Products. Modules for the quantum group Uq(ĝ) admit natural tensor

products, thanks to the Hopf algebra structure on Uq(ĝ). Tensor products of modules with

crystal bases also admit crystal bases, structured according to the Tensor Product Rule,

described in [HK02][Theorem 4.4.1].

Theorem 5.1.10 (Tensor Product Rule.). Let U1 and U2 be Uq(ĝ) modules, with crystal

lattices L1 and L2 and crystal bases B1 and B2. Set L = L1 ⊗A0 L2 and B = B1 × B2.

Then L and B are a crystal lattice and crystal basis for U1 ⊗ U2, where the action of the
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Kashiwara operators is given by:

ẽi(b1 ⊗ b2) =

 (ẽib1)⊗ b2 : if φi(b1) ≥ εi(b2),

b1 ⊗ (ẽib2) : if φi(b1) < εi(b2),

 ,

f̃i(b1 ⊗ b2) =

 (f̃ib1)⊗ b2 : if φi(b1) > εi(b2)

b1 ⊗ (f̃ib2) : if φi(b1) ≤ εi(b2).


Therefore we have:

wt(b1 ⊗ b2) = wt(b1) + wt(b2),

εi(b1 ⊗ b2) = max(εi(b1), εi(b2)− 〈hi,wt(b1)〉),

φi(b1 ⊗ b2) = max(φi(b2), εi(b1)− 〈hi,wt(b2)〉).

We write b1 ⊗ b2 for the element b1 × b2 and understand that b1 ⊗ ∅ = ∅ ⊗ b2 = ∅.

The tensor product rule descends naturally to crystal graphs.

Theorem 5.1.11 (Tensor Product Rule.). Let B1 and B2 be crystal graphs. Then B =

B1 ⊗B2 is a crystal graph with vertex set B1 ×B2 whose crystal structure is defined by:

wt(b1 ⊗ b2) = wt(b1) + wt(b2),

εi(b1 ⊗ b2) = max(εi(b1), εi(b2)− 〈hi,wt(b1)〉),

φi(b1 ⊗ b2) = max(φi(b2), εi(b1)− 〈hi,wt(b2)〉),

ẽi(b1 ⊗ b2) =

 (ẽib1)⊗ b2 : if φi(b1) ≥ εi(b2),

b1 ⊗ (ẽib2) : if φi(b1) < εi(b2),

 ,

f̃i(b1 ⊗ b2) =

 (f̃ib1)⊗ b2 : if φi(b1) > εi(b2)

b1 ⊗ (f̃ib2) : if φi(b1) ≤ εi(b2).


We write b1 ⊗ b2 for the element b1 × b2 and understand that b1 ⊗ ∅ = ∅ ⊗ b2 = ∅.

Using the tensor product rule, one may show that the tensor product of two crystals

B(k) and B(j) of type A2 is

B(k)⊗B(j) ∼=
b k+j

2
c⊕

t=0

B(t).
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5.1.2. Promotion Operators. Let B be a classical crystal of type AN . The Dynkin

diagram of type AN is a chain, but by adjoining a new node and attaching edges to make

a cycle, we may obtain the Dynkin diagram of type A
(1)
N . A promotion operator is a map

B → B which implements the affine Dynkin diagram automorphism on B, allowing one to

place 0 arrows in B and obtain a crystal of type A
(1)
N .

Definition 5.1.12. We define a promotion operator to be a map pr : B → B satisfying

the properties:

• If wt(b) = (w1, . . . , wN+1), then wt(pr(b)) = (wN+1, w1, . . . , wN ),

• prN+1 = id, and

• For all i ∈ {1, . . . , N}, we have:

pr ◦fi = fi+1 ◦ pr, and pr ◦ei = ei+1 ◦ pr .

Given a promotion operator on a classical crystal B, one may define an affine structure on

B by placing the 0-arrows according to:

pr ◦fn = f0 ◦ pr, and pr ◦en = e0 ◦ pr .

A promotion operator is connected if the resulting affine crystal is connected.

Recall that Bandlow, Schilling, and Thiéry studied two-tensors of crystals of rectangular

shape in type AN with N ≥ 2. Their result showed that in such a crystal admits a unique

connected promotion operator [BST10].

In the case where N = 1, a promotion operator satisfies pr2 = id, so that pr = pr−1.

In practice, this degeneracy means that the promotion operator at N = 1 provides less

information than the case where N ≥ 2. In fact, more than one connected promotion

operators may be found in a two tensor of rectangular A1 crystals. Below, we show that

there is a unique connected promotion operator on such a two-tensor which gives an affine

structure actually coming from a representation of U ′q(ŝl2).

5.1.3. Evaluation Modules. From a result of Chari and Pressley [CP95][Theorem

4.3], it is known that every finite dimensional irreducible weight module of Uq(ŝl2) is iso-

morphic to a tensor product of evaluation representations of U ′q(ŝl2).
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The irreducible representation V (j) is the irreducible j+1-dimensional representation of

Uq(sl2) generated by u, with basis {u, f1u, . . . , f j1u}. Then V (j) carries a U ′q(ŝl2) structure

defined by the relations:

K0f
x
1 u = q−j+2xfx1 u,

e0f
x
1 u = fx+1

1 u,

f0f
x
1 u = [x]q[j − x+ 1]qf

x−1
1 u.

