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Abstract

Γ-species, Quotients, and Graph Enumeration

A dissertation presented to the Faculty of the
Graduate School of Arts and Sciences of Brandeis

University, Waltham, Massachusetts

by Andrew Gainer

The theory of Γ-species is developed to allow species-theoretic study of quotient
structures in a categorically rigorous fashion. This new approach is then applied
to two graph-enumeration problems which were previously unsolved in the unla-
beled case—bipartite blocks and general k-trees.
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Preface

Historically, the algebra of generating functions has been a valuable tool in enu-
merative combinatorics. The theory of combinatorial species uses category the-
ory to justify and systematize this practice, making clear the connections between
structural manipulations of some objects of interest and algebraic manipulations
of their associated generating functions. The notion of ‘quotient’ enumeration
(that is, of counting orbits under some group action) has been applied in species-
theoretic contexts, but methods for doing so have largely been ad-hoc. We will
contribute a species-compatible way for keeping track of the way a group Γ acts
on structures of a species F, yielding what we term a Γ-species, which has the
sort of synergy of algebraic and structural data that we expect from species. We
will then show that it is possible to extract information about the Γ-orbits of such
a Γ-species and harness this new method to attack several unsolved problems in
graph enumeration—in particular, the isomorphism classes of nonseparable bipar-
tite graphs and k-trees (that is, ‘unlabeled’ bipartite blocks and k-trees).

It is assumed that the reader of this thesis is familiar with the classical theory
of groups and that he has encountered at least the basic vocabularies of category
theory and graph theory. Results in these fields which are not original to this thesis
will either be referenced from the literature or simply assumed, depending on the
degree to which they are part of the standard body of knowledge one acquires
when studying those disciplines.

In the first chapter, we outline the theory of species, develop several classical
methods, and introduce the notion of a Γ-species. In the second chapter, we ap-
ply these techniques to the enumeration of unlabeled vertex-2-connected bipartite
graphs, a historically open problem. In the third chapter, we apply these tech-
niques to the more complex problem of the enumeration of unlabeled general k-
trees, also historically unsolved. Finally, in an appendix we discuss algebraic and
computational methods which allow species-theoretical insights to be translated
into explicit algorithmic techniques for enumeration.
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CHAPTER 1

The theory of species

1.1. Introduction

Many of the most important historical problems in enumerative combinatorics
have concerned the difficulty of passing from ‘labeled’ to ‘unlabeled’ structures.
In many cases, the algebra of generating functions has proved a powerful tool in
analyzing such problems. However, the general theory of the association between
natural operations on classes of such structures and the algebra of their generating
functions has been largely ad-hoc. André Joyal’s introduction of the theory of com-
binatorial species in [15] provided the groundwork to formalize and understand
this connection. A full, pedagogical exposition of the theory of species is available
in [3], so we here present only an outline, largely tracking that text.

To begin, we wish to formalize the notion of a ‘construction’ of a structure of
some given class from a set of ‘labels’, such as the construction of a graph from its
vertex set or or that of a linear order from its elements. The language of category
theory will allow us capture this behavior succinctly yet with full generality:

Definition 1.1.1. Let FinBij be the category of finite sets with bijections and FinSet

be the category of finite sets with set maps. Then a species is a functor F : FinBij Ñ
FinSet. For a set A and a species F, an element of F [A] is an F-structure on A.
Moreover, for a species F and a bijection φ : A Ñ B, the bijection F [φ] : F [A] Ñ
F [B] is the F-transport of φ.

A species functor F simply associates to each set A another set F [A] of its F-
structures; for example, for S the species of permutations, we associate to some set
A the set S [A] = Bij (A) of self-bijections (that is, permutations as maps) of A. This
association of label set A to the set F [A] of all F-structures over A is fundamental
throughout combinatorics, and functorality is simply the requirement that we may
carry maps on the label set through the construction.

Example 1.1.2. Let G denote the species of simple graphs labeled at vertices. Then,
for any finite set A of labels, G [A] is the set of simple graphs with |A| vertices
labeled by the elements of A. For example, for label set A = [3] = t1, 2, 3u, there

are eight graphs in G [A], since there are (3
2) = 3 possible edges and thus 23 = 8

1



CHAPTER 1. THE THEORY OF SPECIES

ways to choose a subset of those edges:

G [t1, 2, 3u] =

$
’’’’’’’’’’’’’&
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The symmetric group S3 acts on the set [3] as permutations. Consider the per-
mutation (23) that interchanges 2 and 3 in [3]. Then G [(23)] is a permutation on
the set G [t1, 2, 3u]; for example,

G [(23)]











1

2 3











=

1

2 3
.

.

Since the image of a bijection under such a functor is necessarily itself a bijec-
tion, many authors instead simply define a species as a functor F : FinBij Ñ FinBij.
Our motivation for using this definition instead will become clear in Section 1.5.

Note that, having defined the species F to be a functor, we have the following
properties:

‚ for any two bijections α : A Ñ B and β : B Ñ C, we have F [α ˝ β] =
F [α] ˝ F [β], and

‚ for any set A, we have F [IdA] = IdF[A].

Accordingly, we (generally) need not concern ourselves with the details of the set
A of labels we consider, so we will often restrict our attention to a canonical label
set [n] := t1, 2, . . . , nu for each cardinality n. Moreover, the permutation group
SA on any given set A acts by self-bijections of A and induces automorphisms of
F-structures for a given species F. The orbits of F-structures on A under the in-
duced action of SA are then exactly the ‘unlabeled’ structures of the class F, such
as unlabeled graphs.

Finally, we note that it is often natural to speak of maps between classes of
combinatorial structures, and that these maps are sometimes combinatorially ‘nat-
ural’. For example, we might wish to map the species of trees into the species of
general graphs by embedding; to map the species of connected bicolored graphs
to the species of connected bipartite graphs by forgetting some color information;
or the species of graphs to the species of sets of connected graphs by identification.

2



1.1. INTRODUCTION

These maps are all ‘natural’ in the sense that they are explicitly structural and do
not reference labels; thus, at least at a conceptual level, they are compatible with
the motivating ideas of species. We can formalize this notion in the language of
categories:

Definition 1.1.3. Let F and G be species. A species map φ is a natural transformation
φ : F Ñ G — that is, an association to each set A P FinBij of a set map φA P FinSet

such that the following diagram commutes:

F [A] F [B]

G [A] G [B]

φA

F [σ]

G [σ]

φB

We call the set map φA the A component of φ or the component of φ at A.

Such species maps may capture the idea that two species are essentially ‘the
same’ or that one ‘contains’ or ‘sits inside’ another.

Definition 1.1.4. Let F and G be species and φ : F Ñ G a species map between
them. In the case that the components φA are all bijections, we say that φ is a species
isomorphism and that F and G are isomorphic. In the case that the components φA are
all injections, we say that φ is a species embedding and that F embeds in G (denoted
φ : F ãÑ G). Likewise, in the case that the components φA are all surjections, we
say that φ is a species covering and that F covers G (denoted φ : F ։ G).

With the full power of the language of categories, we may make the following
more general observation:

Note 1.1.5. Let Spc denote the functor category of species; that is, define Spc ..=
FinSetFinBij, the category of functors from FinBij to FinSet. Species maps as de-
fined in Definition 1.1.3 are natural transformations of these functors and thus are
exactly the morphisms of Spc.

It is a classical theorem of category theory (cf. [17]) that the epi- and monomor-
phisms of a functor category are exactly those whose components are epi- and
monomorphisms in the target category if the target category has pullbacks and
pushouts. Since FinSet is such a category, species embeddings and species cov-
erings are precisely the epi- and monomorphisms of the functor category Spc.
Species isomorphisms are of course the categorical isomorphisms in Spc.

In the case that F and G are isomorphic species, we will often simply write
F = G, since they are combinatorially equivalent; some authors instead use F »
G, reserving the notation of equality for the much stricter case that additionally

3



CHAPTER 1. THE THEORY OF SPECIES

requires that F [A] = G [A] as sets for all A. The notions of species embedding and
species covering are original to this work.

Example 1.1.6. In the motivating examples from above:

‚ The species a of trees embeds in the species G of graphs by the map which
identifies each tree with itself as a graph, since any two distinct trees are
distinct as graphs.

‚ The species BC of bicolored graphs covers the speciesBP of bipartite graphs
by the map which sends each bicolored graph to its underlying bipartite
graph, since every bipartite graph has at least one bicoloring.

‚ The species G of graphs is isomorphic with the species E
(

GC
)

of sets of con-
nected graphs by the map which identifies each graph with its set of con-
nected components, since this decomposition exists uniquely.

1.2. Cycle indices and species enumeration

In classical enumerative combinatorics, formal power series known as ‘gener-
ating functions’ are used extensively for keeping track of enumerative data. In this
spirit, we now associate to each species a formal power series which counts struc-
tures with respect to their automorphisms, which will prove to be significantly
more powerful:

Definition 1.2.1. For a species F, define its cycle index series to be the power series
(1)

ZF (p1, p2, . . .) :=
ÿ

ně0

1

n!

(

ÿ

σPSn

fix (F [σ]) pσ1
1 pσ2

2 . . .
)

=
ÿ

ně0

1

n!

(

ÿ

σPSn

fix (F [σ]) pσ

)

where fix (F [σ]) := |ts P F [A] : F [σ] (s) = su|, where σi is the number of i-cycles of
σ, and where pi are indeterminates. (That is, fix (F [σ]) is the number of F-structures
fixed under the action of the transport of σ.) We will make extensive use of the
compressed notation pσ = pσ1

1 pσ2
2 . . . hereafter.

In fact, by functorality, fix (F [σ]) is a class function1 on permutations σ P Sn.
Accordingly, we can instead consider all permutations of a given cycle type at once.
It is a classical theorem that conjugacy classes of permutations in Sn are indexed
by partitions λ $ n, which are defined as multisets of natural numbers whose
sum is n. In particular, conjugacy classes are determined by their cycle type, the
multiset of the lengths of the cycles, which may clearly be identified bijectively
with partitions of n. For a given partition λ $ n, there are n!/zλ permutations

of cycle type λ, where zλ :=
ś

i iλiλi! where λi denotes the multiplicity of i in λ..

1That is, the value of fix (F [σ]) will be constant on conjugacy classes of permutations, which we
note are exactly the sets of permutations of fixed cycle type.

4



1.2. CYCLE INDICES AND SPECIES ENUMERATION

Thus, we can instead write

(2) ZF (p1, p2, . . .) :=
ÿ

ně0

ÿ

λ$n

fix (F [λ])
pλ1

1 pλ2
2 . . .

zλ
=

ÿ

ně0

ÿ

λ$n

fix (F [λ])
pλ

zλ

for fix F [λ] := fix F [σ] for some choice of a permutation σ of cycle type λ. Again,
we will make extensive use of the notation pλ = pσ hereafter.

That the cycle index ZF usefully characterizes the enumerative structure of the
species F may not be clear. However, as the following theorems show, both la-
beled and unlabeled enumeration are immediately possible once the cycle index is
in hand. Recall that, for a given sequence a = (a0, a1, a2, . . .), the ordinary generat-

ing function2 of a is the formal power series Ã (x) =
ř8

i=0 aix
i and the exponential

generating function is the formal power series A (x) =
ř8

i=1
1
i! aix

i. The scaling fac-

tor of 1
n! in the exponential generating function is convenient in many contexts;

for example, it makes differentiation of the generating function a combinatorially-
significant operation. The cycle index of a species is then directly related to two
important generating functions:

THEOREM 1.2.2. The exponential generating function F (x) of labeled F-structures is
given by

(3) F (x) = Z f (x, 0, 0, . . .) .

THEOREM 1.2.3. The ordinary generating function F̃ (x) of unlabeled F-structures is
given by

(4) F̃ (x) = ZF

(

x, x2, x3, . . .
)

.

Proofs of both theorems are found in [3, §1.2]. In essence, Eq. (3) counts each
labeled structure exactly once (as a fixed point of the trivial automorphism on [n])
with a factor of 1/n!, while Eq. (4) simply counts orbits à la Burnside’s Lemma. In
cases where the unlabeled enumeration problem is interesting, it is generally more
challenging than the labeled enumeration of the same structures, since the charac-
terization of isomorphism in a species may be nontrivial to capture in a generating
function. If, however, we can calculate the complete cycle index for a species, both
labeled and unlabeled enumerations immediately follow.

The use of pi for the variables instead of the more conventional xi alludes to
the theory of symmetric functions, in which pi denotes the power-sum functions
pi =

ř
j xi

j, which form an important basis for the ring Λ of symmetric functions.

When the pi are understood as symmetric functions rather than simply indetermi-
nates, additional Pólya-theoretic enumerative information is exposed. In particu-
lar, the symmetric function in x-variables underlying a cycle index in p-variables

2Although these are called ‘functions’ for historical reasons, convergence of these formal power
series is often not of immediate interest.

5



CHAPTER 1. THE THEORY OF SPECIES

may be said to count partially-labeled structures of a given species, where the co-
efficient on a monomial

ś
xαi

i counts structures with αi labels of each sort i. This
serves to explain why the coefficients of powers of p1 =

ř
i xi counts labeled struc-

tures (where the labels must all be distinct) and why the automorphism types of
structures are enumerated by Z f

(

x, x2, x3, ¨ ¨ ¨
)

, which allows clusters of labels to

be the same. Another application of the theory of symmetric functions to the cycle
indices of species may be found in [7].

A more detailed exploration of the history of cycle index polynomials and their
relationship to classical Pólya theory may be found in [18].

Of course, it is not always obvious how to calculate the cycle index of a species
directly. However, in cases where we can decompose a species as some combina-
tion of simpler ones, we can exploit these relationships algebraically to study the
cycle indices, as we will see in the next section.

1.3. Algebra of species

It is often natural to describe a species in terms of combinations of other, sim-
pler species—for example, ‘a permutation is a set of cycles’ or ‘a rooted tree is a
single vertex together with a (possibly empty) set of rooted trees’. Several combi-
natorial operations on species of structures are commonly used to represent these
kinds of combinations; that they have direct analogues in the algebra of cycle in-
dices is in some sense the conceptual justification of the theory. In particular, for
species F and G, we will define species F + G, F ¨ G, F ˝ G, F‚, and F1, and we will
compute their cycle indices in terms of ZF and ZG. In what follows, we will not
say explicitly what the effects of a given species operation are on bijections when
those effects are obvious (as is usually the case).

