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Abstract

In Part I, we present a new algorithm for computing the zeta function of

a hyperelliptic curve over a finite field, based on Kedlaya’s approach via p-adic

cohomology. It is the first known algorithm for this task whose time complexity

is polynomial in the genus of the curve and quasilinear in the square root of the

characteristic of the base field. In Part II, we study and improve the Mazur–

Stein–Tate algorithm for computing the p-adic height of a rational point on an

elliptic curve E/Q, where p ≥ 5 is a prime of good ordinary reduction for E.



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction 1

1.1 Zeta functions of hyperelliptic curves over finite fields . . . . . . . 1

1.2 Computing p-adic heights on elliptic curves . . . . . . . . . . . . . 5

1.3 Notation and complexity assumptions . . . . . . . . . . . . . . . . 7

I Computing zeta functions of hyperelliptic curves over

finite fields 8

2 The zeta function and Kedlaya’s approach 9

2.1 The zeta function . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Construction of the Monsky–Washnitzer cohomology . . . . . . . 11

2.3 The action of Frobenius . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Computing the zeta function . . . . . . . . . . . . . . . . . . . . . 14

3 Linear recurrences with polynomial coefficients 18

3.1 The Chudnovsky–Chudnovsky algorithm . . . . . . . . . . . . . . 19

3.2 The Bostan–Gaudry–Schost algorithm . . . . . . . . . . . . . . . 21

iv



CONTENTS v

4 The new algorithm 25

4.1 Explicit reduction formulae . . . . . . . . . . . . . . . . . . . . . 26

4.2 An alternative expression for the Frobenius action . . . . . . . . . 32

4.3 The main algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Example computations 50

5.1 Examples showing dependence on p . . . . . . . . . . . . . . . . . 51

5.2 Near-cryptographic sizes . . . . . . . . . . . . . . . . . . . . . . . 52

II Computing p-adic heights on elliptic curves 57

6 The canonical p-adic height 58

6.1 Notation and definition of the p-adic height . . . . . . . . . . . . 58

6.2 The Mazur–Stein–Tate algorithm . . . . . . . . . . . . . . . . . . 60

7 Point multiplication in modular arithmetic 66

8 Computing the canonical p-adic sigma function 72

8.1 Some auxiliary power series . . . . . . . . . . . . . . . . . . . . . 73

8.2 A p-adic version of Brent’s algorithm . . . . . . . . . . . . . . . . 75

8.3 The differential equation for the sigma function . . . . . . . . . . 78

9 Computing the p-adic height 83

10 Example computations 86

10.1 Large prime case . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

10.2 High precision case . . . . . . . . . . . . . . . . . . . . . . . . . . 88

10.3 Asymptotic behaviour . . . . . . . . . . . . . . . . . . . . . . . . 88



CONTENTS vi

Bibliography 92



vii

Acknowledgments

First I must thank my advisor, Barry Mazur, for giving me the confidence to

tackle the problems in this thesis, for helping me to glimpse the bigger picture

surrounding my research, and for elucidating not only a wide swathe of mathe-

matics, but also what the path from graduate student to research mathematician

could look like.

Kiran Kedlaya has, without a doubt, unofficially played the role of second

advisor. His offhand suggestion that linear recurrences might somehow be usefully

applied to p-adic cohomology eventually led to the main results of Part I of this

thesis. He was closely involved in the development of these ideas, in particular

helping to illuminate for me the subtle issues of p-adic error propagation, and

encouraging me to consider the cryptographic applications of my results.

Many thanks to my dissertation committee — Barry Mazur, Kiran Kedlaya,

and Samit Dasgupta — for their thoughtful comments on the manuscript and

their assistance in polishing the final draft.

All of the results in this thesis were ultimately motivated by the problem of

computing p-adic heights on elliptic curves. I owe my introduction to this beauti-

ful problem to William Stein, whom I met at a graduate student workshop that he

organised in August 2006. Since then I have learned so much from William about

the practical aspects of computational number theory, and have been tremen-

dously inspired by his boundless energy and never-say-die approach to solving

problems. William also kindly provided access to the machine informally known

as sage.math, funded by NSF grant #0555776 and hosted at the University of

Washington, on which the example computations in Chapter 5 and Chapter 10



ACKNOWLEDGMENTS viii

were performed.

My most valuable intellectual resource over the past few years has been the

graduate student body in the mathematics department at Harvard. I would like to

single out Jonathan (Jay) Pottharst for his friendship, generosity, infinite patience,

and at times seemingly infinite knowledge.

Thanks to Christian Wuthrich for several discussions about his Ph.D. thesis

that led to the algorithm of Chapter 7, several anonymous referees who made

helpful suggestions concerning the published versions of the material in this thesis,

and Andrew Sutherland, whose practical interest in my results led me to push the

algorithm of Part I and its implementation much further than I would otherwise

have dared try.

For the last five years, my parents, Helen and Andrew, and my sister Lisa, have

supported me with their love and with regular shipments of Vita-Weat crackers

and Tim Tams (delicacies native to the Australian continent) from a distance of

some 16,000 kilometres (≈ 10,000 miles).

Finally, my wife Lara, also my closest friend, who means everything to me,

and who on reading this sentence characteristically decried its lack of a main verb.



Chapter 1

Introduction

This thesis consists of two parts, largely independent of each other.

1.1 Zeta functions of hyperelliptic curves over

finite fields

In Part I we present a new algorithm for computing the zeta function of a hyper-

elliptic curve over a finite field. It is the first known algorithm for this task whose

running time is polynomial in the genus of the curve and quasilinear in the square

root of the characteristic of the base field. More precisely, we have:

Theorem 1. Let C be a hyperelliptic curve of genus g over Fq, where q = pn. Let

ZC(T ) =
PC(T )

(1− T )(1− qT )

be the zeta function of C.

(a) Let N ≥ 1, and assume that p > (2N − 1)(2g + 1). Then PC(T ) may be

1
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computed modulo pN in time

Õ(p1/2N5/2gωn+N4g4n2 log p).

(b) If p > (gn + 4g + 3)(2g + 1), then PC(T ) may be computed (as an element

of Z[T ]) in time

Õ(p1/2gω+5/2n7/2 + g8n6 log p).

(For the meaning of the symbols Õ and ω, see §1.3 below.)

Theorem 1 is proved in Chapter 2, §2.4. For sufficiently large p, the running

times are dominated by the terms involving p1/2. We have made no attempt to

optimise the exponents of N , g and n in the secondary terms; no doubt these

could be improved.

To develop the new algorithm, we start with Kedlaya’s approach based on

Monsky–Washnitzer cohomology [Ked01]. After rearranging the algebra of Ked-

laya’s algorithm somewhat, and writing out explicit formulae for the cohomological

reduction steps, we are able to reformulate the algorithm in terms of certain linear

recurrences with polynomial coefficients. We then apply a baby-step/giant-step

algorithm of Chudnovsky and Chudnovsky [CC88] to solve these recurrences ef-

ficiently. The algorithm itself has already appeared in [Har07], but some of the

example computations in this thesis are new.

There are of course many other algorithms available for computing PC(T ),

varying greatly in their running time complexities as functions of p, n and g.

Chapter 17 of [CFA+06] gives an excellent and detailed survey. The ‘holy grail’ of

this area of research is to find an algorithm whose complexity is simultaneously
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polynomial in log p, n and g; in other words, polynomial in the amount of data

needed to write down the equation of C. No such algorithm is presently known.

Asymptotically speaking, the running time given in Theorem 1(b) does not

beat existing algorithms, with respect to any of the individual parameters. For

example, if we fix g and n, the Schoof–Pila algorithm [Pil90] has running time only

polylogarithmic in p, so theoretically will outstrip our algorithm for sufficiently

large p; in the other direction, for fixed p, Kedlaya’s algorithm [Ked01] eventually

performs better for sufficiently large n or g (indeed our algorithm will no longer

be available, due to the hypothesis imposed on p).

Nevertheless, the square-root dependence on p and polynomial dependence on

g mean that in practice the new algorithm is very efficient over a wide range of pa-

rameter choices. For example, Kedlaya and Sutherland [KS08] recently conducted

a theoretical and empirical analysis of a suite of algorithms for determining zeta

functions, for the purpose of computing L-functions of low-genus hyperelliptic

curves over Q. To compute the L-function of a single such curve H/Q to some

prescribed accuracy, they must compute the zeta function of the reduction of H

modulo p for all p up to some prescribed bound. For genus three curves they find

that our algorithm is easily the best choice for p above about 218 [KS08, Table 4].

Of course, we know that Schoof–Pila will eventually win for sufficiently large p

— but while Schoof–Pila has been successfully used for impressively large point-

counting problems in genus two [GS04], the dependence on g is exponential, and

to the author’s knowledge it has never been implemented in genus three or higher.

With our new algorithm, the largest example we have tried in genus three is for p

near 253 ≈ 1016 (see Chapter 5 for more details); it is not clear whether Schoof–

Pila would be competitive yet in this range. Certainly, as pointed out by Kedlaya
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and Sutherland, if one needs to handle all p up to some bound for a single curve

over Q, Schoof–Pila is not relevant for the feasible range of computation.

We mention also the algorithm of Bostan, Gaudry and Schost [BGS07], which

seems to be quite closely related to ours. The running time of their algorithm

is, like ours, quasi-linear in p1/2 and polynomial in g, but they are only able to

recover the zeta function modulo p (they must then use other techniques to fill

in the missing information). Their approach is based on the Hasse–Witt matrix

rather than on p-adic cohomology. At one stage they introduce O(g) artificial

p-adic ‘safety digits’, partly explaining why the exponent of g in their running

time is worse than ours, but their algorithm is not truly p-adic in character. We

will use many of their results concerning linear recurrences in Chapter 3.

It is natural to ask to what extent our algorithm may be generalised: can we

give an algorithm for computing zeta functions of varieties more general than hy-

perelliptic curves, based on p-adic cohomology, whose running time is quasilinear

in p1/2? Indeed, one of the most promising aspects of Kedlaya’s approach based

on p-adic cohomology is that it should be applicable to a wide class of varieties,

including those of dimension greater than one. We expect some varieties to suc-

cumb to our new method relatively easily, for example superelliptic curves (see

[GG01] for a discussion on extending Kedlaya’s original algorithm to this case).

However, for more general varieties the picture is not so clear. The main difficulty

is that our algorithm seems to depend quite strongly on the form of the equation

defining the variety. In the case of a hyperelliptic curve y2 = f(x), the important

feature seems to be that there is only a single term y2 on the left, so that its p-th

power (y2)p still consists of a single monomial, allowing us to control the number

of terms appearing in the power series of Chapter 4, §4.2.
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Another possible direction for generalisation is to try to compute the zeta

function for hyperelliptic curves in a parameterised family, more efficiently than

they could be computed one at a time. Hubrechts recently adapted Kedlaya’s

algorithm for this purpose [Hub07], using Dwork’s deformation theory and some

ideas of Lauder. One interesting application he gives is to improve the running

time complexity of Kedlaya’s algorithm with respect to n (the degree of the field

extension). However, his algorithm, like Kedlaya’s, is only practical for small p.

It would be interesting to study how to merge those ideas with our algorithm, to

perhaps obtain an algorithm suitable for larger p.

1.2 Computing p-adic heights on elliptic curves

In Part II we study the problem of computing the canonical p-adic height of a

rational point on an elliptic curve, in the good ordinary case, assuming that p ≥ 5.

The p-adic height appears, via the p-adic regulator term, in the p-adic analogues

of the Birch and Swinnerton–Dyer conjectures [MTT86]. Fast machine evaluation

of the height is an essential tool for numerical investigation of these conjectures.

The first computationally feasible method for evaluating the p-adic height to a

reasonable degree of p-adic precision was given by Mazur, Stein and Tate [MST06].

Their algorithm proceeds in two steps. First they compute the value of the p-adic

modular form E2 associated to the elliptic curve. The complexity of this step was

not explicitly discussed in [MST06]; we will verify the following.