The evaluation module V (j)a modifies this structure by the introduction of a deforma-

tion by a constant a as follows:

K0f
x
1 u = q−j+2xfx1 u

e0f
x
1 u = afx+1

1 u

f0f
x
1 u = a−1[x]q[j − x+ 1]qf

x−1
1 u

The classical structure remains the same as in V (j).

5.1.4. Simple Crystals and Extremal Vectors.

Definition 5.1.13. Call an element b of a crystal B for Uq(g) with associated Weyl group

W extremal if:

(1) Either ei(b) = ∅ or fi(b) = ∅ for every i, and

(2) For every w ∈W , wX satisfies condition (1).

A crystal is simple if there exists some b in B such that any extremal vector of B is

contained in Wclb.

In particular, simplicity implies that for any finite-dimensional irreducible representation

M of U ′q(ŝl2), the crystal for M can have at most two extremal vectors. In V (j)a ⊗ V (k)b

these vectors are already spoken for: since f0 and e1 increase weights and e0 and f1 decrease

weights, the vectors u⊗ v and f
(j)
1 u⊗ f (k)1 v must be the only extremal vectors.

5.2. Classifying Finite Dimensional Crystals for U ′q(ŝl2)

Let V (j), V (k) be two irreducible representations of Uq(sl2), generated by highest weight

vectors u and v with highest weights j and k, respectively. Then the the coproduct on Uq(sl2)
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determines the structure of the tensor product U ⊗ V . Recall that the coproduct of f1 is

∆(f1) = f1⊗1+K1⊗f1. Define px,y(q) such that fn1 (u⊗v) =
∑

x+y=n px,y(q)f
x
1 (u)⊗fy1 (v).

So px,y(q) are the structure constants for the action of Uq(sl2) on U ⊗ V .

To get some sense of px,y(q), consider the integer point (x, y) in the plane, and notice

that px,y is a q-counting of all possible ways to get from (0, 0) to (x, y) incrementing by

either (1, 0) or (0, 1). There are
(
x+y
x

)
such paths, weighted by qn, where n is determined

by the particular path taken. For example, one can get from u ⊗ v to to f11 (u) ⊗ f11 (v) in

two ways: by going left then up or by going up then left.

We now consider the weight of a path heuristically. (Below, in Lemma 5.2.1 an explicit

recurrence will be detailed.) Each increase in y applies K1 to f ·1(u), thus changing the power

of q associated to the path, while increasing x does not change the exponent. Keeping track

solely of the action of f1’s and K1’s on u, to each path we associate a word in the letters

f and K. Any path to fx1 (u) ⊗ fy1 (v) will have a word with x f1’s and y K1’s. There are(
x+y
x

)
such paths, each contributing some power of q. So we can tell at the outset that the

evaluation of p at q = 1 will be
(
x+y
x

)
. Also notice that px,0 = 1 for all x, and p0,y = qjy for

all y, since the weight of the words fx and Ky
1 are those values, respectively. In light of all

this, the following lemma should not be too surprising.

Lemma 5.2.1. px,y(q) = qjy−xy
(
x+y
x

)
q
, where the symbol on the right is the quantum bino-

mial coefficient given by [x+ y]q!/([x]q![y]q!).

Proof. There is a simple recurrence on px,y(q), analogous to the recurrence on the

binomial coefficients. Any word in x f1’s and y K1’s begins with either an f1 or a K1. Strip

away the first letter to get a path contributing to either px−1,y(q) or px,y−1(q). Adding an

f to a path to px−1,y(q) does not change the weight of the path. Recalling that K1f1 =

q−2f1K1, we can see that adding a K1 to a path to px,y−1(q) will change the weight by

q−2x, since the relation must be applied x times. Thus, px,y(q) = px−1,y(q) + q−2xpx,y−1(q).

There is a similar recurrence on the quantum binomial coefficients. In particular,(
x+y+1
x

)
q

= q−x
(
x+y
x

)
q

+ qy
(
x+y
x−1
)
q
.

Notice that the Lemma holds in the boundary cases x = 0 or y = 0. For the induction,

set px−1,y(q) = qjy−(x−1)y
(
x+y−1
x−1

)
q

and px,y−1(q) = qj(y−1)−x(y−1)
(
x+y−1
x−1

)
q
. Plug these

values into the recurrence on px,y to complete the proof. �



5.2. CLASSIFYING FINITE DIMENSIONAL CRYSTALS FOR U ′Q( ˆSL2) 109

We have the following corollary.

Corollary 5.2.2. f
(n)
1 (u⊗v) =

∑
x+y=n q

jy−xyf
(x)
1 (u)⊗f (y)1 (v). Furthermore, at n = j+k,

this reduces to

f
(j+k)
1 (u⊗ v) = f

(j)
1 u⊗ f (k)1 v.