Definition 1.3.1. For two species F and G, define their sum to be the species F + G
given by

(

F + G
)

[A] = F [A] \ G [A] (where \ denotes disjoint set union).

In other words, an (F + G)-structure is an F-structure or a G-structure. We use
the disjoint union to avoid the complexities of dealing with cases where F [A] and
G [A] overlap as sets.

THEOREM 1.3.2. For species F and G, the cycle index of their sum is

(5) ZF+G = ZF + ZG.

In the case that F = G1 + G2, we can simply invert the equation and write
F ´ G2 = G1. However, we may instead wish to study the species F ´ G without
first writing F as a sum. In the spirit of the definition of species addition, we
wish to define the species subtraction F ´ G as the species of F-structures that
‘are not’ G-structures. For slightly more generality, we may apply the notions of
Definition 1.1.4:

6



1.3. ALGEBRA OF SPECIES

Definition 1.3.3. For two species F and G with a species embedding φ : G Ñ F, de-

fine their difference with respect to φ to be the species F
φ
´ G given by

(

F
φ
´ G

)

[A] ..=
F [A] ´ φ (G [A]). When there is no ambiguity about the choice of embedding φ,
especially in the case that G has a combinatorially natural embedding in F, we may
instead simply write F ´ G and call this species their difference.

For example, for G the species of graphs and a the species of trees with the
natural embedding, we have that G ´ a is the species of graphs with cycles.

We note also that species addition is associative and commutative (up to species
isomorphism), and furthermore the empty species 0 : A ÞÑ ∅ is an additive iden-
tity, so species with addition form an abelian monoid. This can be completed to
create the abelian group of virtual species, in which the subtraction F ´ G of ar-
bitrary species is defined; the two definitions in fact agree where our definition
applies. We will not delve into the details of virtual species theory here, directing
the reader instead to [3, §2.5].

Definition 1.3.4. For two species F and G, define their product to be the species
F ¨ G given by (F ¨ G) [A] =

ř
A=B\C F [B] ˆ G [C].

In other words, an (F ¨ G)-structure is a partition of A into two sets B and C, an
F-structure on B, and a G-structure on C. This definition is partially motivated by
the following result on cycle indices:

THEOREM 1.3.5. For species F and G, the cycle index of their product is

(6) ZF¨G = ZF ¨ ZG.

Conceptually, the species product can be used to describe species that decom-
pose uniquely into substructures of two specified species. For example, a permu-
tation on a set A decomposes uniquely into a (possibly empty) set of fixed points
and a derangement of their complement in A. Thus, S = E ¨ Der for S the species
of permutations, E the species of sets, and Der the species of derangements.

We note also that species multiplication is commutative (up to species isomor-
phism) and distributes over addition, so the class of species with addition and

multiplication forms a commutative semiring, with the species 1 :

#
∅ ÞÑ t∅u

A ‰ ∅ ÞÑ ∅

as a multiplicative identity; if addition is completed as previously described, the
class of virtual species with addition and multiplication forms a true commutative
ring.

In addition, the question of which species can be decomposed as sums and
products without resorting to virtual species is one of great interest; the notions of
molecular and atomic species are directly derived from such decompositions, and
represent the beginnings of the systematic study of the structure of the class of
species as a whole. Further details on this topic are presented in [3, §2.6].

7



CHAPTER 1. THE THEORY OF SPECIES

Definition 1.3.6. For two species F and G with G [∅] = ∅, define their composition
to be the species F ˝ G given by (F ˝ G) [A] =

ś
πPP(A) (F [π] ˆ

ś
BPπ G [B]) where

P (A) is the set of partitions of A.

In other words, the composition F ˝ G produces the species of F-structures of
collections of G-structures. The definition is, again, motivated by a correspondence
with a certain operation on cycle indices:

Definition 1.3.7. Let f and g be cycle indices. Then the plethysm f ˝ g is the cycle
index

(7) f ˝ g = f (g (p1, p2, p3, . . .) , g (p2, p4, p6, . . .) , . . .) ,

where f (a, b, . . .) denotes the cycle index f with a substituted for p1, b substituted
for p2, and so on.

This definition is inherited directly from the theory of symmetric functions in
infinitely many variables, where our pi are basis elements, as previously discussed.
This operation on cycle indices then corresponds exactly to species composition:

THEOREM 1.3.8. For species F and G with G [∅] = ∅, the cycle index of their
plethysm is

(8) ZF˝G = ZF ˝ ZG

where ˝ in the right-hand side is as in Eq. (7).

Many combinatorial structures admit natural descriptions as compositions of
species. For example, every graph admits a unique decomposition as a (possi-
bly empty) set of (nonempty) connected graphs, so we have the species identity

G = E ˝ GC for G the species of graphs and GC the species of nonempty connected
graphs.

Diligent readers may observe that the requirement that G [∅] = ∅ in Defini-
tion 1.3.6 is in fact logically vacuous, since the given construction would simply
ignore the ∅-structures. However, the formula in Theorem 1.3.8 fails to be well-
defined for any ZG with non-zero constant term (corresponding to species G with
nonempty G [∅]) unless ZF has finite degree (corresponding to species F with sup-
port only in finitely many degrees). Consider the following example:

Example 1.3.9. Let E denote the species of sets, E3 its restriction to sets with three
elements, 1 the species described above (which has one empty structure), and X
the species of singletons (which has one order-1 structure). If E (1 + X) were well-
defined, it would denote the species of ‘partially-labeled sets’. However, for fixed
cardinality n, there is an E (1 + X)-structure on n labels for each nonnegative k—
specifically, the set [n] together with k unlabeled elements. Thus, there would be
infinitely many structures of each cardinality for this ‘species’, so it is not in fact a
species at all.

8



1.3. ALGEBRA OF SPECIES

However, the situation for E3 (1 + X) is entirely different. A structure in this
species is a 3-set, some of whose elements are labeled. There are only four possible
such structures: t˚, ˚, ˚u, t˚, ˚, 1u, t˚, 1, 2u, and t1, 2, 3u, where ˚ denotes an unla-
beled element and integers denote labeled elements. Moreover, by discarding the

unlabeled elements, we can clearly see that E3 (1 + X) =
ř3

i=0 Ei.

In our setting, we will not use this alternative notion of composition, so we will
not develop it formally here.

Several other binary operations on species are defined in the literature, includ-
ing the Cartesian product F ˆ G, the functorial composition F ˝ G, and the inner
plethysm F b G of [24]. We will not use these here. However, we do introduce two
unary operations: F‚ and F1.

Definition 1.3.10. For a species F, define its species derivative to be the species F 1

given by F 1 [A] = F [A Y t˚u] for ˚ an element chosen not in A (say, the set A itself).

It is important to note that the label ˚ of an F 1-structure is distinguished from
the other labels; the automorphisms of the species F 1 cannot interchange ˚ with
another label. Thus, species differentiation is appropriate for cases where we want
to remove one ‘position’ in a structure. For example, for L the species of linear
orders and C the species of cyclic orders, we have L = C 1; a cyclic order on the
set A Y t˚u is naturally associated with the linear order on the set A produced by
removing ˚. Terming this operation ‘differentiation’ is justified by its effect on cycle
indices:

THEOREM 1.3.11. For a species F, the cycle index of its derivative is given by

(9) ZF 1 (p1, p2, . . .) =
B

Bp1
ZF (p1, p2, . . .) .

We note that we cannot in general recover ZF from ZF 1 , since there may be
terms in ZF which have no p1-component (corresponding to F-structures which
have no automorphisms with fixed points).

Finally, we introduce a variant of the species derivative which allows us to label
the distinguished element ˚:

Definition 1.3.12. For a species F, define its pointed species to be the species F‚ given
by F‚ [A] = F [A] ˆ A (that is, pairs of the form ( f , a) where f is an F-structure on
A and a P A) with transport F‚ [σ] ( f , a) = (F [σ] ( f ) , σ (a)). We can also write
F‚ [A] = X ¨ F 1 for X the species of singletons.

In other words, an F‚ [A]-structure is an F [A]-structure with a distinguished
element taken from the set A (as opposed to F 1, where the distinguished element
is new). Thus, species pointing is appropriate for cases such as those of rooted
trees: for a the species of trees and A the species of rooted trees, we have A = a‚.
Equation (9) leads directly to the following:

9



CHAPTER 1. THE THEORY OF SPECIES

THEOREM 1.3.13. For a species F, the cycle index of its corresponding pointed species
is given by

(10) ZF‚ = ZX ¨ ZF 1 .

Note that, again, we cannot in general recover ZF from ZF‚ , for the same rea-
sons as in the case of ZF 1 .

1.4. Multisort species

A species F as defined in Definition 1.1.1 is a functor F : FinBij Ñ FinSet;
an F-structure in F [A] takes its labels from the set A. The tool-set so produced
is adequate to describe many classes of combinatorial structures. However, there
is one particular structure type which it cannot effectively capture: the notion of
distinct sorts of elements within a structure. Perhaps the most natural example of
this is the case of k-colored graphs, where every vertex has one of k colors with
the requirement that no pair of adjacent vertices shares a color. Automorphisms
of such a graph must preserve the colorings of the vertices, which is not a natural
restriction to impose in the calculation of the classical cycle index in Eq. (1). We
thus incorporate the notion of sorts directly into a new definition:

Definition 1.4.1. For a fixed integer k ě 1, define a k-sort set to be an ordered k-
tuple of sets. Say that a k-sort set is finite if each component set is finite; in that
case, its k-sort cardinality is the ordered tuple of its components’ set cardinalities.
Further, define a k-sort function to be an ordered k-tuple of set functions which acts
componentwise on k-sort sets. For two k-sort sets U and V, a k-sort function σ is
a k-sort bijection if each component is a set bijection. For k-sort sets of cardinality
(c1, c2, . . . , ck), denote by Sc1,c2,...,ck

= Sc1
ˆ Sc2 ˆ ¨ ¨ ¨ ˆ Sck

the k-sort symmetric
group, the elements of which are in natural bijection with k-sort bijections from a

k-sort set to itself. Finally, denote by FinBijk the category of finite k-sort sets with
k-sort bijections.

We can then define an extension of species to the context of k-sort sets:

Definition 1.4.2. A k-sort species F is a functor F : FinBijk Ñ FinBij which associates
to each k-sort set U a set F [U] of k-sort F-structures and to each k-sort bijection
σ : U Ñ V a bijection F [σ] : F [U] Ñ F [V].

Functorality once again imposes naturality conditions on these associations.
Just as in the theory of ordinary species, to each multisort species is associated

a power series, its cycle index, which carries essential combinatorial data about the
automorphism structure of the species. To keep track of the multiple sorts of la-
bels, however, we require multiple sets of indeterminates. Where in ordinary cycle
indices we simply used pi for the ith indeterminate, we now use pi [j] for the ith in-
determinate of the jth sort. In some contexts with small k, we will denote our sorts
with letters (saying, for example, that we have ‘X labels’ and ‘Y labels’), in which

10
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case we will write pi [x], pi [y], and so forth. In natural analogy to Definition 1.2.1,
the formula for the cycle index of a k-sort species F is given by

(11) ZF (p1 [1] , p2 [1] , . . . ; p1 [2] , p2 [2] , . . . ; . . . ; p1 [k] , p2 [k] , . . .) =
ÿ

ně0
a1+a2+¨¨¨+ak=n

1

a1!a2! . . . ak!

ÿ

σPSa1,a2,...,ak

fix (F [σ]) pσ1

[1]
pσ2

[2]
. . . p

σk

[k]
.

where by pσi

[i]
we denote the product

ś
j

(

pj [i]
)(σi)j where (σi)j is the number of

j-cycles of σi.
The operations of addition and multiplication extend to the multisort context

naturally. To make sense of differentiation and pointing, we need only specify a
sort from which to draw the element or label which is marked; we then write F 1X

and F‚X for the derivative and pointing respectively of F ‘in the sort X’, which
is to say with its distinguished element drawn from that sort. When F is a 1-sort
species and G a k-sort species, the construction of the k-sort species F ˝ G is natural;
in other settings, we will not define a general notion of composition of multisort
species.

1.5. Γ-species and quotient species

It is frequently the case that interesting combinatorial problems admit elegant
descriptions in terms of quotients of a class of structures F under the action of a
group Γ. In some cases, this group action will be structural in the sense that it
commutes with permutations of labels in the species F, or, informally, that it is
independent of the choice of labelings on each F-structure. In such a case, we may
also say that Γ acts on ‘unlabeled structures’ of the class F.

Example 1.5.1. Let G denote the species of simple graphs. Let the group S2 act on
such graphs by letting the identity act trivially and letting the non-trivial element
(12) send each graph to its complement (that is, by replacing each edge with a non-
edge and each non-edge with an edge). This ‘complementation action’ is structural
in the sense described previously.

We note that a group action is structural is exactly the condition that each γ P Γ

acts by a species isomorphism γ : F Ñ F in the sense of Definition 1.1.4.
We now incorporate such species-compatible actions into a new definition:

Definition 1.5.2. For Γ a group, a Γ-species F is a combinatorial species F together
with an action of Γ on F-structures by species isomorphisms. Explicitly, for F a

11
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Γ-species, the diagram

A F [A] F [A]

B F [B] F [B]

F

σ

γA

F [σ] F [σ]

F γB

commutes for every γ P Γ and every set bijection σ : A Ñ B. (Note that commuta-
tivity of the left square is required for F to be a species at all.)

G is then a S2-species with the action described in Example 1.5.1.
For such a Γ-species, of course, it is then meaningful to pass to the quotient

under the action by Γ:

Definition 1.5.3. For F a Γ-species, define F/Γ, the quotient species of F under the
action of Γ, to be the species of Γ-orbits of F-structures.