Theorem 2. Let E/Q be an elliptic curve with good ordinary reduction at p ≥ 5,

let ω be an invariant differential for E, and let N ≥ 1.

(a) The value of E2(E, ω) may be computed modulo pN in time Õ(pN2).
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(b) Suppose that p > 6N . The value of E2(E, ω) may be computed modulo pN

in time Õ(p1/2N5/2 +N4 log p).

To prove this, we will follow the method proposed by [MST06], using an in-

terpretation (due to Katz) of E2 as the ‘slope’ of the unit-root eigenspace of a

Frobenius action on p-adic cohomology. Mazur, Stein and Tate suggest computing

the Frobenius action explicitly via Kedlaya’s algorithm; this yields the running

time estimate in part (a). The estimate in part (b), which is superior for large p,

is obtained by replacing Kedlaya’s algorithm by our new algorithm for computing

the Frobenius matrix (Theorem 5). This is the only link between Part I and Part

II of this thesis.

Using the value of E2 as input, Mazur, Stein and Tate then compute the series

expansion of the canonical p-adic sigma function associated to the curve, and use

the sigma function to compute the p-adic height hp(P ) of an arbitrary rational

point P ∈ E(Q). The bulk of Part II of this thesis is devoted to improving

the asymptotic complexity of their algorithm. Along the way we also perform a

thorough analysis of precision, enabling us to guarantee that the output is correct

to a prescribed number of p-adic digits; such an analysis was not carried out in

[MST06]. We prove the following in Chapter 9, assuming that E and P are fixed:

Theorem 3. Given E2(E, ω) modulo pN ′−2 as input, hp(P ) may be computed

modulo pN in time Õ(N3/2 log2 p).

Here N ′ = N + O(1) is an adjusted precision parameter, defined in Chapter

9. The complexity achieved by Theorem 3 improves on that of the algorithm

of [MST06] with respect to both p and N ; the former is reduced from quadratic

in p to only polylogarithmic in p, the latter from N4 to only N3/2. Much of
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Part II appeared in [Har08]; this thesis incorporates several further asymptotic

improvements, in particular the use of the parameter λ in Chapter 9, which reduces

the running time by a factor of N1/2.

1.3 Notation and complexity assumptions

For running time estimates, we will write F (X) = Õ(X) to mean that F (X) =

O(X logk X) for some k ≥ 0 as X → ∞, and we say that F (X) is quasilinear in

X, or soft-linear in X.

Running times will generally refer to bit-complexity, except in Chapter 3,

where we temporarily work in an algebraic model of computation.

For the algebraic model, let R be a commutative ring with identity. We denote

by M(d) the number of ring operations required to multiply polynomials of degree

d over R. We assume throughout that fast polynomial arithmetic is being used;

that is, that M(d) = Õ(d) (in fact we may take M(d) = O(d log d log log d)) by

the Cantor–Kaltofen theorem [CK91]). We denote by MM(m) the number of ring

operations required to multiply m × m matrices with entries in R. We assume

that MM(m) = O(mω) for some 2 ≤ ω ≤ 3. We have ω = 3 for the naive

matrix multiplication algorithm; see [Str69] for the simplest example of a matrix

multiplication algorithm achieving ω < 3.

For bit-complexity, we assume that asymptotically fast integer arithmetic is

used; in particular, that addition, subtraction, multiplication and division in

Z/LZ each require time Õ(logL). We assume that auxiliary costs (loop indexing,

branching, etc) are all subsumed under the total arithmetic cost.



Part I

Computing zeta functions of

hyperelliptic curves over finite

fields
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Chapter 2

The zeta function and Kedlaya’s

approach

In this chapter we review the definition of the zeta function, describe the theo-

retical framework shared by Kedlaya’s algorithm [Ked01] and our new algorithm,

and sketch how Kedlaya’s algorithm works.

2.1 The zeta function

Throughout Part I we fix the following notation. Let q = pn be a prime power; we

assume that p ≥ 3 unless otherwise noted. The finite fields with p and q elements

are denoted by Fp and Fq. The p-adic field is denoted by Qp, and its degree n

unramified extension by Qq. Their rings of integers are Zp and Zq respectively.

We denote by vp : Qp → Z (or vp : Qq → Z) the additive p-adic valuation,

normalised so that vp(p) = 1.

Fix a hyperelliptic curve C/Fq of genus g ≥ 1, with a rational Weierstrass

9
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point. We assume that it is the projective closure of the affine plane curve given

by

y2 = Q(x),

where Q ∈ Fq[x] is monic and squarefree, of degree 2g + 1.

The zeta function of C is the power series

ZC(T ) = exp

(∑
k≥1

#C(Fqk)
T k

k

)
.

It is a generating function that encodes the number of points of C over all finite

extensions of Fq. According to the Weil Conjectures and Riemann Hypothesis for

this curve, it is a rational function of the form

ZC(T ) =
PC(T )

(1− T )(1− qT )
,

where PC(T ) =
∑2g

i=0 aiT
i is a polynomial of degree 2g with integer coefficients,

and moreover

a0 = 1, a2g−i = qg−iai, 0 ≤ i ≤ g.

Determining the zeta function of C is equivalent to determining PC(T ), or simply

the list of integers a1, . . . , ag.
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2.2 Construction of the Monsky–Washnitzer co-

homology

The Monsky–Washnitzer cohomology assigns to each smooth affine variety X over

Fq a sequence of finite dimensional vector spaces H i(X) (i = 0, 1, . . .) over Qq;

the q-th power Frobenius on X induces a Qq-linear map F : H1(X) → H1(X).

The idea of Kedlaya’s algorithm is to take a certain affine variety C ′, obtained

from C by deleting several points, and explicitly compute the matrix of F on a

particularly simple basis for H1(C ′). The zeta function of C ′ (and hence of C) is

then determined from this matrix via a Lefschetz fixed-point theorem. The reason

that Monsky–Washnitzer cohomology is so attractive for computational purposes

is that it is so explicit ; approximations to elements of H1(X) can easily be written

down and manipulated (at least by a computer).

In this section we describe explicitly the construction of the first Monsky–

Washnitzer cohomology of C ′, which is essentially a de Rham cohomology obtained

from a certain ring of overconvergent power series on a characteristic zero lift of

C ′. For proofs of various facts concerning Monsky–Washnitzer cohomology that

we use in this and the following sections, we refer the reader to the article [vdP86]

and also to Kedlaya’s paper [Ked01]. Another nice expository paper is [Edi03].

Following Kedlaya, we define C ′ to be the affine variety consisting of C minus

the point at infinity and the points whose x-coordinates are the zeroes of Q(x).

The coordinate ring of C ′ is

A = Fq[x, y, y
−1]/(y2 −Q(x)).
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We select an arbitrary lift Q ∈ Zq[x] of Q(x), also monic and of degree 2g + 1.

Let

A = Zq[x, y, y
−1]/(y2 −Q(x))

be the lift of A associated to Q(x). Let A† be the weak completion of A introduced

by Monsky and Washnitzer; explicitly, A† is the ring of power series

∑
i≥0

∑
j∈Z

ai,jx
iyj, ai,j ∈ Zq,

such that vp(ai,j) → ∞ at least linearly in max(i, |j|), modulo the relation y2 =

Q(x).

The module Ω of differentials of A† over Qq consists of expressions of the form

∑
i≥0

∑
j∈Z

ai,jx
iyjdx/y, ai,j ∈ Qq,

where the ai,j are subject to the same decay conditions as above. Two differentials

ω, η ∈ Ω are cohomologous, denoted ω ∼ η, if there exists some f ∈ A†⊗Qq such

that ω − η = df . The quotient of Ω by this relation is by definition H1(C ′), the

first Monsky–Washnitzer cohomology of C ′.

We will work mainly in the submodule Ω− of differentials on which the hyper-

elliptic involution acts by −1; explicitly, these have series representations of the

form ∑
s≥0

∑
t∈Z

as,tx
sy2tdx/y, as,t ∈ Qq,

again with the same decay conditions. The corresponding subspace H1(C ′)− of

H(C ′) has dimension 2g, with basis {xidx/y}2g−1
i=0 . In other words, any differential
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ω ∈ Ω− is cohomologous to a unique η = B(x)dx/y where B ∈ Qq[x] has degree

at most 2g − 1. We call η the reduction of ω.

2.3 The action of Frobenius

Let σ : A→ A be the absolute p-th power Frobenius map. This may be lifted to

a Zp-endomorphism of A† as follows (we denote the lift by σ also).

On Zq, we take the canonical Witt vector Frobenius. We set xσ = xp, and

yσ = (Q(x)σ)1/2

= yp

(
1 +

Qσ(xp)−Q(x)p

y2p

)1/2

= yp

∞∑
k=0

(
1/2

k

)
(Qσ(xp)−Q(x)p)k

y2pk
.

The above series converges in A† (because Qσ(xp) − Q(x)p is divisible by p); the

definition is essentially forced by the condition that y2 should get mapped to

Q(x)σ. Similarly for y−1 we put

(y−1)σ = y−p

∞∑
k=0

(
−1/2

k

)
(Qσ(xp)−Q(x)p)k

y2pk
. (2.1)

We further extend σ to Ω− by σ(f dg) = fσd(gσ). This induces a map in

cohomology

σ : H1(C ′)− → H1(C ′)−.

This map is not Qq-linear; it is only semi-linear, that is σ(αω) = ασσ(ω) for

α ∈ Qq.
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2.4 Computing the zeta function

We first consider the computation of the matrix of σ. Kedlaya’s algorithm, which

we sketch in §2.4.1 below, completes this task within the following complexity

bound.

Theorem 4. Kedlaya’s algorithm computes the matrix of the p-th power Frobenius

on H1(C ′)− to precision pN in time

Õ(pN2g2n).

For the proof, we refer the reader to Kedlaya’s analysis [Ked01, pp. 335–336],

and the discussion preceding Theorem 2 in [GG03]. Kedlaya assumes that p is

fixed (and small), and consequently does not show the linear dependence on p,

whereas Gaudry and Gürel study the dependence on p explicitly. Neither paper

separates the contribution ofN from that of g and n (they both assume throughout

that N = O(gn)), but it is straightforward to track the contributions separately

in their arguments.

The main result of Part I of this thesis is the following.

Theorem 5. Let N ≥ 1, and suppose that

p > (2N − 1)(2g + 1). (2.2)

Then the matrix of the p-th power Frobenius on H1(C ′)− may be computed to

precision pN in time

Õ(p1/2N5/2gωn+N4g4n log p).
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In particular, for fixed N , g and n, the running time is Õ(p1/2).

Our new algorithm is therefore superior to Kedlaya’s algorithm for fixed g and

N and large enough p, but inferior for fixed p and large enough N or g.

Theorem 5 is proved in Chapter 4. The purpose of the assumption p > (2N −

1)(2g + 1) is to simplify the analysis of denominators. It could be weakened

somewhat, but the algorithm would become more complicated.

We now show how to deduce Theorem 1 from Theorem 5.

Proof of Theorem 1. Let M be the matrix of σ on H1(C ′)−, and let M ′ be the ma-

trix of the q-th power Frobenius on H1(C ′)−. Assume that M has been computed

via Theorem 5. Following Kedlaya, we may obtain M ′ via the product

M ′ = MMσMσ2 · · ·Mσn−1

,

where σ acts entry-wise onM . Ring operations in Zq/(p
N) require time Õ(Nn log p),

and applying any power of σ to an element of Zq/(p
N) requires time Õ(Nn2 log p),

by the algorithm suggested in [Ked01, p. 334]. Using a repeated squaring trick

[Ked01, p. 334], the product for M ′ may be evaluated using O(log n) matrix mul-

tiplications and O(g2 log n) applications of powers of Frobenius, so the total cost

to compute M ′ from M is Õ(Ng3n2 log p).