Proof. The first computation is immediate from the lemma and the definition of the

divided difference operators.

At n = j + k, there is only one additive term, since f j+1
1 u = fk+1v = 0. The second

identity then follows from evaluation of the first identity at x = j, y = k. �

Now we wish to show that the combinatorial promotion operator (described in [Shi02,

BST10]) yields the only possible connected affine structure on V (j) ⊗ V (k) arising from a

weight representation of U ′q(ŝl2). From the Chari and Pressley’s theorem [CP95][Theorem

4.3], we can identify any such affine structure as a tensor of evaluation modules, so we

examine V (j)a ⊗ V (k)b. Chari and Pressley further showed that these evaluation modules

are almost always finite-dimensional; we consider the question of when these modules have

a crystal basis.

The crystal for the evaluation module V (j)a⊗ V (k)b at a = b = 1 is the tensor product

of the Kirillov-Reshetikhin crystals B(j) and B(k), as explained in [HK02, Chapter 10].

B(j)⊗B(k) carries an affine structure corresponding to the canonical promotion operator.

We also know from the Littlewood-Richardson rule that the underlying Uq(sl2) structure is

a direct sum of V (j+ k− 2i) for i in 0 to b j+k2 c. In particular, there is one vector of weight

±(j + k), two of weight ±(j + k − 2), and so on.

Example 5.2.3. Consider for a moment the case of only one tensor factor, the evaluation

module V (j)a with highest weight vector u. The underlying classical module V (j) has a

crystal lattice L and a crystal basis B which are unique up to scalar multiplication; thus,

this basis must be equal (as a set) to the crystal basis for V (j)a. For the classical crystal

basis we take:

B = {f (x)1 u | x ∈ {0, 1, . . . , j}}.
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Other bases my be obtained by multiplying every element of B by the same constant

multiple; multiplying by such a scalar will not change the crystal structure, and does not

affect our further arguments.

Then, using the definition of the evaluation module, we have:

e
(y)
0 u = ayf

(y)
1 u.

We note that a must be in A0 in order to preserve the lattice; otherwise, e0(u) would lie

outside the crystal lattice violating the definition of the crystal lattice.

Consider the choice a = 1 + q. Then e0(u) = af1(u) = f1(u) + qf1(u) = f1(u), where

the last equality is as elements of L\ qL. Then this choice of a yields is consistent with the

classical crystal basis. However, the choice a = 2 would give e0(u) = 2f1(u), which is not

in the classical crystal basis.

Then one can see that any choice of a such that V (j)a has a crystal basis must have

a(0) = 1.

Lemma 5.2.4. Let B be an affine crystal structure on V (j)⊗V (k) arising from a promotion

operator pr. Then ẽ0(u⊗ v) and f̃0f̃1
(j+k)

(u⊗ v) are non-empty in B.

Proof. Consider that f̃0
p

pr(u ⊗ v) = pr f̃1
p
(u ⊗ v) 6= ∅ for 0 ≤ p ≤ j + k, and

ẽ0 pr(u ⊗ v) = pr ẽ1(u ⊗ v) = ∅, so that pr(u ⊗ v) is a 0-highest weight vector, sitting in a

0-string of length j + k. By weight considerations, we can then conclude that pr(u⊗ v) =

f̃1
(j+k)

(u⊗ v). Since pr2 = id, we also have u⊗ v = pr f̃1
(j+k)

(u⊗ v).

As a result, we have:

ẽ0(u⊗ v) = ẽ0 pr2((u⊗ v))

= pr ẽ1 pr(u⊗ v))

= pr ẽ1f̃1
(j+k)

(u⊗ v)

= pr f̃1
(j+k−1)

(u⊗ v) 6= ∅.

A similar calculation shows that f̃0f̃1
(j+k)

(u⊗ v) 6= ∅. �
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Corollary 5.2.5. We have:

ẽ0(u⊗ v) = f̃1u⊗ v or u⊗ f̃1v,

f̃0(f̃1
(j+k)

(u⊗ v)) = f̃1
j−1

u⊗ f̃1
k
v or

f̃1
j
u⊗ f̃1

k−1
v.

Proof. This follows directly from the existence of these elements and weight consider-

ations in the classical crystal V (j)⊗ V (k). �

We now obtain restrictions on what choices of a and b may give rise to a crystal structure

with promotion operator.

Proposition 5.2.6. Let B be an affine crystal structure on V (j)a ⊗ V (k)b arising from a

promotion operator pr. Then one of two cases hold:

• Either a(0) = b(0) = 1, which recovers the tensor product V (j)⊗ V (k) which gives

rise to the usual tensor of finite affine crystals,

• Or we have b = qjb′ and a = q−ka′, with a′, b′ ∈ A0 and a′(0) = b′(0) = 1.

Proof. We now consider the “top” and “bottom” of the crystal individually, and obtain

restrictions on a and b.