Example 1.5.4. Consider G as a S2-species in light of the action defined in Ex-
ample 1.5.1. The structures of the quotient species G/S2 are then pairs of com-
plementary graphs. We may choose to interpret each such pair as representing
a 2-partition of the set of vertex pairs of the complete graph (that is, of edges of
the complete graph). More natural examples of quotient structures will present
themselves in later chapters.

For each label set A, let QΓ [A] : F [A] Ñ F/Γ [A] denote the map sending each
F-structure over A to its quotient F/Γ-structure over A. Then QΓ [A] is an injection
for each A, and the requirement that Γ acts by natural transformations implies that
the induced functor map QΓ : F Ñ F/Γ is a natural transformation. Thus, the
passage from F to F/Γ is a species cover in the sense of Definition 1.1.4.

A brief exposition of the notion of quotient species may be found in [3, §3.6],
and a more thorough exposition (in French) in [4]. Our motivation, of course, is
that combinatorial structures of a given class are often ‘naturally’ identified with
orbits of structures of another, larger class under the action of some group. Our
goal will be to compute the cycle index of the species F/Γ in terms of that of F
and information about the Γ-action, so that enumerative data about the quotient
species can be extracted.

As an intermediate step to the computation of the cycle index associated to this
quotient species, we associate a cycle index to a Γ-species F that keeps track of the
needed data about the Γ-action.

12
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Definition 1.5.5. For a Γ-species F, define the Γ-cycle index ZΓ

F as in [14]: for each
γ P Γ, let

(12) ZΓ

F (γ) =
ÿ

ně0

1

n!

ÿ

σPSn

fix (γ ¨ F [σ]) pσ

with pσ as in Eq. (1).

We will call such an object (formally a map from Γ to the ring Q [[p1, p2, . . .]] of
symmetric functions with rational coefficients in the p-basis) a Γ-cycle index even
when it is not explicitly the Γ-cycle index of a Γ-species, and we will sometimes call
ZΓ

F (γ) the “γ term of ZΓ

F”. So the coefficients in the power series count the fixed
points of the combined action of a permutation and the group element γ. Note that,
in particular, the classical (‘ordinary’) cycle index may be recovered as ZF = ZΓ

F (e)
for any Γ-species F.

The algebraic relationships between ordinary species and their cycle indices
generally extend without modification to the Γ-species context, as long as appro-
priate allowances are made. The actions on cycle indices of Γ-species addition and
multiplication are exactly as in the ordinary species case considered component-
wise:

Definition 1.5.6. For two Γ-species F and G, the Γ-cycle index of their sum F + G
is given by

(13) ZΓ

F+G (γ) = ZΓ

F (γ) + ZΓ

G (γ)

and the Γ-cycle index of their product F ¨ G is given by

(14) ZΓ

F¨G (γ) = ZΓ

F (γ) ¨ ZΓ

G (γ)

The action of composition, which in ordinary species corresponds to plethysm
of cycle indices, can also be extended:

Definition 1.5.7. For two Γ-species F and G, define their composition to be the Γ-
species F ˝ G with structures given by (F ˝ G) [A] =

ś
πPP(A) (F [π] ˆ

ś
BPπ G [B])

where P (A) is the set of partitions of A and where γ P Γ acts on a (F ˝ G)-structure
by acting on the F-structure and the G-structures independently.

The requirement in Definition 1.5.2 that the action of Γ commutes with trans-
port implies that this is well-defined. Informally, for Γ-species F and G, we have
defined the composition F ˝ G to be the Γ-species of F-structures of G-structures,
where γ P Γ acts on an (F ˝ G)-structure by acting independently on the F-structure
and each of its associated G-structures. A formula similar to that Theorem 1.3.8 re-
quires a definition of the plethysm of Γ-symmetric functions, here taken from [14,
§3]:

13
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Definition 1.5.8. For two Γ-cycle indices f and g, their plethysm f ˝ g is a Γ-cycle
index defined by

(15) ( f ˝ g) (γ) = f (γ)
(

g (γ) (p1, p2, p3, . . .) , g
(

γ2
)

(p2, p4, p6, . . .) , . . .
)

.

This definition of Γ-cycle index plethysm is then indeed the correct operation
to pair with the composition of Γ-species:

THEOREM 1.5.9 (Theorem 3.1, [14]). If A and B are Γ-species and B (∅) = ∅, then

(16) ZΓ

A˝B = ZΓ

A ˝ ZΓ

B.

Thus, Γ-species admit the same sorts of ‘nice’ correspondences between struc-
tural descriptions (in terms of functorial algebra) and enumerative characteriza-
tions (in terms of cycle indices) that ordinary species do.

However, to make use of this theory for enumerative purposes, we also need
to be able to pass from the Γ-cycle index of a Γ-species to the ordinary cycle index
of its associated quotient species under the action of Γ. This will allow us to adopt
a useful strategy: if we can characterize some difficult-to-enumerate combinatorial
structure as quotients of more accessible structures, we will be able to apply the
full force of species theory to the enumeration of the prequotient structures, then
pass to the quotient when it is convenient. Exactly this approach will serve as the
core of both of the following chapters.

Since we intend to enumerate orbits under a group action, we apply a general-
ization of Burnside’s Lemma found in [7, Lemma 5]:

Lemma 1.5.10. If Γ and ∆ are finite groups and S a set with a (Γ ˆ ∆)-action, for any

δ P ∆ the number of Γ-orbits fixed by δ is 1
|Γ|

ř
γPΓ

fix (γ, δ).

Recall from Eq. (1) that, to compute the cycle index of a species, we need to
enumerate the fixed points of each σ P Sn. However, to do this in the quotient
species F/Γ is by definition to count the fixed Γ-orbits of σ in F under commuting
actions of Sn and Γ (that is, under an (Sn ˆ Γ)-action). Thus, Lemma 1.5.10 implies
the following:

THEOREM 1.5.11. For a Γ-species F, the ordinary cycle index of the quotient species
F/Γ is given by

(17) ZF/Γ
= ZΓ

F
..=

1

|Γ|

ÿ

γPΓ

ZΓ

F (γ) =
1

|Γ|

ÿ

ně0
σPSn
γPΓ

1

n!
(γ ¨ F [σ]) pσ.

where we define ZΓ

F = 1
|Γ|

ř
γPΓ

ZΓ

F (γ) for future convenience.

Note that this same result on cycle indices is implicit in [4, §2.2.3]. With it,
we can compute explicit enumerative data for a quotient species using cycle-index
information of the original Γ-species with respect to the group action, as desired.
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Recall from Theorems 1.2.2 and 1.2.3 that the exponential generating function
F (x) of labeled F-structures and the ordinary generating function F̃ (x) of unla-
beled F-structures may both be computed from the cycle index ZF of an ordinary
species F by simple substitutions. In the Γ-species context, we may perform similar
substitutions to derive analogous generating functions.

THEOREM 1.5.12. The exponential generating function Fγ (x) of labeled γ-invariant
F-structures is

(18) Fγ (x) = ZΓ

F (γ) (x, 0, 0, . . .) .

THEOREM 1.5.13. The ordinary generating function F̃γ (x) of unlabeled γ-invariant
F-structures is

(19) F̃γ (x) = ZΓ

F (γ)
(

x, x2, x3, . . .
)

.

These theorems follow directly from Eqs. (3) and (4), thinking of Fγ (x) and
ČFγ (x) as enumerating the combinatorial class of F-structures which are invariant
under γ.

Note that the notion of ‘unlabeled γ-invariant F-structures’ is always well-
defined precisely because Definition 1.5.2 requires that the action of Γ commutes
with transport of structures.

From these results and Theorem 1.5.11, we can the conclude:

THEOREM 1.5.14. The exponential generating function F (x) of labeled F/Γ-structures
is

(20) F (x) =
1

|Γ|

ÿ

γPΓ

Fγ (x) .

Similarly,

THEOREM 1.5.15. The ordinary generating function F̃ (x) of unlabeled F/Γ-structures
is

(21) F̃ (x) =
1

|Γ|

ÿ

γPΓ

F̃γ (x) .

Note also that all of the above extends naturally into the multisort species con-
text. We will use this extensively in Chapter 3. It also extends naturally to weighted
contexts, but we will not apply this extension here.
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CHAPTER 2

The species of bipartite blocks

2.1. Introduction

We first apply the theory of quotient species to the enumeration of bipartite
blocks.

Definition 2.1.1. A bicolored graph is a graph Γ each vertex of which has been as-
signed one of two colors (here, black and white) such that each edge connects ver-
tices of different colors. A bipartite graph (sometimes called bicolorable) is a graph Γ

which admits such a coloring.

There is an extensive literature about bicolored and bipartite graphs, including
enumerative results for bicolored graphs [12], bipartite graphs both allowing [8]
and prohibiting [13] isolated points, and bipartite blocks [11]. However, this final
enumeration was previously completed only in the labeled case. By considering
the problem in light of the theory of Γ-species, we develop a more systematic un-
derstanding of the structural relationships between these various classes of graphs,
which allows us to enumerate all of them in both labeled and unlabeled settings.

Throughout this chapter, we denote by BC the species of bicolored graphs and
by BP the species of bipartite graphs. The prefix C will indicate the connected
analogue of such a species.

We are motivated by the graph-theoretic fact that each connected bipartite graph
may be identified with exactly two bicolored graphs which are color-dual. In other
words, a connected bipartite graph is (by definition or by easy exercise, depending
on your approach) an orbit of connected bicolored graphs under the action of S2

where the nontrivial element τ reverses all vertex colors. We will hereafter treat
all the various species of bicolored graphs as S2-species with respect to this action
and use the theory developed in Section 1.5 to pass to bipartite graphs.

Although the theory of multisort species presented in Section 1.4 is in general
well-suited to the study of colored graphs, we will not need it here. The restric-
tions that vertex colorings place on automorphisms of bicolored graphs are simple
enough that we can deal with them directly.
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2.2. Bicolored graphs

We begin our investigation by directly computing the S2-cycle index for the
species BC of bicolored graphs with the color-reversing S2-action described previ-
ously. We will then use various methods from the species algebra of Chapter 1 to
pass to various other species.

2.2.1. Computing Z
S2
BC

(e). We construct the cycle index for the species BC

of bicolored graphs in the classical way, which in light of our S2-action will give

ZS2
BC

(e).
Recall the formula for the cycle index of a Γ-species in Eq. (12):

ZΓ

F (γ) =
ÿ

ně0

1

n!

ÿ

σPSn

fix (γ ¨ F [σ]) pσ.

Thus, for each n ą 0 and each permutation π P Sn, we must count bicolored
graphs on [n] for which π is a color-preserving automorphism. To simplify some
future calculations, we omit empty graphs and define BC [∅] = ∅. We note that
the number of such graphs in fact depends only on the cycle type λ $ n of the
permutation π, so we can use the cycle index formula in Eq. (2) interpreted as a
Γ-cycle index identity.

Fix some n ě 0 and let λ $ n. We wish to count bicolored graphs for which a
chosen permutation π of cycle type λ is a color-preserving automorphism. Each
cycle of the permutation must correspond to a monochromatic subset of the ver-
tices, so we may construct graphs by drawing bicolored edges into a given colored
vertex set. If we draw some particular bicolored edge, we must also draw every
other edge in its orbit under π if π is to be an automorphism of the graph. More-
over, every bicolored graph for which π is an automorphism may be constructed
in this way Therefore, we direct our attention first to counting these edge orbits for
a fixed coloring; we will then count colorings with respect to these results to get
our total cycle index.

Consider an edge connecting two cycles of lengths m and n; the length of its
orbit under the permutation is lcm (m, n), so the number of such orbits of edges
between these two cycles is mn/ lcm (m, n) = gcd (m, n). For an example in the
case m = 4, n = 2, see Fig. 2.1. The number of orbits for a fixed coloring is thenř

gcd (m, n) where the sum is over the multiset of all cycle lengths m of white
cycles and n of black cycles in the permutation π. We may then construct any
possible graph fixed by our permutation by making a choice of a subset of these

cycles to fill with edges, so the total number of such graphs is
ś

2gcd(m,n) for a fixed
coloring.

We now turn our attention to the possible colorings of the graph which are
compatible with a permutation of specified cycle type λ. We split our partition
into two subpartitions, writing λ = µ Y ν, where partitions are treated as multisets
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e

FIGURE 2.1. An edge e (solid) between two cycles of lengths 4 and 2
in a permutation and that edge’s orbit (dashed)

and Y is the multiset union, and designate µ to represent the white cycles and ν
the black. Then the total number of graphs fixed by such a permutation with a
specified decomposition is

fix (µ, ν) =
ź

iPµ
jPν

2gcd(i,j)

where the product is over the elements of µ and λ taken as multisets. However,
since µ and ν represent white and black cycles respectively, it is important to distin-
guish which cycles of λ are taken into each. The λi i-cycles of λ can be distributed

into µ and ν in (λi
µi
) = λi!/ (µi!νi!) ways, so in total there are

ś
i λi!/ (µi!νi!) =

zλ/
(

zµzν

)

decompositions. Thus,

fix (λ) =
zλ

zµzν
fix (µ, ν) =

ÿ

µYν=λ

zλ

zµzν

ź

iPµ
jPν

2gcd(i,j).

Therefore we conclude:

THEOREM 2.2.1.

(22) ZS2
BC

(e) =
ÿ

ną0

ÿ

µ,ν
µYν$n

pµYν

zµzν

ź

i,j

2gcd(µi,νj)

Explicit formulas for the generating function for unlabeled bicolored graphs
were obtained in [12] using conventional Pólya-theoretic methods. Conceptually,
this enumeration in fact largely mirrors our own. Harary uses the algebra of the

classical cycle index of the ‘line group1’ of the complete bicolored graph of which
any given bicolored graph is a spanning subgraph. He then enumerates orbits of

1The line group of a graph is the group of permutations of edges induced by permutations of ver-
tices.
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edges under these groups using the Pólya enumeration theorem. This is clearly
analogous to our procedure, which enumerates the orbits of edges under each spe-
cific permutation of vertices.

2.2.2. Calculating Z
S2
BC

(τ). Recall that the nontrivial element of τ P S2 acts
on bicolored graphs by reversing all colors.