Kedlaya shows that, according to a Lefschetz fixed point theorem for Monsky–

Washnitzer cohomology [Ked01, p. 327] and a calculation relating the cohomology

of C ′ to that of C [Ked01, p. 331], the numerator PC(T ) of the zeta function of C

is recovered as the characteristic polynomial of M ′. Computing the characteristic

polynomial requires O(g3) ring operations, or time Õ(Ng3n log p).

Therefore the cost of computing PC(T ) modulo pN from the matrix M is
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Õ(Ng3n2 log p). Combining this with the estimate from Theorem 5, we obtain

part (a) of Theorem 1.

For part (b), using the Riemann Hypothesis for C, Kedlaya shows that if we

take any

N ≥ gn

2
+ (2g + 1) logp 2,

then knowledge of PC(T ) mod pN determines PC(T ) precisely as an element of Z[T ]

[Ked01, p. 332]. Since logp 2 < 1 for p ≥ 3, it suffices to take N = dgn/2e+2g+1,

in which case

(2N − 1)(2g + 1) ≤ (gn+ 4g + 3)(2g + 1).

For p larger than this, we may apply part (a). Substituting N = O(gn) into the

running time estimate from (a), we obtain (b).

2.4.1 A sketch of Kedlaya’s method for computing the ma-

trix of σ

Kedlaya begins by computing an approximation to y−σ of the form

y−σ ≈ y−p

Np−1∑
k=0

Ak(x)

y2k
, (2.3)

where each Ak has degree at most 2g. It is an approximation in two senses: it

is truncated at a certain power of y−2, and the coefficients are represented mod-

ulo pN ′
, for some appropriately chosen N ′ (slightly larger than N , and certainly

O(N)). Note that the time committed is already necessarily at least linear p, for

the number of terms in the above series is about Np.

Given the above approximation for y−σ, it is easy to write down a series approx-
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imation for the images under σ of the basis elements {xi dx/y}2g−1
i=0 for H1(C ′)−.

We have

σ(xi dx/y) = xpid(xp)y−σ = pxpi+p−1y−σdx, (2.4)

and so obtain

σ(xi dx/y) ≈
∑

j

Fi,j(x)

y2j
dx/y, (2.5)

where each Fi,j has degree at most 2g, and where again the series have about Np

terms.

For each i, Kedlaya then applies a reduction algorithm to the terms on the

right hand side of (2.5). At each step, he uses the identities y2 = Q(x) and

2y dy = Q′(x)dx, together with the fact that d(xsyt) = 0 in cohomology for any s

and t, to reduce the term F (x)y−2jdx/y to a lower power of y−2 (or in some cases,

y2). The terms are swept up sequentially until reaching j = 0. At this point one

has computed the reduction of σ(xidx/y), whose coefficients give the (i + 1)-th

column of the Frobenius matrix. The reduction step is performed once for each j,

so again the total time is proportional to at least p. We will examine reductions

similar to these in some detail in Chapter 4, §4.1.

It is clear from the above description of Kedlaya’s algorithm that to develop

an algorithm whose running time is less than linear in p, we must abandon the

series approximation (2.3) — it simply has too many terms. We will address this

issue in Chapter 4, §4.2.



Chapter 3

Linear recurrences with

polynomial coefficients

Let R be a commutative ring with identity, and M(X) an m × m matrix of

polynomials in R[X]. Given an initial vector U0 ∈ Rm, define a sequence of

vectors {Ui}i≥0 iteratively by

Ui = M(i)Ui−1, i ≥ 1. (3.1)

This is a linear recurrence with polynomial coefficients. For simplicity, in the rest

of this chapter we assume that the entries of M(X) are linear polynomials, since

this is all we need for the applications. It is straightforward to adapt the discussion

to the case of higher degree polynomials.

Consider the problem of computing UK from U0, for some large K. Solving this

problem efficiently is at the core of our fast method for computing zeta functions

presented in the next chapter.

18
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The naive algorithm is simply to iterate (3.1); this costs O(m2K) ring opera-

tions in R. Note that if M is a constant matrix (i.e. the entries are polynomials

of degree zero), we can do much better. We have simply UK = MKU0, and the

matrix power MK can be computed in O(MM(m) logK) ring operations using

repeated squaring.

Unfortunately, for a non-constant matrix, there is no known algorithm for

computing UK whose time complexity approaches this logarithmic dependence

on K. In this chapter we discuss several algorithms that achieve square-root

dependence on K.

3.1 The Chudnovsky–Chudnovsky algorithm

Chudnovsky and Chudnovsky [CC88] gave a baby-step/giant-step algorithm that

determines UK in O(MM(m)M(
√
K) logK) = Õ(mωK1/2) ring operations. While

this is not nearly as good as the constant-matrix case, it still represents a drastic

improvement over the naive algorithm when K is large.

The paper [BGS07] gives an excellent exposition of the Chudnovskys’ algo-

rithm. We sketch it in the simplest situation, where m = 1, M(X) = X, and

U0 = 1 (this case actually goes back to Strassen’s integer factorisation algorithm

[Str77]). In this case, we are simply asking to find

UK = K · (K − 1) · · · 2 · 1 = K!

as an element of R. To simplify matters, assume that K = k2 for an integer k.
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Then we have

K! = F (0) · F (k) · F (2k) · · ·F ((k − 1)k)

where F (X) is the polynomial

F (X) = (X + 1)(X + 2) · · · (X + k). (3.2)

The algorithm consists of three steps:

• Compute the coefficients of F (X) using a product tree; i.e. recursively split

(3.2) into halves, using fast polynomial multiplication to multiply each pair

of factors. The cost is O(M(k) log k) = Õ(k). (If we instead had simply

multiplied by (X + 1) up to (X + k) in succession, we would have obtained

running time quadratic in k, or linear in K.)

• Evaluate F (X) simultaneously at the k points X = 0, k, 2k, . . . , (k − 1)k.

Using fast multipoint evaluation techniques, the cost of this step is Õ(k).

(Again, had we evaluated at each point separately, the cost would have been

quadratic in k.)

• Recover K! from (3.2), using k − 1 = O(k) multiplications.

Since k =
√
K, we obtain a total running time of Õ(K1/2) ring operations. For

the general case (m > 1), Chudnovsky and Chudnovsky replace the polynomial

F (X) by a matrix of polynomials, introducing the MM(m) term into the running

time estimate.
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3.2 The Bostan–Gaudry–Schost algorithm

Recently Bostan, Gaudry and Schost [BGS07] gave several improvements to the

Chudnovskys’ algorithm for solving linear recurrences. The algorithms they de-

scribe are more complicated, and we will not explain them in detail here. The

running time is still Õ(K1/2) with respect to K, but they improve on the earlier

algorithms in two ways. First, they save a factor of logK, which is not insignifi-

cant for the feasible range of problem sizes we will consider in Chapter 5. Second,

they separate the contributions of the MM(m) and M(K1/2) terms to the running

time. Instead of a bound of the form O(MM(m)M(
√
K)), they obtain bounds of

the form

O(MM(m)
√
K +m2M(

√
K)).

In the typical usage scenario where K is very large and m quite small, the second

term dominates, and the practical effect is to improve the speed by a factor of

about m over the Chudnovskys’ algorithm. They also consider the problem of

simultaneously computing several UKi
, and show that this is no more expensive

than computing a single UK , as long as not too many UKi
’s are requested.

The following theorem from [BGS07] is not precisely what we will need, but it

is close enough that we will be able to adapt it without difficulty. To state it, we

need to introduce some notation from [BGS07]. For any integer s ≥ 0, they define

a certain quantity D(1, 2s, 2s) ∈ R. The definition is straightforward, but lengthy,

and we will not give it here. The only fact we need (see [BGS07, p. 1787]) is that

if 2, 3, . . . , 2s + 1 are units in R, then D(1, 2s, 2s) is invertible in R, and that its

inverse may be used to efficiently recover the inverses of certain other elements of

R that are needed in the interpolation steps of their algorithm.



CHAPTER 3. Linear recurrences with polynomial coefficients 22

Theorem 6 ([BGS07, Theorem 15]). Let 0 < K1 < K2 < · · · < Kr = K be

integers, and let s = blog4Kc. Suppose that 2, 3, . . . , 2s + 1 are invertible in R,

and that the inverse of D(1, 2s, 2s) is known. Suppose also that r < K
1
2
−ε, with

0 < ε < 1/2. Then UK1 , . . . , UKr can be computed using

O(MM(m)
√
K +m2M(

√
K))

ring operations in R.

The theorem we require is a little stronger. For k < k′, let

M(k, k′) = M(k′)M(k′ − 1) · · ·M(k + 2)M(k + 1).

Instead of just computing the images UK1 , . . . , UKr of a single vector U0, our aim

is to compute the matrices M(Ki, Li) for a sequence of intervals (Ki, Li). The

following slight generalisation of Theorem 6 achieves this.

Theorem 7. Let

0 ≤ K1 < L1 ≤ K2 < L2 ≤ · · · ≤ Kr < Lr ≤ K

be integers, and let s = blog4Kc. Suppose that 2, 3, . . . , 2s + 1 are invertible in R,

and that the inverse of D(1, 2s, 2s) is known. Suppose also that r < K
1
2
−ε, with

0 < ε < 1/2. Then M(K1, L1), . . . ,M(Kr, Lr) can be computed using

O(MM(m)
√
K +m2M(

√
K))

ring operations in R.
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Remark. When we discuss the application to computing zeta functions in the next

chapter, we will pass to soft-O estimates of running times, and consequently ignore

the distinction between the
√
K and M(

√
K) terms in the above bound.

Proof. The algorithm is almost exactly the same as the one given in the proof of

[BGS07, Theorem 15], so we will not spell out all the details. To explain it, we

first give a very high-level sketch of their algorithm. In “Step 0”, they compute a

sequence of matrices

M(0, H),M(H, 2H), . . . ,M((B − 1)H,BH), (3.3)

where both H and B are a small constant factor away from
√
K, and where BH ≥

K. They apply these matrices successively to U0 to compute UkH for all 0 ≤ k ≤

B. Each target index Ki will fall within one of the intervals [kH, (k+1)H]. Then

they perform a “refining” step, where they deduce UKi
from UkH by evaluating

appropriate products of M(X) over (much smaller) subintervals of [kH,Ki]. To

stay within the time bounds, they use multipoint evaluation techniques to refine

towards all target indices simultaneously.

(The main reason that their algorithm is a logarithmic factor faster than the

Chudnovskys’ algorithm is that in Step 0, they give up some control over which

intervals are computed, in exchange for having available a faster method for com-

puting them. This is why the separate refining step is necessary.)

To adapt this to our needs, we need only perform a little extra work. Given the

input indices Ki and Li, we compute the sequence (3.3), using the same method

as [BGS07]. We now perform a refining step using the same algorithm as in

[BGS07], but we will need to refine over more intervals. Suppose that Ki lies in
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[k1H, (k1 + 1)H] and that Li lies in [k2H, (k2 + 1)H], where k2 ≥ k1. If k1 = k2

then we refine over [Ki, Li]. If k2 > k1, we must refine over both [Ki, (k1 + 1)H]

and [k2H,Li].

After computing the products M(k, k′) for each of these intervals, we must

perform an additional ‘gluing’ step. Namely, each of our target intervals (Ki, Li)

is a union of intervals (k, k′) for which M(k, k′) has been computed (either in Step

0 or in the refining step), and so we simply multiply together the M(k, k′) for

those intervals, in the appropriate order.

To estimate the total time, we note first that our ‘Step 0’ is identical to their

‘Step 0’. The refining steps take at most twice as long as theirs, since we have at

most doubled the number of intervals to be considered, and the lengths of those

intervals satisfy the same bounds. One must also check the invertibility conditions

in R; these are still satisfied since they depend only on the maximum length of

the intervals, which has not changed. Finally, the extra gluing step consists of

at most O(
√
K) matrix multiplications, costing time O(MM(m)

√
K), which fits

within the required time bound.