First, we consider the action of e0 at the top of the crystal, applying it to the classical

highest weight element of extremal weight. Since the crystal basis B ∪ {∅} is preserved as

a set by the actions of ẽ0 and f̃0, we have:

ẽ0(u⊗ v) = (e0u)⊗K−10 v + u⊗ (e0v)

= aqkf1(u)⊗ v + bu⊗ f1(v)

= f1(u)⊗ v + qL

or u⊗ f1(v) + qL

Then there are two possibilities for the evaluation of a and b at q = 0. The first possibility is

that b(0) = 1 and a(0) is chosen in such a way that aqkf1(u)⊗ v ∈ qL. (Note that a(0) = 1

satisfies this possibility.) The second possibility is that or a = q−ka′, with a′(0) = 1, and b

is chosen such that bu⊗ f1(v) ∈ qL.
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Next, consider the action of f0 at the bottom of the crystal:

f
(1)
0 (f

(j)
1 u⊗ f (k)1 v) = f0f

(j)
1 u⊗ f (k)1 v +K0f

(j)
1 u⊗ f0f (k)1 v

= a−1f
(j−1)
1 u⊗ f (k)1 v + b−1qjf

(j)
1 u⊗ f (k−1)1 v

= f
(j−1)
1 u⊗ f (k)1 v + qL

or f
(j)
1 u⊗ f (k−1)1 v + qL.

Again, there are two possibilities. In the first possibility, we have a(0) = 1 and b(0) chosen

such that b−1qjf
(j)
1 u⊗ f (k−1)1 v ∈ qL. (For this, the choice b(0) = 1 suffices.) In the second

possibility, we take b = qjb′ where b′(0) = 1, and a chosen such that a−1f
(j−1)
1 u⊗f (k)1 v ∈ qL.

One can see that there are only two consistent choices of possibilities at the top and

bottom of the crystal yield the cases outlined in the statement of the proposition.

�

These choices of a and b completely determine the crystal structure; thus, there are at

most two possible affine crystal structures on V (j)a × V (k)b. Re-applying the arguments

in 5.2.1, we may obtain the following result, helpful in describing the 0-string through the

extremal weight vector u⊗ v.

Lemma 5.2.7. The structure constants of e
(n)
0 on the vector u⊗ v are given by:

e
(n)
0 (u⊗ v) =

∑
x+y=n

qkx−xyaxbyf
(x)
1 (u)⊗ f (y)1 (v).

Furthermore, at n = j + k, this reduces to:

e
(j+k)
0 (u⊗ v) = ajbkf

(j)
1 u⊗ f (k)1 v.

Proof. Notice that each application of e0 to the left side of the tensor contributes an

a and each application on the right contributes a b, explaining the axby in the formula.

Otherwise, the result follows from an inductive argument on quantum binomial coefficients

exactly analogous to that in Lemma 5.2.1. �

In the case where a(0) = b(0) = 1, the leading term of e
(n)
0 (u ⊗ v) is that with x = 0

(if n < k) or y = k (if n ≥ k). These correspond in the crystal limit exactly to the
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highest/lowest weight vectors in each 1-string in the tensor product, showing that the

resulting crystal is connected.

In the case where a = q−k and b = qj , we obtain:

e
(n)
0 (u⊗ v) =

∑
x+y=n

qjy−xyf
(x)
1 (u)⊗ f (y)1 (v) = f

(n)
1 (u⊗ v).

This means that the 0-string and 1-string in the crystal limit coincide, and the crystal is

disconnected. (We may also use a = q−ka′ and b = q−kb′ with a′(0) = b′(0) = 1 to obtain

the same result.)

Theorem 5.2.8. Let B be a finite-dimensional affine crystal arising from the evaluation

representation V (j)a ⊗ V (k)b, with promotion operator pr. Then B is one of exactly two

crystals, one of which is the tensor of the Kirillov-Reshetikhin crystals B1,j ⊗B1,k, and the

other of which is disconnected. The first case may be obtained from the evaluation module

at a = b = 1, and the disconnected case may be obtained from a = q−k and b = qj.

Proof. Since B admits a promotion operator, it satisfies the conditions of Proposi-

tion 5.2.6. The constants a and b must fulfill one of the two possibilities of that Proposition.

In the first case (where a(0) = b(0) = 1), the resulting crystal must be that of the tensor

of the Kirillov-Reshetikhin crystals B1,j ⊗B1,k.

In the second case (where a = q−ka′ and b = q−kb′ with a′(0) = b′(0) = 1), Lemma 5.2.7

may be used to describe the 0-string of u ⊗ v, and thus show that the resulting crystal is

disconnected, as discussed above. �

5.3. Implementation of Stembridge Local Axioms

Computers are playing an increasingly important role in the study of algebraic combi-

natorics, allowing researchers to grapple with concrete examples that are far outside the

realm of what may be computed by hand. The Sage computer algebra system is a free,

open-source mathematics system developed in recent years by a network of volunteers span-

ning the globe. Sage ties together numerous pre-existing pieces of open-source mathematics

software, using the Python programming language as a kind of glue between them. Sage is

more than the sum of these pieces, though, with numerous areas of mathematics that have

been coded specifically for Sage.
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In this section, we will discuss an implementation of Stembridge’s local characterization

of simply-laced crystals [Ste03] in the Sage system. These local axioms give a finite check

at each elements of a crystal basis which are sufficient to determine whether the crystal

arises from a representation. It provides functions for computations required to check the

Stembridge characterization, as well as a function that carries out the full check at the level

of a crystal element and for the entire crystal.