We again consider the cycles in the vertex set [n] induced by a permutation π P
Sn and use the partition λ corresponding to the cycle type of π for bookkeeping.
We then wish to count bicolored graphs on [n] for which τ ¨ π is an automorphism,
which is to say that π itself is a color-reversing automorphism. Once again, the
number of bicolored graphs for which π is a color-reversing automorphism is in
fact dependent only on the cycle type λ. Each cycle of vertices must be color-
alternating and hence of even length, so our partition λ must have only even parts.
Once this condition is satisfied, edges may be drawn either within a single cycle
or between two cycles, and as before if we draw in any edge we must draw in its
entire orbit under π (since π is to be an automorphism of the underlying graph).
Moreover, all graphs for which π is a color-reversing automorphism and with a
fixed coloring may be constructed in this way, so it suffices to count such edge
orbits and then consider how colorings may be assigned.

Consider a cycle of length 2n; we hereafter describe such a cycle as having
semilength n. There are exactly n2 possible white-black edges in such a cycle. If n is
odd, diametrically opposed vertices have opposite colors, so we can have an edge
of length l = n (in the sense of connecting two vertices which are l steps apart in
the cycle), and in such a case the orbit length is exactly n and there is exactly one
orbit. See Fig. 2.2a for an example of this case. However, if n is odd but l ‰ n, the

orbit length is 2n, so the number of such orbits is n2´n
2n . Hence, the total number

of orbits for n odd is n2+n
2n =

P
n
2

T
. Similarly, if n is even, all orbits are of length 2n,

so the total number of orbits is n2

2n = n
2 =

P
n
2

T
also. See Fig. 2.2b for an example of

each of these cases.
Now consider an edge to be drawn between two cycles of semilengths m and

n. The total number of possible white-black edges is 2mn, each of which has an
orbit length of lcm (2m, 2n) = 2 lcm (m, n). Hence, the total number of orbits is
2mn/ (2 lcm (m, n)) = gcd (m, n).

All together, then, the number of orbits for a fixed coloring of a permutation
of cycle type 2λ (denoting the partition obtained by doubling every part of λ)

is
ř

i

Q
λi
2

U
+

ř
iăj gcd

(

λi, λj

)

. All valid bicolored graphs for a fixed coloring for

which π is a color-preserving automorphism may be obtained uniquely by mak-
ing some choice of a subset of this collection of orbits, just as in Section 2.2.1. Thus,
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d

(A) A diameter d (l = 3)

e

(B) A non-diameter e (l = 1)

FIGURE 2.2. Both types of intra-cycle edges and their orbits on a typ-
ical color-alternating 6-cycle

e

FIGURE 2.3. An edge e and its orbit between color-alternating cycles
of semilengths 2 and 1

the total number of possible graphs for a given vertex coloring is

ź

i

2

Q
λi
2

U ź

iăj

2gcd(λi,λj),

which we note is independent of the choice of coloring. For a partition 2λ with

l (λ) cycles, there are then 2l(λ) colorings compatible with our requirement that
each cycle is color-alternating, which we multiply by the previous to obtain the
total number of graphs for all permutations π with cycle type 2λ. Therefore we
conclude:

THEOREM 2.2.2.

(23) ZS2
BC

(τ) =
ÿ

ną0
n even

ÿ

λ$ n
2

2l(λ) p2λ

z2λ

ź

i

2

Q
λi
2

U ź

iăj

2gcd(λi,λj)
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2.3. Connected bicolored graphs

As noted in the introduction of this section, we may pass from bicolored to
bipartite graphs by taking a quotient under the color-reversing action of S2 only
in the connected case. Thus, we must pass from the species BC to the species
CBC of connected bicolored graphs to continue. It is a standard principle of graph
enumeration that a graph may be decomposed uniquely into (and thus species-
theoretically identified with) the set of its connected components. We must, of
course, require that the component structures are nonempty to ensure that the
construction is well-defined, as discussed in Section 1.3. This same relationship
holds in the case of bicolored graphs. Thus, the species BC of nonempty bicolored
graphs is the composition of the species CBC of nonempty connected bicolored
graphs into the species E+ = E ´ 1 of nonempty sets:

(24) BC = E+ ˝ CBC

Reversing the colors of a bicolored graph is done simply by reversing the colors
of each of its connected components independently; thus, once we trivially extend
the species E+ to an S2-species by applying the trivial action, Eq. (24) holds as an
identity of S2-species for the color-reversing S2-action described previously.

To use the decomposition in Eq. (24) to derive the S2-cycle index for CBC, we
must invert the S2-species composition into E+. In the context of the theory of

virtual species, this is possible; we write Con := (E ´ 1)x´1y to denote this virtual
species. We can derive from [3, §2.5, eq. (58c)] that its cycle index is

(25) ZCon =
ÿ

kě1

µ (k)

k
log (1 + pk)

where µ is the Möbius function. We can then rewrite Eq. (24) as

CBC = Con ˝BC

It then follows immediately from Theorem 1.5.9 that

THEOREM 2.3.1.

(26) ZS2
CBC

= ZCon ˝ ZS2
BC

2.4. Bipartite graphs

As we previously observed, connected bipartite graphs are naturally identified
with orbits of connected bicolored graphs under the color-reversing action of S2.
Thus,

CBP = CBCäS2
.

By application of Theorem 1.5.11, we can then directly compute the cycle index of
CBP in terms of previous results:
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THEOREM 2.4.1.

(27) ZCBP = ZS2
CBC

=
1

2

(

ZS2
CBC

(e) + ZS2
CBC

(τ)
)

.

Finally, to reach a result for the general bipartite case, we return to the graph-
theoretic composition relationship previously considered in Section 2.3:

BP = E ˝ CBP.

This time, we need not invert the composition, so the cycle-index calculation is
simple:

THEOREM 2.4.2.

(28) ZBP = ZE ˝ ZCBP.

A generating function for labeled bipartite graphs was obtained first in [13]
and later in [8]; the latter uses Pólya-theoretic methods to calculate the cycle index
of what in modern terminology would be the species of edge-labeled complete
bipartite graphs.

2.5. Nonseparable graphs

We now turn our attention to the notions of block decomposition and non-
separable graphs. A graph is said to be nonseparable if it is vertex-2-connected
(that is, if there exists no vertex whose removal disconnects the graph); every con-

nected graph then has a canonical ‘decomposition’2 into maximal nonseparable
subgraphs, often shortened to blocks. In the spirit of our previous notation, we
we will denote by NBP the species of nonseparable bipartite graphs, our object of
study.

The basic principles of block enumeration in terms of automorphisms and cy-
cle indices of permutation groups were first identified and exploited in [22]. In
[3, §4.2], a theory relating a specified species B of nonseparable graphs to the
species CB of connected graphs whose blocks are in B is developed using simi-
lar principles. It is apparent that the class of nonseparable bipartite graphs is itself
exactly the class of blocks that occur in block decompositions of connected bipar-
tite graphs; hence, we apply that theory here to study the species NBP. From [3,
eq. 4.2.27] we obtain

THEOREM 2.5.1.

(29a) NBP = CBP

(

CBP‚x´1y
)

+ X ¨ NBP 1 ´ X,

2Note that this decomposition does not actually partition the vertices, since many blocks may share
a single cut-point, a detail which significantly complicates but does not entirely preclude species-
theoretic analysis.
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where by [3, 4.2.26(a)] we have

(29b) NBP 1 = Con

(

X

CBP‚x´1y

)

.

We have already calculated the cycle index for the species CBP, so the calcula-
tion of the cycle index of NBP is now simply a matter of algebraic expansion.

A generating function for labeled bipartite blocks was given in [11], where their
analogue of Eq. (29) for the labeled exponential generating function for blocks
comes from [5]. However, we could locate no corresponding unlabeled enumera-
tion in the literature. The numbers of labeled and unlabeled nonseparable bipartite
graphs for n ď 10 as calculated using our method are given in Table 1.
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CHAPTER 3

The species of k-trees

3.1. Introduction

3.1.1. k-trees. Trees and their generalizations have played an important role
in the literature of combinatorial graph theory throughout its history. The multi-
dimensional generalization to so-called ‘k-trees’ has proved to be particularly fer-
tile ground for both research problems and applications.

The class ak of k-trees (for k P N) may be defined recursively:

Definition 3.1.1. The complete graph on k vertices (Kk) is a k-tree, and any graph
formed by adding a single vertex to a k-tree and connecting that vertex by edges
to some existing k-clique (that is, induced k-complete subgraph) of that k-tree is a
k-tree.

The graph-theoretic notion of k-trees was first introduced in 1968 in [10]; vertex-
labeled k-trees were quickly enumerated in the following year in both [19] and [2].
The special case k = 2 has been especially thoroughly studied; enumerations are
available in the literature for edge- and triangle-labeled 2-trees in [20], for plane 2-
trees in [21], and for unlabeled 2-trees in [10] and [9]. In 2001, the theory of species
was brought to bear on 2-trees in [6], resulting in more explicit formulas for the
enumeration of unlabeled 2-trees. An extensive literature on other properties of
k-trees and their applications has also emerged; Beineke and Pippert claim in [1]
that “[t]here are now over 100 papers on various aspects of k-trees”. However, no
general enumeration of unlabeled k-trees appears in the literature to date.

To begin, we establish two definitions for substructures of k-trees which we will
use extensively in our analysis.

Definition 3.1.2. A hedron of a k-tree is a (k + 1)-clique and a front is a k-clique.

We will frequently describe k-trees as assemblages of hedra attached along their
fronts rather than using explicit graph-theoretic descriptions in terms of edges and
vertices, keeping in mind that the structure of interest is graph-theoretic and not
geometric. The recursive addition of a single vertex and its connection by edges
to an existing k-clique in Definition 3.1.1 is then interpreted as the attachment of
a hedron to an existing one along some front, identifying the k vertices they have
in common. The analogy to the recursive definition of conventional trees is clear,
and in fact the class a of trees may be recovered by setting k = 1. For higher k, the
structures formed are still distinctively tree-like; for example, 2-trees are formed
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by gluing triangles together along their edges without forming loops of triangles
(see Fig. 3.1), while 3-trees are formed by gluing tetrahedra together along their
triangular faces without forming loops of tetrahedra.

a

d

c

b f

e

FIGURE 3.1. A (vertex-labeled) 2-tree

In graph-theoretic contexts, it is conventional to label graphs on their vertices
and possibly their edges. However, for our purposes, it will be more convenient to
label hedra and fronts. Throughout, we will treat the species ak of k-trees as a two-
sort species, with X-labels on the hedra and Y-labels on their fronts; in diagrams,
we will generally use capital letters for the hedron-labels and positive integers for
the front-labels (see Fig. 3.2).

2
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5

B

1

6

D

9

3

C

7

8

A

FIGURE 3.2. A (hedron-and-front–labeled) 2-tree

3.2. The dissymmetry theorem for k-trees

Studies of tree-like structures—especially those explicitly informed by the the-
ory of species—often feature decompositions based on dissymmetry, which allow
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enumerations of unrooted structures to be recharacterized in terms of rooted struc-
tures. For example, as seen in [3, §4.1], the species a of trees and A = a‚ of rooted
trees are related by the equation

A+ E2 (A) = a+A2

where the proof hinges on a recursive structural decomposition of trees. In this
case, the species A is relatively easy to characterize explicitly, so this equation
serves to characterize the species a, which would be difficult to do directly.

A similar theorem holds for k-trees.

THEOREM 3.2.1. The species aX
k and aY

k of k-trees rooted at hedra and fronts respec-

tively, aXY
k of k-trees rooted at a hedron with a designated front, and ak of unrooted k-trees

are related by the equation

(30) a
X
k + a

Y
k = ak + a

XY
k

as an isomorphism of species.

PROOF. We give a bijective, natural map from
(

aX
k + aY

k

)

-structures on the left

side to
(

ak + aXY
k

)

-structures on the right side. Define a k-path in a k-tree to be a
non-self-intersecting sequence of consecutively adjacent hedra and fronts, and de-
fine the length of a k-path to be the total number of hedra and fronts along it. Note
that the ends of every maximal k-path in a k-tree are fronts. It is easily verified,
as in [16], that every k-tree has a unique center clique (either a hedron or a front)
which is the midpoint of every longest k-path (or, equivalently, has the greatest
k-eccentricity, defined appropriately).

An
(

aX
k + aY

k

)

-structure on the left-hand side of the equation is a k-tree T rooted
at some clique c, which is either a hedron or a front. Suppose that c is the center of
T. We then map T to its unrooted equivalent in ak on the right-hand side. This map
is a natural bijection from its preimage, the set of k-trees rooted at their centers, to
ak, the set of unrooted k-trees.

Now suppose that the root clique c of the k-tree T is not the center, which we
denote C. Identify the clique c1 which is adjacent to c along the k-path from c to C.
We then map the k-tree T rooted at the clique c to the same tree T rooted at both c
and its neighbor c1. This map is also a natural bijection, in this case from the set of
k-trees rooted at vertices which are not their centers to the set aXY

k of k-trees rooted
at an adjacent hedron-front pair.

The combination of these two maps then gives the desired isomorphism of
species in Eq. (30). �

In general we will reformulate the dissymmetry theorem as follows:

Corollary 3.2.2. For the various forms of the species ak as above, we have

(31) ak = a
X
k + a

Y
k ´ a

XY
k .

as an isomorphism of ordinary species.
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This species subtraction is well-defined in the sense of Definition 1.3.3, since
the species aXY

k embeds in the species aX
k + aY

k by the centering map described in
the proof of Theorem 3.2.1. Essentially, Eq. (31) identifies each unrooted k-tree with
itself rooted at its center simplex.

Theorem 3.2.1 and the consequent Eq. (31) allow us to reframe enumerative
questions about generic k-trees in terms of questions about k-trees rooted in vari-
ous ways. However, the rich internal symmetries of large cliques obstruct direct
analysis of these rooted structures. We need to break these symmetries to proceed.

3.3. Coherently-oriented k-trees

3.3.1. Symmetry-breaking. In the case of the species A = a1
‚ of rooted trees,

we may obtain a simple recursive functional equation [3, §1, eq. (9)]:

(32) A = X ¨ E (A) .