Chapter 4

The new algorithm

In this chapter we present the algorithm implementing Theorem 5, which is the

main result of Part I.

We begin in §4.1 by studying some cohomological reductions similar to those in

Kedlaya’s algorithm. The point is to give explicit formulae, so that the reductions

may be reinterpreted as defining linear recurrences. In §4.2 we give an alternative

expression for the action of the p-th power Frobenius on the differentials xidx/y;

this is necessary to avoid expressions like (2.3), whose number of terms is at

least linear in p. In §4.3, we give the main algorithm, which is essentially a

straightforward combination of the ideas of §4.1, §4.2, and Chapter 3. However,

to minimise the amount of p-adic precision that must be maintained throughout

the execution of the algorithm (and thereby increase its efficiency), it is necessary

to perform a careful analysis of error propagation. This analysis takes up the bulk

of the presentation, and appears to be unavoidably technical.

25
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4.1 Explicit reduction formulae

Let s ≥ −1 and t ∈ Z. Let Ws,t be the Qq-vector space of differentials of the form

F (x)xsy−2tdx/y,

where F (x) ∈ Qq[x] has degree at most 2g. In the case s = −1, we impose the

additional condition that the constant term of F (x) must be zero (so that none

of the differentials ever involve negative powers of x).

In §4.1.1 and §4.1.2 we will give maps between the various Ws,t that send

differentials to cohomologous differentials. First we discuss ‘vertical’ reductions,

which map W−1,t to W−1,t−1; this is the main type of reduction that appears in

[Ked01]. Then we discuss ‘horizontal’ reductions, which map Ws,t to Ws−1,t. The

aim is to eventually reduce everything to W−1,0, since this space consists of the

differentials of the form G(x)dx/y, where G has degree at most 2g − 1.

We will generally identify elements of Ws,t with vectors in Q2g+1
q (or Q2g

q in

the case s = −1), with respect to the basis {xi+sy−2tdx/y}2g
i=0 (or with respect to

{xiy−2tdx/y}2g−1
i=0 in the case s = −1).

4.1.1 Vertical reduction

Let 0 ≤ i < 2g and t ∈ Z. Since Q(x) has no repeated roots, we can find

polynomials Ri, Si ∈ Zq[x], where degRi ≤ 2g − 1 and degSi ≤ 2g, such that

xi = Ri(x)Q(x) + Si(x)Q
′(x). (4.1)
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(To get the integrality ofRi and Si, we have used the assumption that p > 2g+1, so

that the leading coefficient of Q′(x) is a unit.) Using the relation 2y dy = Q′(x)dx,

we have

xiy−2tdx/y = Ri(x)y
−2t+2dx/y + 2Si(x)y

−2tdy.

Since d(Si(x)y
−2t+1) is zero in cohomology, after a little algebra we find that

xiy−2tdx/y ∼ (2t− 1)Ri(x) + 2S ′
i(x)

2t− 1
y−2t+2dx/y. (4.2)

(The above calculation is essentially the one in [Ked01, p. 329].)

This last relation may be rephrased in terms of the vector spaces W−1,t as

follows.

Proposition 8. Let

MV (t) : W−1,t → W−1,t−1

be the linear map given by the 2g × 2g matrix whose (i+ 1)-th column consists of

the coefficients of the polynomial (2t− 1)Ri(x) + 2S ′
i(x). Let

DV (t) = 2t− 1.

Then for any ω ∈ W−1,t, we have

ω ∼ DV (t)−1MV (t)ω (∈ W−1,t−1).

In other words, DV (t)−1MV (t) is the reduction matrix for transporting a differ-

ential from W−1,t to a cohomologous differential in W−1,t−1. Note that the entries

of MV (t) are linear polynomials in Zq[t], as is DV (t).
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We will be interested in iterating this process. For t0 < t1, let

MV (t0, t1) : W−1,t1 → W−1,t0

be defined by

MV (t0, t1) = MV (t0 + 1)MV (t0 + 2) · · ·MV (t1).

Similarly let

DV (t0, t1) = DV (t0 + 1)DV (t0 + 2) · · ·DV (t1).

(Note that we have reversed the direction of the matrix products from the notation

introduced in Chapter 3; it is trivial to adapt the algorithms of Chapter 3 to

operate in the reversed direction.) With this notation we obtain:

Proposition 9. For any ω ∈ W−1,t1,

ω ∼ DV (t0, t1)
−1MV (t0, t1)ω (∈ W−1,t0).

Example 10 (An elliptic curve). We compute MV (t) for the elliptic curve y2 =

Q(x) = x3 + ax+ b. First we solve (4.1) for i = 0, 1, obtaining

R0(x) = ∆−1(−18ax+ 27b)

S0(x) = ∆−1(6ax2 − 9bx+ 4a2)

R1(x) = ∆−1(27bx+ 6a2)

S1(x) = ∆−1(−9bx2 − 2a2x− 6ab),
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where ∆ = 27b2 + 4a3 is the discriminant of the equation of the curve. Therefore

(2t− 1)R0(x) + 2S ′
0(x) = ∆−1(−6ax(6t− 7) + 9b(6t− 5))

(2t− 1)R1(x) + 2S ′
1(x) = ∆−1(9bx(6t− 7) + 2a2(6t− 5)),

and so the matrix MV (t) is given by

MV (t) = ∆−1

 9b(6t− 5) 2a2(6t− 5)

−6a(6t− 7) 9b(6t− 7)

 .

4.1.2 Horizontal reduction

Let s ≥ 0 and t ∈ Z. In cohomology,

0 ∼ d(xsy−2t+1)

= sxs−1y−2t+1dx− (2t− 1)xsy−2tdy

=

(
sxs−1Q(x)− 1

2
(2t− 1)xsQ′(x)

)
y−2tdx/y.

Decompose Q(x) as

Q(x) = x2g+1 + P (x),

where P ∈ Zq[x] has degree at most 2g. After substituting this into the previous

equation and rearranging, we obtain

xs+2gy−2tdx/y ∼ 2sP (x)− (2t− 1)xP ′(x)

(2g + 1)(2t− 1)− 2s
xs−1y−2tdx/y. (4.3)

Proposition 11. Let

M t
H(s) : Ws,t → Ws−1,t
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be the linear map given by the matrix

M t
H(s) =



0 0 · · · 0 C0(s)

Dt
H(s) 0 0 C1(s)

0 Dt
H(s) 0 C2(s)

...
. . .

...

0 0 · · · Dt
H(s) C2g(s)


,

where

Dt
H(s) = (2g + 1)(2t− 1)− 2s,

and where Ch(s) is the coefficient of xh in the polynomial

C(x, s) = 2sP (x)− (2t− 1)xP ′(x).

Then for any ω ∈ Ws,t, we have

ω ∼ Dt
H(s)−1M t

H(s)ω (∈ Ws−1,t).

Proof. The bulk of the statement follows from (4.3). In addition, the constant

term of C(x, 0) is zero, so M t
H(0) does indeed map into W−1,t.

Note that, for a fixed choice of t, the entries of M t
H(s) and Dt

H(s) are linear

polynomials in Zq[s], and Dt
H(s) does not vanish for any s, since it is always odd.

To iterate this process, we define, for −1 ≤ s0 < s1,

M t
H(s0, s1) : Ws1,t → Ws0,t
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by

M t
H(s0, s1) = M t

H(s0 + 1)M t
H(s0 + 2) · · ·M t

H(s1),

and

Dt
H(s0, s1) = Dt

H(s0 + 1)Dt
H(s0 + 2) · · ·Dt

H(s1).

We obtain:

Proposition 12. For any ω ∈ Ws1,t,

ω ∼ Dt
H(s0, s1)

−1M t
H(s0, s1)ω (∈ Ws0,t).

Example 13 (An elliptic curve). We compute Dt
H(s) and M t

H(s) for the elliptic

curve y2 = Q(x) = x3 + ax+ b. We have

Dt
H(s) = 6t− 2s− 3,

and P (x) = ax+ b, so

2sP (x)− (2t− 1)xP ′(x) = ax(2s− 2t+ 1) + bs.

Then M t
H(s) is given by

M t
H(s) =


0 0 2bs

6t− 2s− 3 0 a(2s− 2t+ 1)

0 6t− 2s− 3 0

 .



CHAPTER 4. The new algorithm 32

4.2 An alternative expression for the Frobenius

action

As noted in Chapter 2, one of the barriers to making Kedlaya’s algorithm run in

time less than linear in p is that the series approximation for σ(xidx/y) given by

(2.5) has about Np terms. The following proposition gives a different approxima-

tion for σ(xidx/y) that requires only O(N2g) terms; in particular, the number of

terms does not depend on p.

Proposition 14. Let Cj,r ∈ Zq be the coefficient of xr in Q(x)j. For 0 ≤ j < N ,

let

Bj,r = pCσ
j,r

N−1∑
k=j

(−1)k+j

(
−1/2

k

)(
k

j

)
∈ Zq.

For 0 ≤ i < 2g, set

Ti =
N−1∑
j=0

(2g+1)j∑
r=0

Bj,rx
p(i+r+1)−1y−p(2j+1)+1dx/y. (4.4)

Then the reduction of Ti agrees modulo pN with the reduction of σ(xidx/y).

Proof. From (2.1) and (2.4) we obtain

σ(xidx/y) =
∞∑

k=0

p

(
−1/2

k

)
(Qσ(xp)−Q(x)p)kxpi+p−1y−p(2k+1)+1dx/y. (4.5)

Since Qσ(xp)−Q(x)p is divisible by p, the k-th term Uk of (4.5) is of the form

Uk = pk+1F (x)y−p(2k+1)dx,
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where F ∈ Zq[x] has degree at most

((2g + 1)p− 1)k + pi+ p− 1 < (2g + 1)(k + 1)p.

By repeatedly dividing F (x) by Q(x) = y2, we may rewrite this as

Uk = pk+1

(k+1)p−1∑
j=0

Fj(x)y
−p(2k+1)+2jdx,

where each Fj ∈ Zq[x] has degree at most 2g.

We must show that the coefficients of the reduction of Uk are divisible by

pN , for all k ≥ N . The terms for which 0 ≤ j < (k + 1
2
)p may be handled

by [Ked01, Lemma 2], which shows that the reduction of Fj(x)y
−p(2k+1)+2j be-

comes integral on multiplication by p1+blogp(2k+1)c. Assumption (2.2) implies that⌊
logp(2k + 1)

⌋
≤ k − N , which covers this case. The remaining terms for which

(k+ 1
2
)p ≤ j ≤ (k+1)p− 1 require [Ked01, Lemma 3]. (Note: Lemma 3 as stated

in [Ked01] is incorrect. A corrected version is in the errata to [Ked01], and a

proof is given in Lemma 4.3.5 of [Edi03].) For these j we find that the reduction

of Fj(x)y
−p(2k+1)+2jdx becomes integral on multiplication by pm where

m =
⌊
logp((2g + 1)(−p(2k + 1) + 2j + 2)− 2)

⌋
≤
⌊
logp((2g + 1)p)

⌋
≤ 1,

the last inequality again depending on (2.2).

Consequently the terms in (4.5) for k ≥ N do not contribute modulo pN to
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the reduction of σ(xidx/y), so we may ignore them. Therefore, let

Ti =
N−1∑
k=0

p

(
−1/2

k

)
(Qσ(xp)−Q(x)p)kxpi+p−1y−p(2k+1)+1dx/y.

We now replace Q(x)p by y2p, use the binomial formula to expand (Qσ(xp) −

y2p)k, and write out the coefficients Qσ(xp) explicitly in terms of the Cj,r. After

rearranging the summations, we obtain the representation for Ti indicated in the

statement of the proposition.