This implementation extends an existing implementation of general crystal bases in

Sage, coded mostly by Prof. Anne Schilling.

5.3.1. Organization of the Crystal Code. Sage is structured by an enhanced

object-oriented framework, mimicking mathematical categories. Object orientation is very

useful for managing large projects like Sage, allowing one to replicate code across many

varieties of objects and provide an organizing scheme for the project.

In a traditional object-oriented programming language, one has classes which describe

classes of objects with common characteristics. Classes act as a specification for the objects

which inhabit the class, providing a number of properties which every object in the class

must have. The definition of a class also often gives default values for these properties,

which may be over-ridden by particular objects in the class. Properties may be of many

types, such as numbers, strings, or even functions. Every class should also have a function

for generating objects in the class, unless the class describes purely fictional objects!

As an example, we can imagine a class called BICYCLES, which describes my favourite

mode of transportation. The class specification for BICYCLES might include constants

such as wheel size and crank length, arrays such as chain-ring sizes and cog sizes, two

more constants specifying the current chain ring size and current cog size, and a function

determining the gear-inches determined by the wheel size, crank length, and current chain

ring and cog sizes. (Gear inches determines how far the bike moves given one revolution of

the pedals.) The class specification may give default values for any or all of these values

(e.g. wheel size of 700c, for a fast road bike), which may be over-ridden by a particular

instance of a bicycle (e.g. if a particular bicycle has 26′′ wheels, as most mountain bikes

do).
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The function for determining gear inches might also be over-ridden, which could be

convenient if one has elliptical chain rings.

One may nest classes, allowing specification of objects in varying degrees of generality

and also allowing inheritance of properties from the containing class to the contained class.

For example, one can imagine a class called VEHICLES which contains the classes CARS

(describing the Hīnayāna) and BICYCLES (describing the Mahāyāna). Code written for

VEHICLES is inherited by BICYCLES, but may also be over-ridden. For example, this

could happen if the code written for VEHICLES works in full generality but is very slow

to evaluate, while things may be very fast to calculate in the special case of BICYCLES.

Modern mathematics carries some inherent object orientation in the form of Category

Theory. A mathematical category consists of objects and morphisms (or ‘arrows’) between

objects, satisfying certain conditions; for example, in the category Groups, the objects are

groups and the morphisms are group homomorphisms. In the category Sets, the objects are

sets and the morphisms from a set S to a set T are functions f : S → T . Categories may be

included one into another; the category Groups includes into the category Sets, since every

group may be regarded as a set, and every group homomorphism is also a set function. One

furthermore has maps between categories, called functors, which map objects to objects

and arrows to arrows. The inclusion of Groups into Sets is an example of a functor. (This

is known as a “forgetful functor,” which simply forgets the extra structure of groups and

group homomorphisms.)

Thus, a category is much like a class, but with additional information specifying ways of

getting from one object to another, and also ways for getting from one category to another.

Crystals in Sage are defined as a category. Objects in this category are crystals, which

themselves contain crystal elements, the vertices of the crystal. The crystal itself is called

the Parent, and is endowed with various Parent methods. These methods include a method

which returns the Cartan type of the crystal, for example. Elements of the crystal (called

“Elements”) have a number of Element methods specified, which include the crystal opera-

tors ẽi and f̃i, the map to the weight lattice, and the maps φi and εi describing the position

of the element in its i-string.
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Since an abstract crystal graph is defined by axioms, many important functions are

defined as “abstract methods” and left to a particular realization of a crystal basis to

define. For example, here is the code for the ei element method in the crystal code:

@abstract_method

def e(self, i):

r"""

Returns ‘e_i(x)‘ if it exists or ‘‘None‘‘ otherwise.

This method should be implemented by the element class of

the crystal.

EXAMPLES::

sage: C = Crystals().example(5)

sage: x = C[2]; x

3

sage: x.e(1), x.e(2), x.e(3)

(None, 2, None)

"""

This does not actually do anything; the portion enclosed by the triple quotations are a

documentation string describing the expected input and output of the function, and also

some examples of the function in action.

This, on the other hand, is the code for the ε function:

def epsilon(self, i):

r"""

EXAMPLES::

sage: C = CrystalOfLetters([’A’,5])

sage: C(1).epsilon(1)

0
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sage: C(2).epsilon(1)

1

"""

assert i in self.index_set()

x = self

eps = 0

while True:

x = x.e(i)

if x is None:

break

eps = eps+1

return eps

Again, we have a documentation string which provides examples of the function in action.

This time we also have some actual code (which may be over-ridden by a particular real-

ization of the crystal graph), which finds the maximum number of times on may apply ei

to the given crystal element before killing it, which is the definition of the εi function for a

semiregular crystal.