This completely characterizes the combinatorial structure of the class of trees.
However, in the more general case of k-trees, no such simple relationship ob-

tains; attached to a given hedron is a collection of sets of hedra (one such set per
front), but simply specifying which fronts to attach to which does not fully specify
the attachings, and the structure of that collection of sets is complex. We will break
this symmetry by adding additional structure which we can later remove using
the theory of quotient species.

Definition 3.3.1. Let h1 and h2 be two hedra joined at a front f , hereafter said to
be adjacent. Each other front of one of the hedra shares k ´ 1 vertices with f ; we
say that two fronts f1 of h1 and f2 of h2 are mirror with respect to f if these shared
vertices are the same, or equivalently if f1 X f = f2 X f .

Observation 3.3.2. Let T be a coherently-oriented k-tree with two hedra h1 and h2 joined
at a front f . Then there is exactly one front of h2 mirror to each front of h1 with respect to
their shared front f .

Definition 3.3.3. Define an orientation of a hedron to be a cyclic ordering of the set
of its fronts and an orientation of a k-tree to be a choice of orientation for each of its
hedra. If two oriented hedra share a front, their orientations are compatible if they
correspond under the mirror bijection. Then an orientation of a k-tree is coherent if
every pair of adjacent hedra is compatibly-oriented.

See Fig. 3.3 for an example. Note that every k-tree admits many coherent
orientations—any one hedron of the k-tree may be oriented freely, and a unique
orientation of the whole k-tree will result from each choice of such an orientation
of one hedron. We will denote by~ak the species of coherently-oriented k-trees.

By shifting from the general k-tree setting to that of coherently-oriented k-trees,
we break the symmetry described above. If we can now establish a group action
on~ak whose orbits are generic k-trees we can use the theory of quotient species to
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3.3. COHERENTLY-ORIENTED K-TREES

extract the generic species ak. First, however, we describe an encoding procedure
which will make future work more convenient.
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A

FIGURE 3.3. A coherently-oriented 2-tree

3.3.2. Bicolored tree encoding. Although k-trees are graphs (and hence made
up simply of edges and vertices), their structure is more conveniently described
in terms of their simplicial structure of hedra and fronts. Indeed, if each hedron
has an orientation of its faces and we choose in advance which hedra to attach
to which by what fronts, the requirement that the resulting k-tree be coherently
oriented is strong enough to characterize the attaching completely. We thus pass
from coherently-oriented k-trees to a surrogate structure which exposes the salient
features of this attaching structure more clearly—structured bicolored trees in the
spirit of the R, S-enriched bicolored trees of [3, §3.2].

A (Ck+1,E)-enriched bicolored tree is a bicolored tree each black vertex of which
carries a Ck+1-structure (that is, a cyclic ordering on k + 1 elements) on its white
neighbors. (The E-structure on the black neighbors of each white vertex is already
implicit in the bicolored tree itself.) For later convenience, we will sometimes call
such objects k-coding trees, and we will denote by CTk the species of such k-coding
trees.

We now define a map β : ~ak [n] Ñ CTk [n]. For a given coherently-oriented
k-tree T with n hedra:

‚ For every hedron of T construct a black vertex and for every front a white
vertex, assigning labels appropriately.

‚ For every black-white vertex pair, construct a connecting edge if the white
vertex represents a front of the hedron represented by the black vertex.

‚ Finally, enrich the collection of neighbors of each black vertex with a Ck+1-
structure inherited directly from the orientation of the k-tree T.
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CHAPTER 3. THE SPECIES OF K-TREES

The resulting object β (T) is clearly a k-coding tree with n black vertices.
We can recover a T from β (T) by following the reverse procedure. For an

example, see Fig. 3.4, which shows the 2-coding tree associated to the coherently-
oriented 2-tree of Fig. 3.3. Note that, for clarity, we have rendered the black vertices
(corresponding to hedra) with squares.

4

B5

2

D1

6

C

9

3

A

8 7

FIGURE 3.4. A (Ck+1,E)-enriched bicolored tree encoding a
coherently-oriented 2-tree

THEOREM 3.3.4. The map β induces an isomorphism of species~ak » CTk.

PROOF. It is clear that β sends each coherently-oriented k-tree to a unique k-
coding tree, and that this map commutes with permutations on the label sets (and
thus is categorically natural). To show that β induces a species isomorphism, then,
we need only show that β is a surjection onto CTk [n] for each n. Throughout, we
will say ‘F and G have contact of order n’ when the restrictions Fďn and Gďn of the
species F and G to label sets of cardinality at most n are naturally isomorphic.

First, we note that there are exactly k! coherently-oriented k-trees with one
hedron—one for each cyclic ordering of the k + 1 front labels. There are also k!
coding trees with one black vertex, and the encoding β is clearly a natural bijection
between these two sets. Thus, the species~ak of coherently-oriented k-trees and CTk
of k-coding trees have contact of order 1.

Now, by way of induction, suppose ~ak and CTk have contact of order n ě 1.
Let C be a k-coding tree with n + 1 black vertices. Then let C1 and C2 be two dis-
tinct sub-k-coding trees of C, each obtained from C by removing one black node

30



3.3. COHERENTLY-ORIENTED K-TREES

which has only one white neighbor which is not a leaf. Then, by hypothesis, there
exist coherently-oriented k-trees T1 and T2 with n hedra such that β (T1) = C1

and β (T2) = C2. Moreover, β (T1 X T2) = β (T1) X β (T2), and this k-coding
tree has n ´ 1 black vertices, so T1 X T2 has n ´ 1 hedra. Thus, T = T1 Y T2 is a
coherently-oriented k-tree with n + 1 black hedra, and β (T) = C as desired. Thus,
β´1 (β (T1) Y β (T2)) = T1 Y T2 = T, and hence~ak and CTk have contact of order
n + 1. �

Thus,~ak and CTk are isomorphic as species; however, k-coding trees are much
simpler than coherently-oriented k-trees as graphs. Moreover, k-coding trees are
doubly-enriched bicolored trees as in [3, §3.2], for which the authors of that text
develop a system of functional equations which fully characterizes the cycle index
of such a species. We thus will proceed in the following sections with a study of
the species CTk, then lift our results to the k-tree context.

3.3.3. Functional decomposition of k-coding trees. With the encoding β :
~ak Ñ CTk, we now have direct graph-theoretic access to the attaching structure of
coherently-oriented k-trees. We therefore turn our attention to the k-coding trees
themselves to produce a recursive decomposition. As with k-trees, we will study
rooted versions of the species CTk of k-coding trees first, then use dissymmetry to
apply the results to unrooted enumeration.

Let CTX
k denote the species of k-coding trees rooted at black vertices, CTY

k de-

note the species of k-coding trees rooted at white vertices, and CTXY
k denote the

species of k-coding trees rooted at edges (that is, at adjacent black-white pairs). By

construction, a CTX
k -structure consists of a single X-label and a cyclically-ordered

(k + 1)-set of CTY
k -structures. See Fig. 3.5 for an example of this construction.

Similarly, a CTY
k -structure essentially consists of a single Y-label and a (possibly

empty) set of CTX
k -structures, but with some modification. Every white neighbor

of the black root of a CTX
k -structure is labeled in the construction above, but the

white parent of a CTX
k -structure in this recursive decomposition is already labeled.

Thus, the structure around a black vertex which is a child of a white vertex consists
of an X label and a linearly-ordered k-set of CTY

k -structures. Thus, a CTY
k -structure

consists of a Y-label and a set of pairs of an X label and an Lk-structure of CTY
k -

structures. We note here for conceptual consistency that in fact Lk = C 1
k+1 for L the

species of linear orders and C the species of cyclic orders and that E 1 = E for E the
species of sets; readers familiar with the R, S-enriched bicolored trees of [3, §3.2]
will recognize echoes of their decomposition in these facts.

Finally, a CT
XY
k -structure is simply an X ¨Lk

(

CT
Y
k

)

-structure as described above

(corresponding to the black vertex) together with a CTY
k -structure (corresponding

to the white vertex). For reasons that will become clear later, we note that we
can incorporate the root white vertex into the linear order by making it last, thus
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FIGURE 3.5. An example CTX
4 -structure, rooted at the X-vertex.

representing a CT
XY
k -structure instead as an X ¨ Lk+1

(

CT
Y
k

)

-structure. See Fig. 3.6
for an example of this construction.

The various species of rooted k-coding trees are therefore related by a system
of functional equations:

Observation 3.3.5. For the (ordinary) species CTX
k of X-rooted k-coding trees, CTY

k of

Y-rooted k-coding trees, and CTXY
k of edge-rooted k-coding trees, we have the functional

relationships

CTX
k = X ¨ Ck+1

(

CTY
k

)

(33a)

CTY
k = Y ¨ E

(

X ¨ Lk

(

CTY
k

)

)

(33b)

CTXY
k = CTY

k ¨ X ¨ Lk

(

CTY
k

)

= X ¨ Lk+1

(

CTY
k

)

(33c)

as isomorphisms of ordinary species.

However, a recursive characterization of the various ordinary species of k-
coding trees is insufficient to characterize the species of k-trees itself, since k-coding
trees represent k-trees with coherent orientations.
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FIGURE 3.6. An example CTXY
4 -structure, rooted at the X-vertex and

the thick edge adjoining it.

3.4. Generic k-trees

To remove the additional structure of coherent orientation imposed on k-trees
before their conversion to k-coding trees, we now apply the theory of Γ-species
developed in Section 1.5. In [6], the orientation-reversing action of S2 on Cyc[3]
is exploited to study 2-trees species-theoretically. We might hope to develop an
analogous group action under which general k-trees are naturally identified with
orbits of coherently-oriented k-trees under an action of Sk. Unfortunately:

Proposition 3.4.1. For k ě 3, no transitive action of any group on the set Cyc[k+1] of

cyclic orders on [k + 1] commutes with the action of Sk+1 that permutes labels.

PROOF. We represent the elements of Cyc[k+1] as cyclic permutations on the al-

phabet [k + 1]; then the action of Sk+1 that permutes labels is exactly the conjuga-
tion action on these permutations. Consider an action of a group G on Cyc[k+1] that

commutes with this conjugation action. Then, for any g P G and any c P Cyc[k+1],
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we have that

(34) g ¨ c = g ¨ ccc´1 = c (g ¨ c) c´1

and so c and g ¨ c commute. Thus, c commutes with every element of its orbit under
the action of G. But, for k ě 3, not all elements of Cyc[k+1] commute, so the action

is not transitive. �

We thus cannot hope to attack the coherent orientations of k-trees by acting di-
rectly on the cyclic orderings of fronts. Accordingly, we cannot simply apply the
results of Section 3.3.3 to compute a Γ-species CTk with respect to some hypotheti-
cal action of a group Γ whose orbits correspond to generic k-trees. Instead, we will
use the additional structure on rooted coherently-oriented k-trees; with rooting, the
cyclic orders around black vertices are converted into linear orders, for which there
is a natural action of Sk+1.

3.4.1. Group actions on k-coding trees. We have noted previously that ev-
ery labeled k-tree admits exactly k! coherent orientations. Thus, there are k! dis-
tinct k-coding trees associated to each labeled k-tree, which differ only in the Ck+1-
structures on their black vertices. Consider a rooted k-coding tree T and a black
vertex v which is not the root vertex. Then one white neighbor of v is the ‘parent’
of v (in the sense that it lies on the path from v to the root). We thus can convert
the cyclic order on the k + 1 white neighbors of v to a linear order by choosing the
parent white neighbor to be last. There is a natural, transitive, label-independent
action of Sk+1 on the set of such linear orders which induces an action on the cyclic
orders from which the linear orders are derived. However, only elements of Sk+1

which fix k + 1 will respect the structure around the black vertex we have chosen,
since its parent white vertex must remain last.

In addition, if we simply apply the action of some σ P Sk+1 to the order on
white neighbors of v, we change the coherently-oriented k-tree β´1 (T) to which T
is associated in such a way that it no longer corresponds to the same unoriented
k-tree. Let t denote the unoriented k-tree associated to β´1 (T); then there exists
a coherent orientation of t which agrees with orientation around v induced by σ.
The k-coding tree T1 corresponding to this new coherent orientation has the same
underlying bicolored tree as T but possibly different orders around its black ver-
tices. If we think of the k-coding tree T1 as the image of T under a global action of σ,
orbits under all of S will be precisely the classes of k-coding trees corresponding
to all coherent orientations of specified k-trees, allowing us to study unoriented
k-trees as quotients. The orientation of T1 will be that obtained by applying σ at
v and then recursively adjusting the other cyclic orders so that fronts which were
mirror are made mirror again. This will ensure that the combinatorial structure of
the underlying k-tree t is preserved.

Therefore, when we apply some permutation σ P Sk+1 to the white neighbors
of a black vertex v, we must also permute the cyclic orders of the descendant black
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vertices of v. In particular, the permutation σ1 which must be applied to some
immediate black descendant v1 of v is precisely the permutation on the linear order
of white neighbors of v1 induced by passing over the mirror bijection from v1 to v,
applying σ, and then passing back. We can express this procedure in formulaic
terms:

THEOREM 3.4.2. If a permutation σ P Sk+1 is applied to linearized orientation of
a black vertex v in rooted k-coding tree, the permutation which must be applied to the
linearized orientation a child black vertex v1 which was attached to the ith white child of
v (with respect to the linear ordering induced by the orientation) to preserve the mirror
relation is ρi (σ), where ρi is the map given by

(35) ρi (σ) : a ÞÑ σ (i + a) ´ σ (i)

in which all sums and differences are reduced to their representatives modulo k + 1 in
t1, 2, . . . , k + 1u.

PROOF. Let v1 denote a black vertex which is attached to v by the white vertex
1, which we suppose to be in position i in the linear order induced by the original
orientation of v. Let 2 denote the white child of v1 which is ath in the linear order
induced by the original orientation around v1. It is mirror to the white child 3 of
v which is (i + a)th in the linear order induced by the original orientation around
v. After the action of σ is applied, vertex 3 is σ (i + a)th in the new linear order
around v. We require that 2 is still mirror to 3, so we must move it to position
σ (i + a) ´ σ (i) when we create a new linear order around v1. This completes the
proof. �

This procedure is depicted in Fig. 3.7.
As an aside, we note that, although the construction ρ depends on k, the value

of k will be fixed in any given context, so we suppress it in the notation.
Any σ which is to be applied to a non-root black vertex v must of course fix

k + 1. We let ∆ : Sk Ñ Sk+1 denote the obvious embedding; then the image of
∆ is exactly the set of σ P Sk+1 which fix k + 1. We then have an action of Sk

on non-root black vertices induced by ∆. (Equivalently, we can think of Sk as the
subgroup of Sk+1 of permutations fixing k + 1, but the explicit notation ∆ will be
of use in later formulas.)