Remark. Ultimately, the linear contribution of p to the running time of Kedlaya’s

original algorithm arises from explicitly expanding out the Q(x)p term in a formula

of the above type. In the proof of Proposition 14, we avoided this by substituting

y2p for Q(x)p, and we will see that our algorithm will accordingly never need to

compute the coefficients of Q(x)p. At first glance this may seem odd, since in

Kedlaya’s original algorithm, the expansion of Q(x)p — more precisely, the con-

gruence modulo p between Q(x)p and Qσ(xp) — is precisely what causes the terms

in yσ with high powers of y−2 to have p-adically small coefficients. In our case

however, one finds that the reduction of each term Bj,rx
p(i+r+1)−1y−p(2j+1)+1dx/y

of Ti generally contributes to all N digits of the coefficients of the reduction of

Ti, regardless of the value of r or j. In fact, even the sum of all terms for a given

power of y−2 (that is, for a given j) contributes to all N digits. It is almost as

if our algorithm ignores the decay conditions defining A†. Of course those decay

conditions do play a role, by inducing hidden cancellations among the Bj,r.
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4.3 The main algorithm

In this section we prove Theorem 5, giving the main algorithm for computing

the Frobenius matrix. The basic idea is to start with the approximation Ti for

σ(xidx/y) given by Proposition 14, and then to use the reduction maps to push

each term towards W−1,0. Theorem 7 is used to efficiently compute the reduction

maps.

Figure 4.1 illustrates the strategy in the case g = 1 and N = 3. Each ver-

tex corresponds to a Ws,t, and the arrows correspond to horizontal and vertical

reductions. The black vertices are those which are the starting point for at least

one term from some Ti. (There are additional vertices and arrows used in the

algorithm that for reasons of clarity are not shown on the diagram.)
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Figure 4.1: Reduction strategy for g = 1 and N = 3

One of the more magical aspects of Kedlaya’s original algorithm is the way that

p-adic precision losses propagate through the calculation. Although one needs to

perform about N divisions by p, Kedlaya shows that in fact only O(logpN) spare

digits of precision must be carried.

A similar argument applies to our algorithm, and since we have assumed p to

be sufficiently large compared to g and N , it turns out that only one spare digit
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is necessary. However, some caution is required. For example, the product of all

the M t
H(s) across a whole ‘row’ of the horizontal reductions will generally be zero

modulo pN , and therefore one must interleave the multiplications by M t
H(s) and

divisions by Dt
H(s) in such a way that the denominators can “catch up with” the

build-up of p-divisibility of the numerators. In §4.3.2 we perform a more detailed

analysis, showing how to do almost all of the work with no spare digits at all. In

practical terms, avoiding even this single extra digit yields enormous savings in

time and memory when N is small. For the vertical reductions, at least in the

case N > 1, this kind of analysis seems much more difficult, and consequently we

will retain the spare digit.

4.3.1 Preliminaries

The algorithm works in two different rings, R0 = Zq/(p
N) and R1 = Zq/(p

N+1).

At certain stages we will need to compute a/b, where b is not a unit; we may take

the result to be any c satisfying bc = a. We will see below that such divisions will

always be possible in Zq when they occur, and that the errors introduced do not

contribute to the final result modulo pN .

As a preliminary step, we compute the coefficients Bj,r given in Proposition

14, for 0 ≤ j < N and 0 ≤ r ≤ (2g + 1)j, as elements of R1.

Let us write Ti as

Ti =
N−1∑
j=0

Ti,j, Ti,j =

i+(2g+1)j+1∑
k=0

Ti,j,k,

Ti,j,k = Bj,k−i−1x
pk−1y−p(2j+1)+1dx/y,

where for convenience we declare thatBj,r = 0 for r < 0. Note that Ti,j,k ∈ Wpk−1,t,
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where t = 1
2
((2j + 1)p− 1).

4.3.2 Horizontal reduction phase

This phase is performed once for each 0 ≤ j < N ; throughout this section we

regard j as fixed.

Let t = 1
2
((2j + 1)p− 1). The aim is to use the horizontal reduction maps to

find differentials wi,j ∈ W−1,t that are cohomologous to Ti,j, and whose coefficients

are correct modulo pN , for 0 ≤ i < 2g.

Computing the reduction maps

Let L = (2g+ 1)j + 2g. We must first compute the horizontal reduction matrices

M(k) = M t
H((k − 1)p, kp− 2g − 2),

D(k) = Dt
H((k − 1)p, kp− 2g − 2),

(4.6)

for 1 ≤ k ≤ L, with entries in R0. (Once computed, it may be convenient to lift

them to R1, but it is only necessary to know them modulo pN .)

This is accomplished in two steps. We will discuss M(k) only; the D(k) are

handled entirely analogously.

The first and most time-consuming step is to use Theorem 7 to compute M(k)

for 1 ≤ k ≤ L′, where L′ = min(N,L). To verify the invertibility hypotheses of

Theorem 7, we must check that
√
K + 1 < p, where K = L′p− 2g− 2 is the total

length of the interval containing all the reduction intervals. From (2.2) we know
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that (2g + 1)(2N − 1) ≤ p− 1, so

2K ≤ (2g + 1)(2N − 1)p+ (2g + 1)p− 2p− 4g − 4

≤ (p− 1)p+ (p− 1)p− 2p− 4g − 4

< 2(p− 1)2,

from which the desired inequality follows.

The second step is to deduce the remaining M(k) for N < k ≤ L. (This is

of course only necessary when L > N .) It is possible to simply use Theorem

7 again, but it is much more efficient to take advantage of the known values

M(1), . . .M(N). If N = 1 this is trivial, since the M(k) are all equal modulo

p. The author thanks Kiran Kedlaya for suggesting the following interpolation

method to handle the case N > 1.

Consider the matrix

F (s) = M t
H(s− p+ 1) · · ·M t

H(s− 2g − 2),

which is a matrix of polynomials in s. Expanding as a Taylor series in s, we obtain

M(k) = F (kp) = F (0) + F ′(0)kp+ · · ·+ 1

(N − 1)!
F (N−1)(0)(kp)N−1 (mod pN).

Then by simple linear algebra, the values of F (kp) (mod pN) for 1 ≤ k ≤ N
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determine completely the values of F (i)(0)pi/i! for 0 ≤ i < N . Namely, we have



F (p)

F (2p)

...

F (Np)


=



1 1 · · · 1

1 2 2N−1

...
...

1 N · · · NN−1





F (0)

F ′(0)p

...

1
(N−1)!

F (N−1)(0)pN−1,


and the Vandermonde matrix is invertible modulo p (since p > N). After solv-

ing for the F (i)(0)pi/i!, the remaining M(k) are computed by substituting the

appropriate values of k into the above Taylor series.

Remark. In the case N = 1 there is a yet faster method available for computing

D(k) (although not M(k)). Namely, since t ≡ −1/2 (mod p) we have

D(k) ≡ D(1) ≡
p−2g−2∏

s=1

−2(2g + 1)− 2s (mod p),

which by Wilson’s theorem is equal to

(−2)p−2g−2

p−1∏
s=2g+2

s ≡ (22g+1(2g + 1)!)−1 (mod p).

Performing the reductions

Now we fix 0 ≤ i < 2g, and show how to compute wi,j. We will define a sequence

of differentials vi+(2g+1)j+1, . . . , v1, v0, where vm ∈ Wmp−1,t, with the property that

vm ∼
i+(2g+1)j+1∑

k=m

Ti,j,k. (4.7)
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In particular we will have v0 ∼ Ti,j, so this v0 is the wi,j that we seek. The vm are

computed with entries in R1. However, not all their p-adic digits will be correct;

we will say more about this in a moment.

Naturally, the sequence begins with

vi+(2g+1)j+1 = Ti,j,i+(2g+1)j+1.

Then, given vm, we compute vm−1 as follows. We first move from Wmp−1,t to

Wmp−2g−2,t, one step at a time, via the following sequence:

v(1)
m = vm ∈ Wmp−1,t,

v(2)
m = Dt

H(mp− 1)−1M t
H(mp− 1)v(1)

m ∈ Wmp−2,t,

v(3)
m = Dt

H(mp− 2)−1M t
H(mp− 2)v(2)

m ∈ Wmp−3,t,

...

v(2g+2)
m = Dt

H(mp− 2g − 1)−1M t(mp− 2g − 1)v(2g+1)
m ∈ Wmp−2g−2,t.

Using the reduction matrices (4.6) computed above, we set

v′m = Dt
H((m− 1)p,mp− 2g − 2)−1M t

H((m− 1)p,mp− 2g − 2)v(2g+2)
m , (4.8)

and then take one final step to reach

vm−1 = Ti,j,m−1 +Dt
H((m− 1)p)−1M t

H((m− 1)p)v′m ∈ W(m−1)p−1,t.

If all of the above computations are performed to infinite precision, then it

follows from Propositions 11 and 12 that if vm satisfies (4.7), then also vm−1 also
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satisfies (4.7), and then by induction also v0 satisfies (4.7).

Now we analyse the propagation of errors. To facilitate the analysis, we intro-

duce the following terminology. Suppose that v is a vector of length 2g + 1, with

coordinates in R1. Let ε(v) denote the error term associated to v. That is, ε(v) is

the difference between the value for v stored by the machine and the value that

would have been obtained for v if all computations had been performed to infinite

precision. We will say that v is `-correct if:

• the `-th coordinate of v is divisible by p;

• the `-th coordinate of ε(v) is divisible by pN+1; and

• the remaining coordinates of ε(v) are divisible by pN .

Note that vi+(2g+1)j+1 is 1-correct, since its first coordinate is simply Bj,(2g+1)j,

which has been computed in R1 and is divisible by p, and the other coordinates

are all zero. The following series of claims together show that if vm is 1-correct,

then also vm−1 is 1-correct. Consequently v0 is 1-correct, and in particular wi,j is

computed correctly to precision pN .

Claim 1. Let 1 ≤ ` ≤ 2g. If v
(`)
m is `-correct, then v

(`+1)
m is (`+ 1)-correct.

Proof. We first examine the form of the matrix M t
H(mp − `). Let P (x), C(s, x)

and Ch(s) be the polynomials introduced in Proposition 11. We are taking s =

mp− ` ≡ −` (mod p) and t ≡ −1/2 (mod p), so

C(x, s) ≡ −2`P (x) + 2xP ′(x) (mod p).

In particular the coefficient C`(s) of x` is zero modulo p, so the entry in the (`+1)-

th row of the last column of M t
H(mp − `) is zero modulo p. Consequently the
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contribution to v
(`+1)
m from the last entry of v

(`)
m satisfies the required conditions.

Furthermore, it is clear from Proposition 11 that the only other possibly

nonzero entry in the (` + 1)-th row appears in the `-th column. Therefore v
(`+1)
m

also receives a contribution from the `-th entry of v
(`)
m , which by hypothesis already

satisfies the required conditions.

Finally, the denominator

Dt
H(mp− `) = (2g + 1)(2t− 1)− 2s ≡ −2((2g + 1)− `) (mod p)

is a unit, so dividing by it does not disturb `-correctness.

Claim 2. If v
(2g+1)
m is (2g + 1)-correct, then v

(2g+2)
m is correct modulo pN .

Proof. Let w = M t
H(mp− 2g − 1)v

(2g+2)
m . We have

Dt
H(mp− 2g − 1) = (2g + 1)(2t− 1)− 2(mp− 2g − 1) ≡ 0 (mod p), (4.9)

so by the definition of M t
H , the first 2g columns of M t

H(mp − 2g − 1) are zero

modulo p. Since the first 2g coordinates of v
(2g+1)
m are correct modulo pN , the

contribution they make to w is divisible by p and correct modulo pN+1. The

contribution from the last coordinate of v
(2g+1)
m is by hypothesis already divisible

by p and correct modulo pN+1.

We deduce that w is divisible by p and correct modulo pN+1. It suffices now

to show that the valuation of Dt
H(mp − 2g − 1) is precisely 1. Since we know it

is odd and divisible by p, we must bound its absolute value below p2. From (4.9)
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and the definition of t we have

Dt
H(mp− 2g − 1) = ((2g + 1)(2j + 1)− 2m)p,

and then the desired result follows from (2.2), since 0 ≤ m ≤ (2g+1)(j+1)−1.