5.3.2. Stembridge Local Axioms. Suppose a weight representation V of a quantum

Kac-Moody algebra Uq(g) has a crystal basis. Then the crystal basis will satisfy the axioms

of a crystal graph, and may be regarded as such. There is still a question, though, as to when

a crystal graph B actually arises from a weight representation of Uq(g). Stembridge gave an

answer to this question in the case where B is simply laced via a local characterization of

the crystal B [Ste03]. In particular, Stembridge provided a list of axioms which, if fulfilled

by a highest-weight crystal graph B, imply that B may be obtained from a highest-weight

representation of Uq(g).

The first two axioms are as follows:

• (P1) The i-strings in the crystal are of finite length, and cycle-free.

• (P2) For any x, y ∈ B, there is at most one i-colored edge x→ y.

These are direct consequences of Definition 5.1.9.

To write the additional axioms, we first define some additional functions on the crystal.
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Definition 5.3.1. We define four functions B → Z:

(1) The delta-depth operator ∆ε(x, i, j) = −εj ẽix+ εjx,

(2) The delta-rise operator ∆φ(x, i, j) = φj ẽix− φjx,

(3) The del-depth operator ∆ε(x, i, j) = εj f̃ix− εjx,

(4) The del-rise operator ∆φ(x, i, j) = −φj f̃ix+ φjx,

Also from Definition 5.1.9, we have that for any x ∈ B:

φix = εix+ 〈hi,wt(x)〉.

As a result, we have:

∆ε(x, i, j) + ∆φ(x, i, j) = −εj ẽix+ εjx+ φj ẽix− φjx

= 〈hj ,wt(ẽix)〉 − 〈hj ,wt(x)〉

= 〈hj ,wt(ẽix)− wt(x)〉

= 〈hj , αi〉

= Aij .

This is the third Stembridge axiom:

• (P3) ∆ε(x, i, j) + ∆φ(x, i, j) = Aij .

The remaining axioms do not follow directly from the definition of the crystal graph.

The fourth is:

• (P4) ∆ε(x, i, j) ≤ 0 and ∆φ(x, i, j) ≤ 0, when ẽix 6= ∅.

We define the Stembridge triple for a crystal element x to be the tuple (Aij ,∆ε(x, i, j),∆φ(x, i, j)),

defined when ẽjx 6= ∅. In a simply-laced crystal, we have Aij ∈ {0,−1} when i 6= j. As a

result, the Stembridge triple must be one of:

(0, 0, 0), (−1, 0,−1), (−1,−1, 0).

Axioms (P5) and (P6) deal with these cases separately. Assume that ẽix 6= ∅ and

ẽjx 6= ∅.
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• (P5) If ∆ε(x, i, j) = 0, then:

ẽj ẽix = ẽiẽjx.

• (P6) If ∆ε(x, i, j) = ∆ε(x, j, i) = −1, then:

ẽiẽj
2ẽix = ẽj ẽi

2ẽjx.

There is also a collection of dual axioms, which add no additional information.

5.3.3. The Code. The following functions are defined on elements of a crystal graph;

the “self” in the code refers to the particular crystal element. Each function contains a

documentation string, which is automatically compiled into the documentation for Sage;

this documentation describes the purpose of the function, as well as its expected inputs and

outputs. In the documentation string are a number of examples.

def stembridgeDelta_depth(self,i,j):

r"""

The ‘i‘-depth of a crystal node ‘x‘ is ‘‘-x.epsilon(i)‘‘.

This function returns the difference in the ‘j‘-depth of ‘x‘ and

‘‘x.e(i)‘‘, where ‘i‘ and ‘j‘ are in the index set of the underlying

crystal. This function is useful for checking the Stembridge local

axioms for crystal bases.

EXAMPLES::

sage: T = CrystalOfTableaux([’A’,2], shape=[2,1])

sage: t=T(rows=[[1,2],[2]])

sage: t.stembridgeDelta_depth(1,2)

0

sage: s=T(rows=[[2,3],[3]])

sage: s.stembridgeDelta_depth(1,2)

-1

"""



5.3. IMPLEMENTATION OF STEMBRIDGE LOCAL AXIOMS 120

if self.e(i) is None: return 0

return -self.e(i).epsilon(j) + self.epsilon(j)

def stembridgeDelta_rise(self,i,j):

r"""

The ‘i‘-rise of a crystal node ‘x‘ is ‘‘x.phi(i)‘‘.

This function returns the difference in the ‘j‘-rise of ‘x‘ and

‘‘x.e(i)‘‘, where ‘i‘ and ‘j‘ are in the index set of the underlying

crystal. This function is useful for checking the Stembridge local

axioms for crystal bases.

EXAMPLES::

sage: T = CrystalOfTableaux([’A’,2], shape=[2,1])

sage: t=T(rows=[[1,2],[2]])

sage: t.stembridgeDelta_rise(1,2)

-1

sage: s=T(rows=[[2,3],[3]])

sage: s.stembridgeDelta_rise(1,2)

0

"""

if self.e(i) is None: return 0

return self.e(i).phi(j) - self.phi(j)

def stembridgeDel_depth(self,i,j):

r"""

The ‘i‘-depth of a crystal node ‘x‘ is ‘‘-x.epsilon(i)‘‘.