In light of Observation 3.3.5, we now wish to adapt these ideas into explicit Sk-

and Sk+1-actions on CTX
k , CTY

k , and CTXY
k whose orbits correspond to the various

coherent orientations of single underlying rooted k-trees. In the case of a Y-rooted
k-coding tree T, if we declare that σ P Sk acts on T by acting directly (as ∆ (σ)) on
each of the black vertices immediately adjacent to the root and then applying ρ-
derived permutations recursively to their descendants, orbits behave as expected.
The same Sk-action serves equally well for edge-rooted k-coding trees, where (for
purposes of applying the action of some σ) we can simply ignore the black vertex
in the root.
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µ

FIGURE 3.7. Application of a permutation σ to the orientation of a
non-root black vertex v. The vertices 2 and 3 are mirror in the orig-
inal orientation (lower set of edges), as shown by the arrows µ, so
we must preserve this mirror relation when we apply σ. The permu-
tation σ moves 3 from the (i + a)th place to the σ (i + a)th, so ρi (σ)
must carry 2 from the ath place to the (σ (i + a) ´ σ (i))th.

However, if we begin with an X-rooted k-coding tree, the cyclic ordering of the
white neighbors of the root black vertex has no canonical choice of linearization. If
we make an arbitrary choice of one of the k + 1 available linearizations, and thus
convert to an edge-rooted k-coding tree, the full Sk+1-action defined previously
can be applied directly to the root vertex. The orbit under this action of some
edge-rooted k-coding tree T with a choice of linearization at the root then includes
all possible linearizations of the root orders of all possible X-rooted k-coding trees
corresponding to the different coherent orientations of a single k-coding tree.

3.4.2. k-trees as quotients. Since these actions are label-independent, we may

now treat CTY
k and CTXY

k as Sk-species and CTXY
k as an Sk+1-species. The Sk-

and Sk+1-actions on CTXY
k are compatible, but we will make explicit reference to

CTXY
k as an Sk- or Sk+1-species whenever it is important and not completely clear

from context which we mean. As a result of the above results, we can then relate
the rooted Γ-species forms of CTk to the various ordinary species forms of generic
rooted k-trees in Theorem 3.2.1:

THEOREM 3.4.3. For the various rooted forms of the ordinary species ak as in Theo-
rem 3.2.1 and the various rooted Γ-species forms of CTk as in Observation 3.3.5 as Sk- and
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Sk+1-species, we have

a
Y
k = CTY

k äSk
(36a)

a
XY
k = CTXY

k äSk
(36b)

a
X
k = CTXY

k äSk+1
(36c)

as isomorphisms of ordinary species, where CTXY
k is an Sk-species in Eq. (36b) and an

Sk+1-species in Eq. (36c).

As a result, we have explicit characterizations of all the rooted components of
the original dissymmetry theorem, Theorem 3.2.1. To compute the cycle indices
of these components (and thus the cycle index of ak itself), we need only com-
pute the cycle indices of the various rooted CTk species, which we will do using
a combination of the functional equations in Eq. (33) and explicit consideration of
automorphisms.

3.5. Automorphisms and cycle indices

3.5.1. k-coding trees: CTY

k
and CT

XY

k
. Corollary 3.2.2 of the dissymmetry the-

orem for k-trees has a direct analogue in terms of cycle indices:

THEOREM 3.5.1. For the various forms of the species ak as in Section 3.2, we have

(37) Zak
= Z

aX
k
+ Z

aY
k

´ Z
CTXY

k
.

Thus, we need to calculate the cycle indices of the three rooted forms of ak.
From Theorem 3.4.3 and by Theorem 1.5.11 we obtain:

THEOREM 3.5.2. For the various forms of the species ak as in Section 3.2 and the
various Sk-species and Sk+1-species forms of CTk as in Section 3.4.1, we have

Z
aY

k
= Z

Sk

CTY
k

=
1

k!

ÿ

σPSk

Z
Sk

CTY
k

(σ)(38a)

Z
CTXY

k
= Z

Sk

CTXY
k

=
1

k!

ÿ

σPSk

Z
Sk

CTXY
k

(σ)(38b)

Z
aX

k
= Z

Sk+1

CTXY
k

=
1

(k + 1)!

ÿ

σPSk+1

Z
Sk+1

CTXY
k

(σ)(38c)

We thus need only calculate the various Γ-cycle indices for the Sk-species and

Sk+1-species forms of CTY
k and CTXY

k to complete our enumeration of general k-
trees.

In Observation 3.3.5, the functional equations for the ordinary species CTY
k and

CT
XY
k both include terms of the form Lk ˝ CT

Y
k . The plethysm of ordinary species
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does have a generalization to Γ-species, as given in Definition 1.5.7, but it does not

correctly describe the manner in which Sk acts on linear orders of CTY
k -structures

in these recursive decompositions. Recall from Section 1.5 that, for two Γ-species F
and G, an element γ P Γ acts on an (F ˝ G)-structure (colloquially, ‘an F-structure
of G-structures’) by acting on the F-structure and on each of the G-structures in-
dependently. In our action of Sk, however, the actions of σ on the descendant

CTY
k -structures are not independent—they depend on the position of the structure

in the linear ordering around the parent black vertex. In particular, if σ acts on
some non-root black vertex, then ρi (σ) acts on the white vertex in the ith place,
where in general ρi (σ) ‰ σ.

Thus, we consider automorphisms of these Sk-structures directly. First, we

consider the component species X ¨ Lk

(

CTY
k

)

.

Lemma 3.5.3. Let B be a structure of the species X ¨ Lk

(

CTY
k

)

. Let Wi be the CTY
k -

structure in the ith position in the linear order. Then some σ P Sk acts as an automorphism
of B if and only if, for each i P [k + 1], we have ∆

´1 (ρi (∆σ))Wi – Wσ(i).

PROOF. Recall that the action of σ P Sk is in fact the action of ∆σ P Sk+1. The X-
label on the black root of B is not affected by the application of ∆σ, so no conditions
on σ are necessary to accommodate it. However, the Lk-structure on the white
children of the root is permuted by ∆σ, and we apply to each of the Wi’s the action
of ∆

´1 (ρi (∆σ)). Thus, σ is an automorphism of B if and only if the combination of
applying ∆σ to the linear order and ∆

´1 (ρi (∆σ)) to each Wi is an automorphism.
Since σ ‘carries’ each Wi onto Wσ(i), we must have that ∆

´1 (ρi (∆σ))Wi – Wσ(i),
as claimed. That this suffices is clear. �

Consider a structure T of the Sk-species CTY
k and an element σ P Sk. As

discussed in Section 3.3.3, T is composed of a Y-label and a set of X ¨ Lk

(

CTY
k

)

-
structures. The permutation σ acts trivially on Y and E and acts on each of the

component X ¨ Lk

(

CTY
k

)

-structures independently. For each of these component
structures, by Lemma 3.5.3, we have that σ is an automorphism if and only if

∆σ carries each CTY
k -structure to its ∆

´1 (ρi (∆σ))-image. Thus, when construct-

ing σ-invariant X ¨ Lk

(

CTY
k

)

-structures, we must construct for each cycle of σ a

CTY
k -structure which is invariant under the application of all the permutations

∆
´1 (ρi (∆σ)) which will be applied to it along the cycle. For c the chosen cycle

of σ, this permutation is ∆
´1 (

ś
iPc ρi (∆σ)), where the product is taken over any

chosen linearization of the cyclic order of the terms in the cycle. Once a choice of

such a CTY
k -structure for each cycle of σ is made, we can simply insert the struc-

tures into the Lk-structure to build the desired σ-invariant X ¨ Lk

(

CTY
k

)

-structure.
Accordingly:
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THEOREM 3.5.4. The Sk-cycle index for the species CTY
k is characterized by the recur-

sive functional equation

(39) Z
Sk

CTY
k

(σ) = p1 [y]

ˆ ZE ˝
(

p1 [x] ¨
ź

cPC(σ)

Z
Sk

CTY
k

(

∆
´1

ź

iPc

ρi (∆σ)
)

(

p|c| [x] , p2|c| [x] , . . . ; p|c| [y] , p2|c| [y] , . . .
)

)

.

where C (σ) denotes the set of cycles of σ (as a k-permutation) and the inner product is
taken with respect to any choice of linearization of the cyclic order of the elements of c.

The situation for the Sk+1-species CTXY
k is almost identical. Recall from Sec-

tion 3.4.1 that σ P Sk+1 acts on a CTXY
k -structure T by applying σ directly to the

linear order on the k + 1 white neighbors of the root black vertex and applying
ρ-variants of σ recursively to their descendants. Thus, we once again need only
require that, along each cycle of σ, the successive white-vertex structures are pair-
wise isomorphic under the action of the appropriate ρi (σ). Thus, we again need

only choose for each cycle c P C (σ) a CT
Y
k -structure which is invariant underś

iPc ρi (σ). Accordingly:

THEOREM 3.5.5. The Sk+1-cycle index for the species CTXY
k is given by

(40) Z
Sk+1

CTXY
k

(σ) = p1 [x]

ˆ
ź

cPC(σ)

Z
Sk

CTY
k

(ź

iPc

ρi [σ]
)

(

p|c| [x] , p2|c| [x] , . . . , p|c| [y] , p2|c| [y] , . . .
)

.

under the same conditions as Theorem 3.5.4.

Terms of the form
ś

iPc ρi (σ) appear in Eqs. (39) and (40). For the simplification
of calculations, we note here a two useful results about these products.

First, we observe that certain ρ-maps preserve cycle structure:

Lemma 3.5.6. Let σ P Sk be a permutation of which i P [k] is a fixed point and let λ
be the map sending each permutation in Sk to its cycle type as a partition of k. Then
λ (ρi (σ)) = λ (σ).

PROOF. Suppose i + a P [k] is in an l-cycle of σ. Then

(ρi (σ))
j (a) = (ρi (σ))

j´1 (σ (i + a) ´ σ (i))

= (ρi (σ))
j´2 (σ (i + σ (i + a) ´ σ (i)) ´ σ (i))

= (ρi (σ))
j´2

(

σ2 (i + a) ´ σ2 (i)
)

...

=σj (i + a) ´ σj (i)
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But the values of (ρi (σ))
j (a) = σj (i + a)´ σj (i) are all distinct for j ď l, since i + a

is in an l-cycle and i is a fixed point of σ. Furthermore, (ρi (σ))
l (a) = σl (i + a) =

i + a. Thus, a is in an l-cycle of ρi (σ). This establishes a length-preserving bijection
between cycles of ρi (σ) and cycles of σ, so their cycle types are equal. �

But then we note that the products in the above theorems are in fact permuta-
tions obtained by applying such ρ-maps:

Lemma 3.5.7. Let σ P Sk be a permutation with a cycle c. Then λ (
ś

iPc ρi (σ)) is
determined by λ (σ) and |c|.

PROOF. Let c =
(

c1, c2, . . . , c|c|

)

. First, we calculate:

|c|ź

i=1

ρci
(σ) =ρc|c|

(σ) ˝ ¨ ¨ ¨ ˝ ρc2 (σ) ˝ ρc1 (σ)

=ρc|c|
(σ) ˝ ¨ ¨ ¨ ˝ ρc2 (σ) (a ÞÑ σ (c1 + a) ´ σ (c1))

=ρc|c|
(σ) ˝ ¨ ¨ ¨ ˝ ρc3 (σ) (a ÞÑ σ (c2 + σ (c1 + a) ´ σ (c1)) ´ σ (c2))

=ρc|c|
(σ) ˝ ¨ ¨ ¨ ˝ ρc3 (σ)

(

a ÞÑ σ2 (c1 + a) ´ σ2 (c1)
)

...

=a ÞÑ σ|c| (c1 + a) ´ σ|c| (c1)

=ρc1

(

σ|c|
)

.

But c1 is a fixed point of σ|c|, so by the result of Lemma 3.5.6, this has the same

cycle structure as σ|c|, which in turn is determined by λ (σ) and |c| as desired. �

From this and the fact that the terms of X-degree 1 in all Z
CTY

k
Sk

and Z
CTXY

k
Sk+1

are

equal (to p1 [x] p1 [y]
k+1), we can conclude that:

THEOREM 3.5.8. Z
CTY

k
Sk

(σ) and Z
CTXY

k
Sk+1

(σ) are class functions of σ (that is, they are

constant over permutations of fixed cycle type).

This will simplify computational enumeration of k-trees significantly, since the
number of partitions of k grows exponentially while the number of permutations
of [k] grows factorially.

3.5.2. k-trees: a
k
. We now have all the pieces in hand to apply Theorem 3.5.1

to compute the cycle index of the species ak of general k-trees. Equation (37) charac-
terizes the cycle index of the generic k-tree species ak in terms of the cycle indices

of the rooted species aX
k , aY

k , and CTXY
k ; Theorem 3.4.3 gives the cycle indices of

these three rooted species in terms of the Γ-cycle indices Z
Sk

CTY
k

, Z
Sk

CTXY
k

, and Z
Sk+1

CTXY
k

;
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and, finally, Theorems 3.5.4 and 3.5.5 give these Γ-cycle indices explicitly. By trac-
ing the formulas in Eqs. (39) and (40) back through this sequence of functional
relationships, we can conclude:

THEOREM 3.5.9 (Cycle index for the species of k-trees). For ak the species of gen-

eral k-trees, Z
Sk

CTY
k

as in Eq. (39), and Z
Sk+1

CTXY
k

as in Eq. (40) we have:

Zak
=

1

(k + 1)!

ÿ

σPSk+1

Z
Sk+1

CTXY
k

(σ) +
1

k!