Claim 3. If v
(2g+2)
m is correct modulo pN , then so is v′m.

Proof. By (4.8) it suffices to show that Dt
H((m− 1)p,mp− 2g− 2) is a unit. The

latter quantity is

kp−2g−2∏
s=(k−1)p+1

(2g + 1)(2t− 1)− 2s ≡
p−2g−2∏

s=1

−2((2g + 1) + s) (mod p)

since t ≡ −1/2 (mod p), so it is a unit.

Remark. In the above proof, we only needed the values ofM t
H((m−1)p,mp−2g−2)

and Dt
H((m − 1)p,mp − 2g − 2) modulo pN , not modulo pN+1. This is why it is

possible to do almost all of the work in the horizontal reductions using only N

digits.

Claim 4. If v′m is correct modulo pN , then vm−1 is 1-correct.

Proof. The same argument used in the proof of Claim 1 shows that the first row

of M t
H((m − 1)p) is entirely zero modulo p, and that Dt

H((m − 1)p) is a unit.

Therefore the contribution to vm−1 from v′m is 1-correct. The contribution from

Ti,j,m−1 is also 1-correct.
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4.3.3 Vertical reduction phase

We first prove some lemmas that will be used to analyse the error propagation in

the vertical reduction phase.

Lemma 15. If t ≡ 1/2 (mod p), then MV (t) is invertible modulo p.

Proof. Under the hypothesis on t, it follows from the definition of MV (t) that the

entries of its (i + 1)-th column are given by the coefficients of S ′
i(x). To show

that MV (t) is invertible modulo p, it suffices to show that the S
′
i(x) are linearly

independent over Fq. If
∑2g−1

i=0 λiS
′
i(x) = 0 is some linear relation, then we may

integrate (permissible, by (2.2)) to obtain
∑2g−1

i=0 λiSi(x) = λ2g for some λ2g ∈ Fq.

Multiplying this by Q
′
(x), and using (4.1), we obtain

2g−1∑
i=0

λix
i ≡ λ2gQ

′
(x) (mod Q(x)).

But 1, x, . . . , x2g−1, Q
′
(x) are linearly independent in Fq[x]/Q(x), since Q′(x) has

degree 2g and unit leading term (again due to (2.2)). This forces every λi = 0.

Remark. It would be interesting to characterise the values of t for which MV (t)

is singular modulo p. For instance, in the case of an elliptic curve, Example 10

shows that MV (t) is singular precisely when t ≡ 7/6 (mod p) or t ≡ 5/6 (mod p).

By studying the kernels and images of such maps, it may be possible to reduce

the working precision in the vertical reduction steps from pN+1 to pN , as was done

for the horizontal reductions.

Lemma 16. If t0 ≡ −1/2 (mod p), then MV (t0, t0 + p) is zero modulo p.

Proof. Since MV (t0, t0+p) modulo p only depends on t0 modulo p, we may assume

that t0 = (p− 1)/2.



CHAPTER 4. The new algorithm 45

Let

X = DV (t0, t0 + p+ 1)−1MV (t0, t0 + p+ 1)

be the reduction map from W−1,t0+p+1 to W−1,t0 . First we will show that pX is

integral. It is easy to check that p2X is integral, by inspecting the powers of p

dividing DV (t0, t0 + p + 1), but the integrality of pX requires more work. The

proof is very similar to the proof of [Ked01, Lemma 2]. Let ω ∈ W−1,t0+p+1, say

ω = F (x)y−2(t0+p+1)dx/y,

where F ∈ Zq[x] has degree at most 2g − 1. Let η = Xω, and write

η = G(x)y−2t0dx/y

where G ∈ Qq[x] has degree at most 2g − 1. We need to show that pη is integral.

Since X is a reduction map, ω and η are cohomologous, and the discussion

preceding Proposition 8 shows that ω − η = dH where

H =

t0+p+1∑
t=t0+1

Ht(x)y
−2t+1

for some polynomials Ht ∈ Qq[x] of degree at most 2g. We may now use the

same argument as in the proof of [Ked01, Lemma 2] (namely, comparing the

y-expansions of ω, η and dH around each root of Q(x)) to deduce that mη is

integral, provided that m/(2t− 1) is integral for t0 ≤ t ≤ t0 + p+ 1. In particular

pη is integral, since we have assumed that t0 = (p− 1)/2.
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Now we may finish the proof of the lemma. We have

X = DV (t0, t0 + p+ 1)−1MV (t0, t0 + p)MV (t0 + p+ 1).

By Lemma 15 we know that MV (t0 + p+ 1) is invertible modulo p, so its inverse

is integral. Rearranging, we obtain

MV (t0, t0 + p) = DV (t0, t0 + p+ 1)XMV (t0 + p+ 1)−1.

Note that DV (t0, t0 +p+1) =
∏t0+p+1

t=t0+1 (2t−1) is divisible by p2, since the first and

last factors in the product are zero modulo p. The integrality of pX then implies

that MV (t0, t0 + p) is zero modulo p.

Now we may describe the vertical reduction phase. The input consists of the

differentials wi,j computed via the horizontal reductions. The output will be a

collection of differentials wi ∈ W−1,0 for 0 ≤ i < 2g that are cohomologous to Ti,

and correct modulo pN .

The first step is to compute the vertical reduction matrices

Mj =


MV

(
0, p−1

2

)
j = 0,

MV

(
(2j−1)p−1

2
, (2j+1)p−1

2

)
1 ≤ j < N,

and similarly for Dj, using Theorem 7, with entries in R1. The invertibility hy-

potheses of Theorem 7 are satisfied, because the total reduction length K satisfies

K =
(2(N − 1) + 1)p− 1

2
<

(2N − 1)p

2
.
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The latter is bounded by p2/6 from (2.2), so certainly
√
K + 1 < p.

For j ≥ 1, observe that Dj has valuation precisely 1, because in the product

Dj =

1
2
((2j+1)p−1)∏

t= 1
2
((2j−1)p+1)

(2t− 1),

the only term divisible by p is the first one, and (2.2) implies that it is less than

p2. Furthermore, Mj is zero modulo p by Lemma 16. Since Mj and Dj have been

computed modulo pN+1, we can therefore compute the (integral) matrix

Xj = D−1
j Mj

correctly modulo pN . For the j = 0 case, the product for D0 shows that it is a

unit, so X0 = D−1
0 M0 may be computed modulo pN as well. Note that Xj is the

vertical reduction map from W−1, 1
2
((2j+1)p−1) to W−1, 1

2
((2j−1)p−1) for j ≥ 1, and to

W−1,0 for j = 0.

Now we fix 0 ≤ i < 2g, and show how to compute wi. We define a sequence

of differentials

vN−1 = wi,N−1 ∈ W−1, 1
2
((2N−1)p−1),

vN−2 = wi,N−2 +XN−1vN−1 ∈ W−1, 1
2
((2N−3)p−1),

...

v0 = wi,0 +X1v1 ∈ W−1, 1
2
(p−1).
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Using Proposition 9, one checks by induction that

vm ∼
∑
j≥m

Ti,j

for each 1 ≤ m ≤ N − 1, and that the coefficients of vm are correct modulo pN .

Finally one puts wi = X0v0 ∈ W−1,0, which by Proposition 9 is cohomologous to

Ti, and again its coefficients are correct modulo pN .

Remark. In the case N = 1, it is only necessary to compute M0 modulo p, rather

than modulo p2 as described above, since no divisions by p are involved at all. It

is not clear to the author whether a similar optimisation is available when N > 1.

4.3.4 Complexity analysis

We first consider the time spent in the applications of Theorem 7, which will be

the dominant step when p is large compared to N and g. For both R0 = Zpn/(pN)

and R1 = Zpn/(pN+1), basic ring operations (addition, multiplication) have bit-

complexity Õ(Nn log p). For the horizontal reductions, for each of N rows, we

applied Theorem 7 with K = O(pN) and m = O(g). Therefore each row costs

Õ(p1/2N3/2gωn). For the vertical reductions, we applied Theorem 7 once, also

with K = O(pN) and m = O(g). Therefore the total time is Õ(p1/2N5/2gωn).

Now we estimate the time for the remaining steps, which for sufficiently large

p will be negligible.

Computing the coefficients Cj,r in Proposition 14 requires only O(N2g2) ring

operations, even if naive polynomial multiplication is used. In the formulae for

the Bj,r, computing all the necessary binomial coefficients requires O(N2) ring

operations, and then computing all the Bj,r requires O(N2g) ring operations.
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Therefore computing the Bj,r requires O(N2g2) ring operations altogether.

Solving (4.1) for each i requires O(g2) ring operations, even by the naive

Euclidean extended GCD algorithm, so computing the coefficients of MV (t) needs

at most O(g3) ring operations. Computing the coefficients of M t
H(s) for each of

the N required values of t requires O(Ng) ring operations.

In the horizontal reduction phase, computing the inverse of the Vandermonde

matrix requires O(N3) ring operations. Then for each of N rows we must perform

the following steps. First, compute the values of F (i)(0)pi/i!, costing O(N2g2) ring

operations. Then use these values to compute M(k) = F (kp) for O(Ng) values of

k; for each k this costs O(Ng2) ring operations, so over all k this costs O(N2g3).

The total cost over all rows is O(N3g3) ring operations.

Finally we must account for the ‘single step’ reductions during the horizontal

reduction phase, as these were performed without the assistance of Theorem 7.

Each matrix-vector multiplication requires only O(g) ring operations, due to the

sparsity of the matrices. For each of N rows, for each of O(Ng) values of m, and

for each of O(g) values of i, there are O(g) such steps, for a total cost of O(N2g4)

ring operations.

In total the cost isO(N3g4) ring operations, with bit-complexity Õ(N4g4n log p).
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Example computations

The author implemented the main algorithm in C++, only for the case n = 1

(i.e. for curves over Fp). The program, called hypellfrob, is freely available from

the author’s web page, http://math.harvard.edu/~dmharvey/, under a GPL li-

cense. The functionality is also included in recent versions of the Sage computer al-

gebra system [SJ05], via the sage.schemes.hyperelliptic curves.hypellfrob

module.

The underlying polynomial arithmetic uses one of two libraries: either Victor

Shoup’s NTL library [Sho], or the new zn poly library of the author. The latter is

available from the above website, also under a GPL license. The NTL-based code

is used whenever the working modulus (pN or pN+1, depending on which phase of

the algorithm is being run) exceeds a single machine word. For smaller moduli,

the zn poly code is used.

The matrix multiplication steps use the naive O(n3) algorithm. The key poly-

nomial shifting steps are performed via the the middle product algorithm [HQZ04]

as suggested in [BGS07, p. 1786]. For the NTL-based code, the middle product is

50
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built on top of NTL’s low-level number-theoretic transforms, a trivial task thanks

to Shoup’s wonderfully modular FFT code. The zn poly library has native sup-

port for middle products.

The following sample computations were performed on a 1.8 GHz 64-bit AMD

Opteron machine with 64 GB RAM, kindly supplied by William Stein. The ma-

chine has 16 cores, but only a single core was used. The compiler used was gcc

4.1.2 with optimisation flag -O3. Both NTL and zn poly were linked with the

GMP library (version 4.2.1, with Pierrick Gaudry’s AMD assembly patch) for the

underlying integer arithmetic.

5.1 Examples showing dependence on p

Tables 5.1 and 5.2 show the time used to compute the Frobenius matrix over a

range of p for a random genus three curve and a random genus six curve, with

precision N = 1 and N = 3 respectively. From Theorem 5, one expects the

running time to approximately double for every four-fold increase in p. This is

borne out fairly well by the data, except for the jumps in Table 5.2. The jump at

p ≈ 216 occurs when the increased size of the modulus pN+1 = p4 (for the vertical

reduction phase) forces the implementation to switch from a single-precision (64

bit) integer representation to a more expensive arbitrary-precision representation.