This function returns the difference in the ‘j‘-depth of ‘x‘ and

‘‘x.f(i)‘‘, where ‘i‘ and ‘j‘ are in the index set of the underlying

crystal. This function is useful for checking the Stembridge local
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axioms for crystal bases.

EXAMPLES::

sage: T = CrystalOfTableaux([’A’,2], shape=[2,1])

sage: t=T(rows=[[1,1],[2]])

sage: t.stembridgeDel_depth(1,2)

0

sage: s=T(rows=[[1,3],[3]])

sage: s.stembridgeDel_depth(1,2)

-1

"""

if self.f(i) is None: return 0

return -self.epsilon(j) + self.f(i).epsilon(j)

def stembridgeDel_rise(self,i,j):

r"""

The ‘i‘-rise of a crystal node ‘x‘ is ‘‘x.phi(i)‘‘.

This function returns the difference in the ‘j‘-rise of ‘x‘ and

‘‘x.f(i)‘‘, where ‘i‘ and ‘j‘ are in the index set of the underlying

crystal. This function is useful for checking the Stembridge local

axioms for crystal bases.

EXAMPLES::

sage: T = CrystalOfTableaux([’A’,2], shape=[2,1])

sage: t=T(rows=[[1,1],[2]])

sage: t.stembridgeDel_rise(1,2)

-1

sage: s=T(rows=[[1,3],[3]])

sage: s.stembridgeDel_rise(1,2)
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0

"""

if self.f(i) is None: return 0

return self.phi(j)-self.f(i).phi(j)

def stembridgeTriple(self,i,j):

r"""

Let ‘A‘ be the Cartan matrix of the crystal, ‘x‘ a crystal element,

and let ‘i‘ and ‘j‘ be in the index set of the crystal.

Further, set

‘‘b=stembridgeDelta_depth(x,i,j)‘‘, and

‘‘c=stembridgeDelta_rise(x,i,j))‘‘.

If ‘‘x.e(i)‘‘ is non-empty, this function returns the triple

‘( A_{ij}, b, c )‘; otherwise it returns ‘‘None‘‘. By the Stembridge

local characterization of crystal bases, one should have ‘A_{ij}=b+c‘.

EXAMPLES::

sage: T = CrystalOfTableaux([’A’,2], shape=[2,1])

sage: t=T(rows=[[1,1],[2]])

sage: t.stembridgeTriple(1,2)

sage: s=T(rows=[[1,2],[2]])

sage: s.stembridgeTriple(1,2)

(-1, 0, -1)

sage: T = CrystalOfTableaux([’B’,2], shape=[2,1])

sage: t=T(rows=[[1,2],[2]])

sage: t.stembridgeTriple(1,2)

(-2, 0, -2)

sage: s=T(rows=[[-1,-1],[0]])

sage: s.stembridgeTriple(1,2)



5.3. IMPLEMENTATION OF STEMBRIDGE LOCAL AXIOMS 123

(-2, -2, 0)

sage: u=T(rows=[[0,2],[1]])

sage: u.stembridgeTriple(1,2)

(-2, -1, -1)

"""

if self.e(i) is None: return None

A=self.cartan_type().cartan_matrix()

b=self.stembridgeDelta_depth(i,j)

c=self.stembridgeDelta_rise(i,j)

dd=self.cartan_type().dynkin_diagram()

a=dd[j,i]

return (a, b, c)

def _test_stembridge_local_axioms(self, index_set=None, verbose=False, \\

**options):

r"""

This implements tests for the Stembridge local characterization on the

element of a crystal ‘‘self‘‘. The current implementation only uses

the axioms for simply-laced types. Crystals of other types should

still pass the test, but in non-simply-laced types, passing is not a

guarantee that the crystal arises from a representation.

One can specify an index set smaller than the full index set of the

crystal, using the option ‘‘index_set‘‘.

Running with ‘‘verbose=True‘‘ will print warnings when a test fails.

REFERENCES::

.. [S2003] John R. Stembridge, A Local Characterization of

Simply-Laced Crystals,
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Transactions of the American Mathematical Society, Vol. 355,

No. 12 (Dec., 2003), pp. 4807-4823

EXAMPLES::

sage: T = CrystalOfTableaux([’A’,2], shape=[2,1])

sage: t=T(rows=[[1,1],[2]])

sage: t._test_stembridge_local_axioms()

True

sage: t._test_stembridge_local_axioms(index_set=[1,3])

True

sage: t._test_stembridge_local_axioms(verbose=True)

True

"""

tester = self._tester(**options)

goodness=True

A=self.cartan_type().cartan_matrix()

if index_set is None: index_set=self.index_set()

for (i,j) in Subsets(index_set, 2):

if self.e(i) is not None and self.e(j) is not None:

triple=self.stembridgeTriple(i,j)

#Test axioms P3 and P4.