ÿ

σPSk

Z
Sk

CTY
k

(σ) ´
1

k!

ÿ

σPSk

Z
Sk

CTXY
k

(σ)(41a)

= Z
Sk+1

CTXY
k

+ Z
Sk

CTY
k

´ Z
Sk

CTXY
k

.(41b)

Equation (41) in fact represents a recursive system of functional equations, since

the formulas for the Γ-cycle indices of CTY
k and CTXY

k are recursive. Computational
methods can yield explicit enumerative results. However, a bit of care will allow
us to reduce the computational complexity of this problem significantly.

3.6. Unlabeled enumeration and the generating function ãk (x)

Equation (41) in Theorem 3.5.9 gives a recursive formula for the cycle index of
the ordinary species ak of k-trees. The number of unlabeled k-trees with n hedra
is historically an open problem, but by application of Theorem 1.2.3 the ordinary
generating function counting such structures can be extracted from the cycle index
Zak

. Actually computing terms of the cycle index in order to derive the coefficients

of the generating function is, however, a computationally expensive process, since
the cycle index is by construction a power series in two infinite sets of variables.
The computational process can be simplified significantly by taking advantage of
the relatively straightforward combinatorial structure of the structural decompo-
sition used to derive the recursive formulas for the cycle index.

Recall from Theorem 1.5.13 that, for a Γ-species F, the ordinary generating func-
tion F̃γ (x) counting unlabeled γ-invariant F-structures is given by

F̃
(

γ
)

(x) = ZΓ

F (γ)
(

x, x2, x3, . . .
)

and that the ordinary generating function for counting unlabeled F/Γ-structures is
given by

F̃ (x) =
1

|Γ|

ÿ

γPΓ

F̃
(

γ
)

(x) .

These formula admits an obvious multisort extension, but we in fact wish to count
k-trees with respect to just one sort of label (the X-labels on hedra), so we will not
deal with multisort here. Each of the two-sort cycle indices in this chapter can be
converted to one-sort by substituting yi = 1 for all i. For the rest of this section, we
will deal directly with these one-sort versions of the cycle indices.
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We begin by considering the explicit recursive functional equations in Theo-
rems 3.5.4 and 3.5.5. In each case, by the above, the ordinary generating function is

exactly the result of substituting pi [x] = xi into the given formula. Thus, we have:

THEOREM 3.6.1. For CTY
k the Sk-species of Y-rooted k-coding trees and CTXY

k the
Sk+1-species of edge-rooted k-coding trees, the corresponding Γ-ordinary generating func-
tions are given by

Ą
CTY

k (σ) (x) = exp
(ÿ

ně1

xn

n
¨

ź

cPC(σn)

Ą
CTY

k

(

∆
´1

ź

iPc

ρi

(

∆σn
)

) (

x|c|
))

(42a)

and

Č
CTXY

k (σ) (x) = x ¨
ź

cPC(σ)

Ą
CTY

k

(ź

iPc

ρi (σ)
)

(

x|c|
)

.(42b)

where
Ą
CTY

k is an Sk-generating function and
Č
CTXY

k is an Sk+1-generating function.

However, as a consequence of Theorem 3.5.8, we can simplify these expressions
significantly:

Corollary 3.6.2. For CTY
k the Sk-species of Y-rooted k-coding trees and CT

XY
k the Sk+1-

species of edge-rooted k-coding trees, the corresponding Γ-ordinary generating functions
are given by

Ą
CTY

k (λ) (x) = exp
(ÿ

ně1

xn

n
¨

ź

iPλn

Ą
CTY

k

(

λi
)(

xi
)

)

(43a)

and

Č
CTXY

k (λ) (x) = x ¨
ź

iPλ

Ą
CTY

k

(

λi
)(

xi
)

(43b)

where λi denotes the ith ‘partition power’ of λ — that is, if σ is any permutation of cycle
type λ, then λi denotes the cycle type of σi — and where f (λ) (x) denotes the value of
f (σ) (x) for every σ of cycle type λ.

As in Theorem 3.5.4, we have recursively-defined functional equations, but
these are recursions of power series in a single variable, so computing their terms
is much less computationally expensive. Also, as an immediate consequence of

Theorem 3.5.8, we have that
Ą
CTY

k and
Č
CTXY

k are class functions of σ, so we can
restrict our computational attention to cycle-distinct permutations.

Moreover, the cycle index of the species ak, as seen in Eq. (41), is given simply

in terms of quotients of the cycle indices of the two Γ-species CTY
k and CTXY

k . Thus,
we also have:
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THEOREM 3.6.3. For ak the species of k-trees and
Ą
CTY

k and
Č
CTXY

k as in Theorem 3.6.1,
we have
(44)

ãk (x) =
1

(k + 1)!

ÿ

σPSk+1

Č
CTXY

k (σ) (x) +
1

k!

ÿ

σPSk

Ą
CTY

k (x) (σ) ´
1

k!

ÿ

σPSk

Č
CTXY

k (σ) (x) .

Again, as a consequence of Theorem 3.5.8 by way of Corollary 3.6.2, we can
instead write

Corollary 3.6.4. For ak the species of k-trees and
Ą
CT

Y
k and

Č
CT

XY
k as in Corollary 3.6.2, we

have
(45)

ãk (x) =
ÿ

λ$k+1

1

zλ

Č
CTXY

k (λ) (x) +
ÿ

λ$k

1

zλ

Ą
CTY

k (λ) (x) ´
ÿ

λ$k

1

zλ

Č
CTXY

k (λ Y t1u) (x) .

This direct characterization of the ordinary generating function of unlabeled
k-trees, while still recursive, is much simpler computationally than the character-
ization of the full cycle index in Eq. (41). For computation of the number of unla-
beled k-trees, it is therefore much preferred. Classical methods for working with
recursively-defined power series suffice to extract the coefficients quickly and ef-
ficiently. The results of some such explicit calculations are presented in Appen-
dix B.2.

3.7. Special-case behavior for small k

Many of the complexities of the preceding analysis apply only for k sufficiently
large. We note here some simplifications that are possible when k is small.

3.7.1. Ordinary trees (k = 1). When k = 1, an ak-structure is merely an or-
dinary tree with X-labels on its edges and Y-labels on its vertices. There is no
internal symmetry of the form that the actions of Sk are intended to break. The
actions of S2 act on ordinary trees rooted at a directed edge, with the nontrivial
element τ P S2 acting by reversing this orientation. The resulting decomposition
from the dissymmetry theorem in Theorem 3.2.1 and the recursive functional equa-
tions of Observation 3.3.5 then clearly reduce to the classical dissymmetry analysis
of ordinary trees.

3.7.2. 2-trees. When k = 2, there is a nontrivial symmetry at fronts (edges);
two triangles may be joined at an edge in two distinct ways. The imposition of
a coherent orientation on a 2-tree by directing one of its edges breaks this sym-
metry; the action of S2 by reversal of these orientations gives unoriented 2-trees
as its orbits. The defined action of S3 on edge-rooted oriented triangles is simply
the classical action of the dihedral group D6 on a triangle, and its orbits are unori-
ented, unrooted triangles. We further note that ρi is the trivial map on S2 and that
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ρi (σ) = (1 2) for σ P S3 if and only if σ is an odd permutation, both regardless of
i. We then have that:

ZS2

CTY
2

= p1 [y] ¨ ZE ˝
(

p1 [x] ¨
ź

cPC(σ)

ZS2

CTY
2

(e)
(

p|c| [x] , p2|c| [x] , . . . ; p|c| [y] , p2|c| [y] , . . .
)

)

(46a)

ZS3

CTXY
2

= p1 [x] ¨
ź

cPC(σ)

ZS2

CTY
2

(

ρ (σ)|c|) (p|c| [x] , p2|c| [x] , . . . ; p|c| [y] , p2|c| [y] , . . .
)

.

(46b)

where, by abuse of notation, we let ρ represent any ρi. By the previous, the ar-

gument ρ (σ)|c| in Eq. (46b) is τ if and only if σ is an odd permutation and c is of
odd length. This analysis and the resulting formulas for the cycle index Za2

are

essentially equivalent to those derived in [6].
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APPENDIX A

Computation in species theory

A.1. Cycle indices of compositional inverse species

In Section 2.5, our results included two references to the compositional inverse

CBP‚x´1y of the species CBP‚. Although we have not explored computational
methods in depth here, the question of how to compute the cycle index of the
compositional inverse of a specified species efficiently is worth some considera-
tion. Several methods are available, including one developed in [3, 4.2.19] as part
of the proof that arbitrary species have compositional inverses, but our preferred
method is one of iterated substitution.

Suppose that Ψ is a species (with known cycle index) of the form X + Ψ2 +
Ψ3 + . . . where Ψi is the restriction of Ψ to structures on sets of cardinality i and
that Φ is the compositional inverse of Ψ. Then Ψ ˝ Φ = X by definition, but by
hypothesis

X = Ψ ˝ Φ = Φ + Ψ2 (Φ) + Ψ3 (Φ) + . . .

also. Thus

(47) Φ = X ´ Ψ2 (Φ) ´ Ψ3 (Φ) ´ . . . .

This recursive equation is the key to our computational method. To compute the
cycle index of Φ to degree 2, we begin with the approximation Φ « X and then
substitute it into the first two terms of Eq. (47): Φ « X ´ Ψ2 (X) and thus Z

Φ
«

ZX ´ Z
Ψ2

˝ ZX. All terms of degree up to two in this approximation will be correct.

To compute the cycle index of Φ to degree 3, we then take this new approximation
Φ « X ´ Ψ2 (X) and substitute it into the first three terms of Eq. (47). This process
can be iterated as many times as are needed; to determine all terms of degree up
to n correctly, we need only iterate n times. With appropriate optimizations (in
particular, truncations), this method can run very quickly on a personal computer
to reasonably high degrees; we were able to compute Z

CBP‚x´1y to degree sixteen in

thirteen seconds.
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APPENDIX B

Enumerative tables

B.1. Bipartite blocks

With the tools developed in Chapter 2, we can calculate the cycle indices of the
species NBP of nonseparable bipartite graphs to any finite degree we choose us-
ing computational methods. This result can then be used to enumerate unlabeled
bipartite blocks. We have done so here using Sage 1.7.4 [23] and code listed in
Appendix C.1. The resulting values appear in Table 1.

TABLE 1. Enumerative data for unlabeled bipartite blocks with n hedra

n Unlabeled
1 1
2 1
3 0
4 1
5 1
6 5
7 8
8 42
9 146

10 956

B.2. k-trees

With the recursive functional equations for cycle indices of Section 3.5, we can
calculate the explicit cycle index for the species ak to any finite degree we choose
using computational methods; this cycle index can then be used to enumerate both
unlabeled and labeled (at fronts, hedra, or both) k-trees up to a specified number
n of hedra (or, equivalently, kn + 1 fronts). We have done so here for k ď 7 and
n ď 30 using Sage 1.7.4 [23] using code available in Appendix C.2. The resulting
values appear in Table 2.

We note that both unlabeled and hedron-labeled enumerations of k-trees stabi-
lize:

THEOREM B.2.1. For k ě n + 2, the numbers of unlabeled and hedron-labeled k-trees
are independent of k.
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PROOF. We show that the species ak and ak+1 have contact up to order k + 2 by

explicitly constructing a natural bijection. We note that in a (k + 1)-tree with no
more than k + 2 hedra, there will exist at least one vertex which is common to all
hedra. For any k-tree with no more than k + 2 hedra, we can construct a (k + 1)-
tree with the same number of hedra by adding a single vertex and connecting it by
edges to every existing vertex; we can then pass labels up from the (k + 1)-cliques
which are the hedra of the k-tree to the (k + 2)-cliques which now sit over them.
The resulting graph will be a (k + 1)-tree whose (k + 1)-tree hedra are adjacent
exactly when the k-tree hedra they came from were adjacent. Therefore, any two
distinct k-trees will pass to distinct (k + 1)-trees. Similarly, for any (k + 1)-tree
with no more than k + 2 hedra, choose one of the vertices common to all the hedra
and remove it, passing the labels of (k + 1)-tree hedra down to the k-tree hedra
constructed from them; again, adjacency of hedra is preserved. This of course
creates a k-tree, and for distinct (k + 1)-trees the resulting k-trees will be distinct.
Moreover, by symmetry the result is independent of the choice of common vertex,
in the case there is more than one. �

However, thus far we have neither determined a direct method for computing
these stabilization numbers nor identified a straightforward combinatorial charac-
terization of the structures they represent.
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TABLE 2. Enumerative data for k-trees with n hedra

(A) k = 1

n Unlabeled 1-trees
0 1
1 1
2 1
3 2
4 3
5 6
6 11
7 23
8 47
9 106

10 235
11 551
12 1301
13 3159
14 7741
15 19320
16 48629
17 123867
18 317955
19 823065
20 2144505
21 5623756
22 14828074
23 39299897
24 104636890
25 279793450
26 751065460
27 2023443032
28 5469566585
29 14830871802
30 40330829030

(B) k = 2

n Unlabeled 2-trees
0 1
1 1
2 1
3 2
4 5
5 12
6 39
7 136
8 529
9 2171

10 9368
11 41534
12 188942
13 874906
14 4115060
15 19602156
16 94419351
17 459183768
18 2252217207
19 11130545494
20 55382155396
21 277255622646
22 1395731021610
23 7061871805974
24 35896206800034
25 183241761631584
26 939081790240231
27 4830116366008952
28 24927175920361855
29 129047003236769110
30 670024248072778235
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Enumerative data for k-trees with n hedra, continued

(C) k = 3

n Unlabeled 3-trees
0 1
1 1
2 1
3 2
4 5
5 15
6 58
7 275
8 1505
9 9003

10 56931
11 372973
12 2506312
13 17165954
14 119398333
15 841244274
16 5993093551
17 43109340222
18 312747109787
19 2286190318744
20 16826338257708
21 124605344758149
22 927910207739261
23 6945172081954449
24 52225283886702922
25 394398440097305861
26 2990207055800156659
27 22753619938517594709
28 173727411594289881739
29 1330614569159767263501
30 10221394007530945428347