Similarly, the jump at p ≈ 222 occurs when the modulus pN = p3 (for the horizontal

reduction phase) reaches the single-precision threshold.
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p time p time p time
220 − 3 0.09s 227 − 39 2.22s 234 − 41 49.7s
221 − 9 0.14s 228 − 57 3.37s 235 − 31 73.9s
222 − 3 0.24s 229 − 3 5.86s 236 − 5 112s
223 − 15 0.39s 230 − 35 8.66s 237 − 25 161s
224 − 3 0.62s 231 − 1 14.4s 238 − 45 240s
225 − 39 0.98s 232 − 5 22.0s 239 − 7 359s
226 − 5 1.43s 233 − 9 32.8s 240 − 87 515s

Table 5.1: Running times for g = 3 and N = 1

p time p time p time
214 − 3 0.54s 218 − 5 8.34s 222 − 3 143s
215 − 19 0.75s 219 − 1 10.1s 223 − 15 176s
216 − 15 3.28s 220 − 3 15.8s 224 − 3 295s
217 − 1 5.10s 221 − 9 22.1s 225 − 39 382s

Table 5.2: Running times for g = 6 and N = 3

5.2 Near-cryptographic sizes

For the purpose of constructing secure cryptosystems, it is useful to be able to

determine the zeta function of a hyperelliptic curve C of low genus over a large

prime field [CFA+06, Ch. 23]. The security of the cryptosystem depends on the

difficulty of computing discrete logarithms in the Jacobian of the curve. In par-

ticular one hopes to find a curve whose Jacobian order #J(C/Fp) = PC(1) ≈ pg

is prime (or is a prime multiplied by a very small integer) and sufficiently large.

For genus three and four, we ran our implementation on a single curve over

the largest prime field that seemed feasible with the given hardware. We were

able to determine the zeta function for a curve whose Jacobian approaches a

cryptographically useful size, although there is still a gap to overcome. Handling

a genus two curve with a large enough Jacobian is clearly out of reach of this
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technique.

Thanks to Kiran Kedlaya for his assistance in using the Magma computer

algebra system [BCP97] to perform some of the computations below.

5.2.1 Genus three

We computed the characteristic polynomial of Frobenius modulo p for the curve

y2 = x7 + 2x6 + 3x5 + 4x4 + 5x3 + 6x2 + 7x+ 8

defined over Fp where

p = 253 − 111 = 9007199254740881.

The running time was 21.5 hours, and peak memory usage was 51 GB.

This determines #J(C/Fp) modulo p, within an interval of width O(p3/2). The

search space is only O(p1/2), so Magma’s baby-step/giant-step implementation is

easily (in a few seconds) able to recover the Jacobian order. From this we inferred

that the characteristic polynomial of Frobenius is

(X6 + p3) + a1(X
5 + p2X) + a2(X

4 + pX2) + a3X
3,

where

a1 = −98254756,

a2 = 7863373269694211,

a3 = −258658132202408003863832.
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The order of the Jacobian over Fp is

730750810694051686964010072594226615405670581640 ≈ 2159.

Unfortunately, this is far from prime; it factors as

23 · 5 · 23 · 113 · 197 · 709 · 1544163711313381 · 32590965878831406770743.

The usual benchmark for cryptographic applications is that the Jacobian

should have cardinality at least 2160, so in this sense our implementation can

already count points on a curve of ‘cryptographic size’. However, for genus three

hyperelliptic curves, there exist index calculus attacks that reduce the difficulty of

the discrete logarithm problem [CFA+06, Ch. 21]. To achieve security equivalent

to 160 bits, one must produce a curve whose Jacobian order is about 2180 [CFA+06,

p. 554], implying that p should be increased to about 260. Since the complexity of

our algorithm is essentially O(p1/2), we would expect such a counting problem to

take about 23.5 ≈ 11.3 times longer than the above example, or about ten days. A

more serious obstacle is that the memory requirements would balloon by the same

factor, to about 600 GB, rendering the computation completely infeasible on the

same hardware. It might be possible to perform such a computation on a con-

temporary distributed-memory system, but parallelising the algorithm effectively

seems quite challenging.

Sutherland very recently gave an ingenious and extremely practical method to

find hyperelliptic curves of genus three with Jacobians of prime order, of crypto-

graphic size [Sut08]. However, the curves found by his algorithm are not totally

generic: by construction their quadratic twists are guaranteed to have Jacobians
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of highly composite order. As Sutherland points out [Sut08, p. 3], there are no

known attacks that take advantage of this extra structure on the quadratic twist;

nevertheless, it would be more satisfying to have available curves without this

extra structure for cryptographic use.

5.2.2 Genus four

We computed the characteristic polynomial of Frobenius modulo p2 for the curve

y2 = x9 − 23x8 + 19x7 − 17x6 + 13x5 − 11x4 + 7x3 − 5x2 + 3x− 2

defined over Fp where

p = 244 + 7 = 17592186044423.

The running time was 45 hours, and peak memory usage was 34 GB.

This does not pin down the zeta function precisely, but it produces a short

list of four candidates, which we checked in Magma by testing which proposed

Jacobian order m satisfied mP = 0 for a number of random points P defined over

Fp. We found that the characteristic polynomial of Frobenius is

(X8 + p4) + a1(X
7 + p3X) + a2(X

6 + p2X2) + a3(X
5 + pX3) + a4X

4,
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where

a1 = 2394254,

a2 = 29576915959850,

a3 = 88182558522652238508,

a4 = 536178748943545477971279916.

The order of the Jacobian over Fp is

95780984339838343855809310281601230464609800042292722 ≈ 2176.

Again, this is highly composite; it factors as

2 · 73 · 83 · 1583 · 22145564293481 · 12741505694634797 · 17695381461552209.



Part II

Computing p-adic heights on

elliptic curves

57



Chapter 6

The canonical p-adic height

6.1 Notation and definition of the p-adic height

Throughout Part II we fix the following notation. The elliptic curve E/Q of

interest is given by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where the coefficients ai are integers. We assume that p ≥ 5, that the curve has

good ordinary reduction at p, and that the above equation is minimal at p.

Given any nonzero point P ∈ E(Q), we may write its affine coordinates

uniquely in the form

P = (x(P ), y(P )) =

(
α(P )

d(P )2
,
β(P )

d(P )3

)
,

where (α(P ), d(P )) = (β(P ), d(P )) = 1, and d(P ) ≥ 1. We denote by E0 the

subgroup of E(Q) of points that reduce to zero in E(Fp), or equivalently, points
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for which p | d(P ) (together with the zero element).

Let ω = dx/(2y + a1x+ a3) be the usual invariant differential. The canonical

p-adic sigma function associated to (E, ω), defined in [MT91], is a function on the

formal group of E. It is given by a power series

σp(t) = t+ c2t
2 + c3t

3 + · · · ∈ ZpJtK (6.1)

where t is the parameter t = −x/y. In particular it is defined on all of E0,

regarding E(Q) as a subgroup of E(Qp) in the natural way; the series converges

there since for such points vp(t) = vp(−dα/β) ≥ 1.

Now we explain the definition of the p-adic height function hp : E(Q) →

Qp, following [MST06]. Let P ∈ E0 be a non-torsion point. If P reduces to a

nonsingular point of E(F`) for all primes `, then hp(P ) is given by the formula

hp(P ) = 2 logp

(
σp(P )

d(P )

)
, (6.2)

where logp is the Iwasawa p-adic logarithm. This determines hp on a finite-index

subgroup of E(Q). (Note that, following a suggestion of Christian Wuthrich, we

normalise the p-adic height differently from that of [MST06]. Our height is equal

to the [MST06] height multiplied by 2p.)

Finally, to define hp(Q) for an arbitrary nonzero Q ∈ E(Q), we use the fact

that hp should be a quadratic form: we select an integer k such that P = kQ lies

in the finite-index subgroup described above, and then

hp(Q) =
1

k2
hp(P ). (6.3)
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6.2 The Mazur–Stein–Tate algorithm

In this section we sketch the Mazur–Stein–Tate algorithm for computing the p-

adic height, and indicate some of the bottlenecks in the time complexity that we

will address in this thesis.

The key idea of the Mazur–Stein–Tate algorithm is that there is a characteri-

sation of the p-adic sigma function σp(t) in terms of the p-adic modular form E2,

and that E2(E, ω) may be computed efficiently using Kedlaya’s algorithm. Once

σp(t) is known to some precision, the p-adic height of a point in E(Q) may be

computed via (6.2). We now consider these steps in more detail.

6.2.1 The computation of E2(E, ω)

Katz observed that E2(E, ω) may be interpreted as the ‘direction’ of the unit root

eigenspace of Frobenius acting on a particular basis for the first p-adic de Rham

cohomology of E, leading to the following algorithm to compute E2(E, ω) (see

[MST06, p. 590] and [MST06, Algorithm 3.2] for further discussion).

Suppose that we wish to compute E2(E, ω) modulo pN , where N ≥ 1. First

consider the case where the equation of E is of the form

Y 2 = X3 + A4X + A6, A4, A6 ∈ Z,

and is minimal at p. Interpreting Q(X) = X3 + A4X + A6 as a polynomial in

Zp[X], we apply the first stage of Kedlaya’s algorithm [Ked01] (see also Chapter 2)

to compute the action of the p-th power Frobenius on the basis {dX/Y,X dX/Y }

for the first p-adic de Rham cohomology of E, to precision pN . This produces
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a 2 × 2 matrix F with entries in Z/pNZ. (The entries are p-integral because

p > 2g + 1 = 3; see the discussion in [Edi03, p. 17].) Then we compute FN ; this

has the effect of killing the non-unit root eigenspace modulo pN . Writing

FN =

a b

c d

 ,

it turns out that we recover

E2(E, ω) = −12b/d (mod pN).

(Note that d is a p-adic unit, so no precision is lost in the division; see [MST06,

p. 591].)

Now consider the general case, where the equation of E is

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

(still minimal at p). Let ∆ be the discriminant for this equation, and let ∆′ be

the discriminant after passing to an isomorphic curve

Y 2 = X3 + A4X + A6,

permissible since p ≥ 5. If ω′ = dX/2Y is the invariant differential corresponding

to the latter equation, we may compute E2(E, ω
′) as above, and then we have

E2(E, ω) =

(
∆′

∆

)1/6

E2(E, ω
′), (6.4)
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since ∆ is of weight 12 and E2 of weight 2. Note that vp(∆) = vp(∆
′) = 0, since

E was assumed to have good reduction at p and both equations were minimal at

p, so no p-adic precision is lost in evaluating (6.4).

We may now prove Theorem 2 from the Introduction.

Proof of Theorem 2. The running time of the algorithm described above is dom-

inated by that of Kedlaya’s algorithm, which by Theorem 4 (with g = n = 1) is

Õ(pN2). Computing FN from F requires only O(logN) matrix multiplications

(using repeated squaring), so O(logN) ring operations in Z/pNZ, costing time

only Õ(logN log(pN)) = Õ(N log p). This proves part (a).

For part (b), assume that p > 6N . We will replace Kedlaya’s algorithm by the

algorithm implementing Theorem 5 (with g = n = 1). The hypotheses of that

theorem are satisfied since

(2N − 1)(2g + 1) = 3(2N − 1) < 6N.

After computing F in this manner, the rest of the algorithm runs as before.

6.2.2 The differential equation for the sigma function

The Mazur–Stein–Tate algorithm uses the fact (proved in [MT91]) that σp(t) is the

unique odd function in ZpJtK of the form σp(t) = t+ · · · satisfying the differential

equation

x(t) + c = − d
ω

(
1

σ

dσ

ω

)
, (6.5)

where c is the constant

c =
a2

1 + 4a2 − E2(E, ω)

12
, (6.6)
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and where x(t) ∈ ZpJtK is the power series expansion of x at the origin. Since c

is known from E2(E, ω), it becomes a matter of computing x(t), and then solving

(6.5) for σp(t).