if not triple[0]==triple[1]+triple[2] or \\

triple[1]>0 or triple[2]>0:

if verbose:

print ’Warning: Failed axiom P3 or P4 at vector ’, \\

self, ’i,j=’, i, j, ’Stembridge triple:’, \\

self.stembridgeTriple(i,j)

goodness=False
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else:

tester.fail()

if self.stembridgeDelta_depth(i,j)==0:

#check E_i E_j(x)= E_j E_i(x)

if self.e(i).e(j)!=self.e(j).e(i) or \\

self.e(i).e(j).stembridgeDel_rise(j, i)!=0:

if complete:

print ’Warning: Failed axiom P5 at: vector ’, \\

self, ’i,j=’, i, j, ’Stembridge triple:’, \\

stembridgeTriple(x,i,j)

goodness=False

else:

tester.fail()

if self.stembridgeDelta_depth(i,j)==-1 and \\

self.stembridgeDelta_depth(j,i)==-1:

#check E_i E_j^2 E_i (x)= E_j E_i^2 E_j (x)

y1=self.e(j).e(i).e(i).e(j)

y2=self.e(j).e(i).e(i).e(j)

a=y1.stembridgeDel_rise(j, i)

b=y2.stembridgeDel_rise(i, j)

if y1!=y2 or a!=-1 or b!=-1:

if verbose:

print ’Warning: Failed axiom P6 at: vector ’, x,\\

’i,j=’, i, j, ’Stembridge triple:’, \\

stembridgeTriple(x,i,j)

goodness=False

else:

tester.fail()

tester.assertTrue(goodness)

return goodness
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The following function is defined on any finite crystal graph, and simply checks that the

Stembridge local axioms hold on each element of the crystal.

def _test_stembridge_local_axioms(self, index_set=None, verbose=False, \\

complete=False, **options):

r"""

This implements tests for the Stembridge local characterization on the

finite crystal ‘‘self‘‘. The current implementation only uses the

rules for simply-laced types. Crystals of other types should still

pass the test, but expansion of this test to non-simply laced type

would be desirable.

One can specify an index set smaller than the full index set of the

crystal, using the option ‘‘index_set‘‘.

Running with ‘‘verbose=True‘‘ will print each node for which a local

axiom test applies.

Running with ‘‘complete=True‘‘ will continue to run the test past the

first failure of the local axioms. This is probably only useful in

conjunction with the verbose option, to see all places where the local

axioms fail.

EXAMPLES::

sage: T = CrystalOfTableaux([’A’,3], shape=[2,1])

sage: T._test_stembridge_local_axioms()

True

sage: T._test_stembridge_local_axioms(verbose=True)

True

sage: T._test_stembridge_local_axioms(index_set=[1,3])

True
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"""

tester = self._tester(**options)

goodness=True

for x in self:

goodness=x._test_stembridge_local_axioms(index_set, verbose)

if goodness==False and not complete:

tester.fail()

tester.assertTrue(goodness)

return goodness
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J -trivial monoids, Séminaire Lotharingien de Combinatoire 64 (2011), B64d.

[DHT02] G. Duchamp, F. Hivert, and J.-Y. Thibon, Noncommutative symmetric func-

tions. VI. Free quasi-symmetric functions and related algebras, Internat. J. Al-

gebra Comput. 12 (2002), no. 5, 671–717.

[Fan96] C. K. Fan, A Hecke algebra quotient and some combinatorial applications, Jour-

nal of Algebraic Combinatorics 5 (1996), 175–189, 10.1007/BF00243786.

[Fay05] M. Fayers, 0-Hecke algebras of finite Coxeter groups, J. Pure Appl. Algebra 199

(2005), no. 1-3, 27–41.



130

[FG99] C. Fan and R. Green, On the affine Temperley-Lieb algebras, Journal of the

London Mathematical Society 60 (1999), no. 02, 366–380.

[FOS09] G. Fourier, M. Okado, and A. Schilling, Kirillov-Reshetikhin crystals for nonex-

ceptional types, Advances in Mathematics 222 (2009), pp. 1080–1116.

[GM09] O. Ganyushkin and V. Mazorchuk, Classical finite transformation semigroups,

Algebra and Applications, vol. 9, Springer-Verlag London Ltd., London, 2009.

[GM10] , On Kiselman quotients of the 0-Hecke algebra, (2010), 16 pages,

preprint arXiv:1006.0316.

[GMS09] O. Ganyushkin, V. Mazorchuk, and B. Steinberg, On the irreducible represen-

tations of a finite semigroup, Proc. Amer. Math. Soc. 137 (2009), no. 11, 3585–

3592.

[Gre02] R. Green, On 321-avoiding permutations in affine weyl groups, Journal of Al-

gebraic Combinatorics 15 (2002), 241–252, 10.1023/A:1015012524524.

[HK02] J. Hong and S.-J. Kang, Introduction to quantum groups and crystal bases,

American Mathematical Society, 2002.

[HP00] K. Henckell and J.-E. Pin, Ordered monoids and J-trivial monoids, Algorith-

mic problems in groups and semigroups (Lincoln, NE, 1998), Trends Math.,
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