(D) k = 4

n Unlabeled 4-trees
0 1
1 1
2 1
3 2
4 5
5 15
6 64
7 331
8 2150
9 15817

10 127194
11 1077639
12 9466983
13 85252938
14 782238933
15 7283470324
16 68639621442
17 653492361220
18 6276834750665
19 60759388837299
20 592227182125701
21 5808446697002391
22 57289008242377068
23 567939935463185078
24 5656700148512008902
25 56583199285317631541
26 568236762643725657852
27 5727423267612393252616
28 57924486783495226147615
29 587672090447840337304025
30 5979782184127687211698807
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Enumerative data for k-trees with n hedra, continued

(E) k = 5

n Unlabeled 5-trees
0 1
1 1
2 1
3 2
4 5
5 15
6 64
7 342
8 2321
9 18578

10 168287
11 1656209
12 17288336
13 188006362
14 2105867058
15 24108331027
16 280638347609
17 3310098377912
18 39462525169310
19 474697793413215
20 5754095507495584
21 70216415130786725
22 861924378411516159
23 10636562125193377459
24 131890971196221692874
25 1642577274341274449247
26 20538830517384955820622
27 257767439475728146293796
28 3246108646710813383678978
29 41008581189552637540038747
30 519599497193547405843864376

(F) k = 6

n Unlabeled 6-trees
0 1
1 1
2 1
3 2
4 5
5 15
6 64
7 342
8 2344
9 19090

10 179562
11 1878277
12 21365403
13 258965451
14 3294561195
15 43472906719
16 589744428065
17 8171396893523
18 115094557122380
19 1642269376265063
20 23679803216530017
21 344396036645439675
22 5045351124912000756
23 74375422235109338507
24 1102368908826371717478
25 16417712341047912048640
26 245566461812077209025580
27 3687384661929075391318298
28 55566472746158319169779382
29 840092106663809502446963972
30 12739517442131428048314937036
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Enumerative data for k-trees with n hedra, continued

(G) k = 7

n Unlabeled 7-trees
0 1
1 1
2 1
3 2
4 5
5 15
6 64
7 342
8 2344
9 19137

10 181098
11 1922215
12 22472875
13 284556458
14 3849828695
15 54974808527
16 819865209740
17 12655913153775
18 200748351368185
19 3253193955012557
20 53619437319817482
21 895778170144927928
22 15129118461773051724
23 257812223121779545108
24 4426056869082751747930
25 76463433541541506345648
26 1328088941166844504424628
27 23175796698013212039339479
28 406103563562864890670029228
29 7142350290468621849814034057
30 126034923903699365819345698783
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Enumerative data for k-trees with n hedra, continued

(H) k = 8

n Unlabeled 8-trees
0 1
1 1
2 1
3 2
4 5
5 15
6 64
7 342
8 2344
9 19137

10 181204
11 1926782
12 22638677
13 289742922
14 3996857019
15 58854922207
16 916955507587
17 14988769972628
18 255067524402905
19 4487202163529135
20 81112295567987808
21 1498874117898285574
22 28195965395340358096
23 538126404726276758908
24 10391826059632904271057
25 202624626664206041379718
26 3982593421723767068438772
27 78804180647706388187446055
28 1568191570016583843925943321
29 31359266621157738864915907470
30 629755261439815181073415721542
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Enumerative data for k-trees with n hedra, continued

(I) k = 9

n Unlabeled 9-trees
0 1
1 1
2 1
3 2
4 5
5 15
6 64
7 342
8 2344
9 19137

10 181204
11 1927017
12 22652254
13 290351000
14 4019973352
15 59642496465
16 941751344429
17 15724551551655
18 275926445572426
19 5057692869843759
20 96275031338911591
21 1892687812366295682
22 38234411627616084843
23 790120238796588845615
24 16638524087850961727575
25 355878246778832856290372
26 7710423952280397990026132
27 168843592748278228259801752
28 3730285520855433827693340329
29 83027821492843727307516904184
30 1859625249087075723295908757282
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Enumerative data for k-trees with n hedra, continued

(J) k = 10

n Unlabeled 10-trees
0 1
1 1
2 1
3 2
4 5
5 15
6 64
7 342
8 2344
9 19137

10 181204
11 1927017
12 22652805
13 290391147
14 4022154893
15 59741455314
16 945737514583
17 15871943695637
18 281035862707569
19 5226147900656616
20 101612006684523937
21 2056425123910104429
22 43127730369661586804
23 933229734601789336024
24 20749443766669472108394
25 472211306357077710523863
26 10961384502758318928846970
27 258737420965101611169934566
28 6193917223279376307682721853
29 150039339181032274342778699887
30 3670778410024403632885217999313
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Code listing

Our results in Chapters 2 and 3 provide a framework for enumerating bipartite
blocks and general k-trees. However, there is significant work to be done adapt-
ing the theory into practical algorithms for computing the actual numbers of such
structures. Using the computer algebra system Sage 1.7.4 [23], we have done ex-
actly this. In each case, the script listed may be run with Sage by invoking

> sage --python scriptname.py args

on a computer with a functioning Sage installation. Alternatively, each code snip-
pet may be executed in the Sage ‘notebook’ interface starting at the comment
“MATH BEGINS HERE”; in this case, the final print... invocation should be
replaced with one specifying the desired parameters.

C.1. Bipartite blocks

The functional Eq. (29) characterizes the cycle index of the species NBP of bi-
partite blocks. Python/Sage code to compute the coefficients of the ordinary gen-

erating function ĆNBP (x) of unlabeled bipartite blocks explicitly follows in list-
ing C.1. Specifically, the generating function may be computed to degree n by
invoking

> sage --python bpblocks.py n

on a computer with a functioning Sage installation.

LISTING C.1. Sage code to compute numbers of bipartite blocks
(bpblocks.py)

1 from sage . all import *

import sys

3

# Take arguments from the command line

5 args = sys . argv

7 assert len ( args ) == 2

9 nval = int ( args [1])

11 ## MATH BEGINS HERE

# Set up a ring of symmetric functions
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13 p = SymmetricFunctionAlgebra(QQ , basis =" power ")

x = PowerSeriesRing (QQ , 'x '). gen ()

15

# Define basic objects

17 Zx = p [1]

19 Z2 = SymmetricGroup (2)

e = Z2. identity ()

21 t = Z2. gen () # The non - identity element

23 # Utility function for composing a generating function

into a cycle index

def gf_pleth(f , gf):

25 partmapper = lambda part : prod ( gf. subs ({x:x^i}) for i

in part )

return p. _apply_module_morphism(f , partmapper )

27

# Utility function for computing the ogf of unlabeled

structures of a species with cycle index f

29 def unlabeled (f):

partmapper = lambda part : x ^( part . size ())

31 return p. _apply_module_morphism(f , partmapper )

33 # Utility function for computing the egf of labeled

structures of a species with cycle index f

def labeled(f):

35 def partmapper ( part ):

if part . length () == part . size ():

37 return x^( part . length ())

else :

39 return 0

return p. _apply_module_morphism(f , partmapper )

41

# Compute a plethystic inverse of the symmetric function f

to degree n

43 def plethystic_inverse (f, n):

parent = f. parent ()

45

fstripped = f - f. restrict_degree (1 , exact = True )

47

improver = lambda F , i: Zx -

fstripped . restrict_degree (i,

exact = False ). plethysm (F). restrict_degree (i ,

exact = False )

49
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finv = Zx

51

for i in xrange(2 , n +1) :

53 finv = improver (finv , i)

55 return finv

57 # Utility function to compute the pointing of a cycle index

def pointed(f):

59 return Zx*f. derivative_with_respect_to_p1()

61 # Compute the cycle index of the species E of sets

def Ze(n):

63 return balanced_sum (1/ part . aut () * prod (p[l] for l in

part ) for i in xrange(1 ,n +1) for part in

Partitions (i))

65 # Compute the cycle index of the species Con which is the

plethystic inverse of E

def Zcon (n):

67 return plethystic_inverse ( Ze(n) , n)

69 # Utility function to compute the union of partitions

def union ( mu , nu):

71 return Partition ( sorted(mu. to_list () + nu. to_list () ,

reverse= true ))

73 # Utility function to compute the partwise multiple of a

partition

def partmult( mu , n ):

75 return Partition ([ part * n for part in mu. to_list () ])

77 # Compute the number of bicolored graphs invariant under a

permutation of cycle type mu acting on white vertices

and a permutation of cycle type nu acting on black

vertices

def efixedbcgraphs ( mu , nu ):

79 return 2^( sum ([ gcd (i, j) for i in mu for j in nu ]))

81 # Compute the number of bicolored graphs for which a

permutation of cycle type mu is a color - reversing

isomorphism

def tfixedbcgraphs ( mu ):
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83 return 2^( len (mu) + sum ([ integer_ceil (p /2) for p in

mu ]) + sum ([ gcd (mu[i], mu[j ]) for i in range (0 ,

len ( mu)) for j in range (i+1 , len (mu)) ]))

85 # Compute the Z2 - cycle index of the species BC of

bicolored graphs

def Zbc ( z2elt , n ):

87 assert z2elt in Z2

if z2elt == Z2. identity ():

89 return add ([ efixedbcgraphs ( pair [0] , pair [1]) *

p( union ( pair [0] , pair [1]) ) / ( pair [0]. aut () *

pair [1]. aut ()) for i in range (1 , n +1) for pair

in PartitionTuples (i , 2). list () ])

else :

91 return add ([ tfixedbcgraphs ( mu ) * p( partmult(mu ,

2))/ partmult (mu , 2). aut () for i in range (1 ,

integer_floor (n /2) +1) for mu in

Partitions (i). list () ])

93 # Compute the Z2 - cycle index of the species CBC of

connected bicolored graphs

def Zcbc ( z2elt , n ):

95 assert z2elt in Z2

if z2elt == Z2. identity ():

97 return Zcon (n). plethysm( Zbc (e ,

n)). restrict_degree (n , exact = False )

else :

99 scale_part = lambda n: lambda m: m. __class__ ([i*n

for i in m ])

pn_pleth = lambda f , n:

f. map_support ( scale_part (n))

101 f = lambda part : prod ( pn_pleth( Zbc (t^i , n), i) for

i in part )

return p. _apply_module_morphism( Zcon (n),

f). restrict_degree (n , exact = False )

103

# Compute the cycle index of the species CBP of connected

bipartite graphs

105 def Zcbp ( n ):

return 1/2 * ( Zcbc (e, n) + Zcbc (t , n))

107

# Compute the ordinary generating function for

nonseparable bipartite graphs

109 def Znbp_ogf( n ):

Zcbp_ci = Zcbp (n)
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111 Zcbp_dotinv_ogf =

unlabeled ( plethystic_inverse ( pointed( Zcbp_ci) , n))

Zcbp_comp_ogf = gf_pleth ( Zcbp_ci ,

Zcbp_dotinv_ogf ). add_bigoh (n +1)

113

Znbp_prime_ogf = gf_pleth( Zcon (n), (x/ Zcbp_dotinv_ogf

- 1). add_bigoh (n +1) ). add_bigoh (n) + 1

115

return Zcbp_comp_ogf + x * Znbp_prime_ogf - x

117

# Print the result

119 print Znbp_ogf ( nval )

C.2. k-trees

The recursive functional equations in Eqs. (43a), (43b) and (45) characterize the
ordinary generating function ãk (x) for unlabeled general k-trees. Python/Sage
code to compute the coefficients of this generating function explicitly follows in
listing C.2. Specifically, the generating function for unlabeled k-trees may be com-
puted to degree n by invoking

> sage --python ktrees.py k n

on a computer with a functioning Sage installation.
This code uses the class-function optimization of Theorem 3.5.8 extensively; as

a result, it is able to compute the number of k-trees on up to n hedra quickly even
for relatively large k and n. For example, the first thirty terms of the generating
function for 8-trees in Table 2b were computed on a modern desktop-class com-
puter in approximately two minutes.

LISTING C.2. Sage code to compute numbers of k-trees (ktrees.py)

1 from sage . all import *

import sys

3

# Take arguments from the command line

5 args = sys . argv

7 assert len ( args ) == 3

9 kval = int ( args [1])

nval = int ( args [2])

11

## MATH BEGINS HERE

13 # Set up a ring of formal power series

psr = PowerSeriesRing (QQ , 'x')

15 x = psr . gen ()

61



CHAPTER C. CODE LISTING

17 # Compute the generating function for unlabeled Y - rooted

k - trees fixed by permutations of a given cycle type mu.

# Note that mu should partition k

19 @cached_function

def unlY (mu , n):

21 if n <= 0:

return psr (1)

23 else :

ystretcher = lambda c, part :

unlY ( Partition ( partition_power (part , c)),

floor ((n -1) /c)). subs ({x:x**c })

25 descendant_pseries = lambda part :

prod ( ystretcher (c, part ) for c in part )

return sum (x**i/i *

descendant_pseries ( partition_power (mu ,

i)). subs ({x:x**i}) for i in xrange(1 ,

n +1) ). exp (n +1)

27

# Compute the generating function for unlabeled XY - rooted

k - trees fixed by permutations of a given cycle type mu.

29 # Note that mu should partition k+1

@cached_function

31 def unlXY (mu , n):

if n <= 0:

33 return psr (0)

else :

35 ystretcher = lambda c:

unlY ( Partition ( partition_power (mu , c) [: -1]) ,

floor ((n -1) /c)). subs ({x:x**c })

return (x * prod ( ystretcher (c) for c in

mu)). add_bigoh (n +1)

37

# Compute the generating functions for unlabeled X -, Y -,

and XY - rooted k - trees using quotients

39 ax = lambda k , n: sum (1/ mu. aut () * unlXY (mu , n) for mu in

Partitions (k +1) )

ay = lambda k , n: sum (1/ mu. aut () * unlY (mu , n) for mu in

Partitions (k))

41 axy = lambda k , n: sum (1/ mu. aut () * unlXY ( Partition ( mu +

[1]) , n) for mu in Partitions (k))

43 # Compute the generating function for unlabeled un - rooted

k - trees using the dissymmetry theorem

a = lambda k, n: ax(k, n) + ay(k , n) - axy (k, n)
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45

# Print the result

47 print a( kval , nval )
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