The method they propose for computing x(t) is based on a certain recur-

sive formula [MST06, p. 590] for the coefficients of the auxiliary power series

w(t) = −1/y(t) =
∑

k≥0 skt
k. The recursive formula for sk involves a term of the

form
∑

i1+i2+i3=k si1si2si3 , which contains O(k2) products; therefore the cost of

computing sk for all k ≤ n is O(n3) arithmetic operations in the coefficient ring.

In Chapter 8 we give a different method for computing the first n terms of x(t)

that requires only Õ(n) ring operations.

Given x(t), Mazur, Stein and Tate solve (6.5) by using the formal logarithm to

change variables from t to the parameter z on the additive group. After making

this substitution, the differential equation takes the simpler form

x(z) + c = − d

dz

(
1

σ(z)

dσ

dz

)
,

which can be solved by integration and exponentation of power series. A bottle-

neck arises here also: to perform the change of variables, it is necessary to invoke

several power series composition and reversion operations. To the author’s knowl-

edge, the Brent–Kung algorithm [BK78], which has complexity Õ(n3/2) in the

number of terms, is the best algorithm available for computing series reversions

and compositions. In Chapter 8 we show that it is entirely unnecessary to change

variables; the original equation (6.5) can be solved directly, up to tn, in Õ(n) ring

operations. Moreover our method avoids the p-adic precision losses caused by the

divisions by p in the integration and exponentation steps.
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6.2.3 Computing the p-adic height

Let Q ∈ E(Q). Mazur, Stein and Tate propose using (6.2) together with (6.3) to

compute hp(Q), as follows. Let n1 = #E(Fp), let n2 be the least common multiple

of the Tamagawa numbers of E, and put n = LCM(n1, n2). Then P = nQ is

guaranteed to be in the finite-index subgroup on which (6.2) is valid, so hq(Q)

may be computed from (6.3), using the series expansion for σp(t) obtained earlier.

The above procedure has a serious bottleneck when p is large. The difficulty

is that one must actually compute the coordinates of nQ, the numerator and

denominator of which will generally have about n2 digits (assuming that Q is

non-torsion). From the Weil bound we have #E(Fp) ≈ p, so n is roughly propor-

tional to p. Therefore the time complexity is at least proportional to p2, and for

sufficiently large p will dwarf even the time required to compute E2(E, ω).

In Chapter 9 (see also Proposition 17) we show how to avoid this problem

by computing the “n1 part” of the point multiple in modular arithmetic instead

of over Q, thereby preventing coefficient explosion. In this way we reduce the

running time from quadratic in p to only polylogarithmic in p.

We introduce one further optimisation to the Mazur–Stein–Tate method. For a

typical P ∈ E0, with vp(t(P )) = 1 (or not much bigger than 1), the series for σp(t)

converges relatively slowly at t(P ). By replacing P by a p-power multiple pλP , we

push the point p-adically closer to the origin; t(pλP ) has larger valuation, so the

series for σp(t) converges more quickly there. This allows us to compute hp(p
λP )

more efficiently, and hp(P ) is recovered by using the fact that hp is a quadratic

form. (Alternatively, one could directly use the functional equation σp(mP ) =

σp(P )m2
fm(P ) satisfied by σp, where fm is the m-th division polynomial; see

[MT91, p. 670].) This efficiency gain is not for free: one must take into account
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the cost of computing pλP from P . By balancing this point-multiplication cost

against the savings from faster evaluation of σp(t), we find that the optimal choice

is λ ≈
√
N , where pN is the desired precision for hp(P ) (see the proof of Theorem

3). This observation saves a factor of about
√
N from the total running time.



Chapter 7

Point multiplication in modular

arithmetic

Let Q ∈ E(Q) be a non-torsion point, and let m ≥ 2 be an integer. In the

notation introduced earlier, the coordinates of mQ are given by

(x(mQ), y(mQ)) =

(
α(mQ)

d(mQ)2
,
β(mQ)

d(mQ)3

)
.

In this chapter we consider the problem of computing α(mQ), β(mQ) and d(mQ)

modulo L, where L ≥ 1 is an odd integer.

The most straightforward method is to compute the coordinates of mQ in

Q, and then reduce α(mQ), β(mQ) and d(mQ) modulo L. Unfortunately, this

approach suffers from coefficient explosion. Indeed, by using properties of the

Néron–Tate (real-valued) canonical height, one finds that the number of digits of

(say) d(mQ) grows quadratically in m.

The following result improves the complexity to only logarithmic in m, pro-
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vided that Q lies in a certain finite-index subgroup of E(Q):

Proposition 17. Suppose that Q ∈ E(Q) reduces to a non-singular point of

E(F`) for every prime ` at which E has bad reduction. Let L ≥ 1 be odd, and

m ≥ 2. Given the values of α(Q), β(Q) and d(Q) modulo L, one may compute

±α(mQ), β(mQ) and ±d(mQ) modulo L in time Õ(logL logm).

(The ± symbols indicate that α(mQ) and d(mQ) will be correct only up to

sign, and that the signs will agree.)

The remainder of this chapter is devoted to the proof of Proposition 17. Our

main tools are the division polynomials ψm associated to our choice of Weierstrass

equation for E, and a non-cancellation result of Wuthrich [Wut04, Prop. IV.2] that

in effect controls the amount of cancellation that can occur while computing mQ

from Q. For further background on division polynomials, including proofs of the

assertions that we use in this section, we refer the reader to [MT91, Appendix I]

and [Lan78, Ch. II].

The relevance of division polynomials is that they appear in a simple formula

for the coordinates of mQ in terms of the coordinates of Q. For an integer m ≥ 1,

and a non-torsion point Q, we have

x(mQ) =
θm(Q)

ψm(Q)2
, y(mQ) =

ωm(Q)

ψm(Q)3
, (7.1)

where θm, ωm ∈ Q(E) are certain auxiliary functions defined in terms of the ψm.

The quantities ψm(Q), θm(Q), ωm(Q) ∈ Q will generally not be integers, due

to the coordinates of Q themselves having denominators. It is convenient to

introduce a normalising factor that absorbs these denominators. Accordingly we
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set

ψ̂m(Q) = ψm(Q)d(Q)m2−1,

θ̂m(Q) = θm(Q)d(Q)2m2

,

ω̂m(Q) = ωm(Q)d(Q)3m2

.

Note that ψ̂m, θ̂m and ω̂m are defined only on E(Q) — they are not rational func-

tions on E. One checks, by examining the degrees of ψm, θm and ωm, that ψ̂m(Q),

θ̂m(Q) and ω̂m(Q) are all integers. Therefore we now have two representations of

x(mQ) and y(mQ) as ratios of integers,

x(mQ) =
α(mQ)

d(mQ)2
=

θ̂m(Q)

ψ̂m(Q)2d(Q)2
,

y(mQ) =
β(mQ)

d(mQ)3
=

ω̂m(Q)

ψ̂m(Q)3d(Q)3
.

(7.2)

The point of (7.2) is twofold. First, Proposition IV.2 of [Wut04] guarantees

that, under the hypothesis of Proposition 17, the fractions on the right are in fact

reduced fractions; in other words, that d(mQ) = ±ψ̂m(Q)d(Q). Therefore we may

conclude from (7.2) that

d(mQ) = ±ψ̂m(Q)d(Q),

α(mQ) = θ̂m(Q),

β(mQ) = ±ω̂m(Q),

(7.3)

where the choices of signs in the first and third equations agree.

Second, we will show that ψ̂m(Q), θ̂m(Q) and ω̂m(Q) can be efficiently com-

puted modulo L using the usual recursion formulae for the division polynomials.

For our application, it is not necessary to compute the division polynomials them-
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selves — in fact, to do so would completely miss the point, since their degree grows

like m2, which is precisely the rate of growth that we are trying to avoid. Rather,

we need only compute their values at Q, and only modulo L. Fortunately the

standard recursive formulae for division polynomials, with minor modifications,

are perfectly suited to this task.

We give a version of the formulae that involve no divisions (apart from one

division by 2, which is permitted since we have assumed that 2 is invertible modulo

L). This ensures that we never lose p-adic precision in our later applications in

the p-adic setting. Also, our formulae are tailored to computing the normalised

versions ψ̂m(Q), θ̂m(Q) and ω̂m(Q) directly, instead of ψm(Q), θm(Q) and ωm(Q),

so that we can work with integral quantities throughout.

In the formulae below, we abbreviate α(Q) by α, and similarly with the other

variables. We start by defining normalised versions of the coefficients ak of the

elliptic curve, setting

âk = dkak, k = 1, 2, 3, 4, 6.

We next define variables b̂k and B̂k, which are normalised versions of the bk and

Bk appearing in [MT91]:

b̂2 = â2
1 + 4â2,

b̂4 = â1â3 + 2â4,

b̂6 = â2
3 + 4â6,

b̂8 = â2
1â6 + 4â2â6 − â1â3â4 + â2â

2
3 − â2

4,
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and

B̂4 = 6α2 + b̂2α+ b̂4,

B̂6 = 4α3 + b̂2α
2 + 2b̂4α+ b̂6,

B̂8 = 3α4 + b̂2α
3 + 3b̂4α

2 + 3b̂6α+ b̂8.

Similarly, we need normalised versions of the gm from [MT91], defined by

ĝ0 = 0, ĝ1 = 1, ĝ2 = −1, ĝ3 = B̂8, ĝ4 = B̂2
6 − B̂4B̂8,

and then recursively for m ≥ 5 by

ĝ2n+1 =


B̂2

6 ĝn+2ĝ
3
n − ĝn−1ĝ

3
n+1, n even,

ĝn+2ĝ
3
n − B̂2

6 ĝn−1ĝ
3
n+1, n odd,

ĝ2n = ĝn(ĝn−2ĝ
2
n+1 − ĝn+2ĝ

2
n−1).

(7.4)

Finally, the values of ψ̂m, θ̂m and ω̂m for m ≥ 2 are given in terms of the ĝm

by

T̂ = 2β + â1α+ â3,

ψ̂m = T̂ σ(m+1)ĝm,

θ̂m = αψ̂2
m − ψ̂m+1ψ̂m−1,

ω̂m =
−1

2

(
T̂ σ(m)(ĝm−2ĝ

2
m+1 − ĝm+2ĝ

2
m−1) + ψ̂m(â1θ̂m + â3ψ̂

2
m)
)
,

(7.5)

where σ(k) is 0 or 1 accordingly as k is even or odd.

The algorithm implementing Proposition 17 now runs as follows. All compu-

tations are performed modulo L. We are given as input α(Q), β(Q) and d(Q),

and the constants ak. From (7.3) it suffices to compute ψ̂m, θ̂m and ω̂m.
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We start by computing all of the âk, b̂k and B̂k, and ĝ0 through ĝ4, using the

formulae given above. Then, using (7.4), recursively compute ĝm−2 through ĝm+2.

During this recursive step, it is important to retain the values of ĝj as they are

computed, since many of them will be reused. Finally, the equations (7.5) then

determine ψ̂m, θ̂m and ω̂m.

Now we analyse the complexity. Arithmetic operations in Z/LZ may be per-

formed in time Õ(logL), so the crux of the matter is to show that the recursive

formulae (7.4) are evaluated at most O(logm) times.

Let k ≥ 4. To determine ĝj for all j in the range k ≤ j ≤ k + 7, using (7.4) it

suffices to know ĝj for (k − 3)/2 ≤ j ≤ (k + 11)/2 if k is odd, or (k − 4)/2 ≤ j ≤

(k + 10)/2 if k is even. In other words, to determine 8 consecutive values of ĝj

near j = k, it suffices to know 8 consecutive values of ĝj near j = k/2. Iterating

this process, to compute ĝk one must evaluate (7.4) at most 8 log2(k) = O(log k)

times. This completes the proof of Proposition 17.



Chapter 8

Computing the canonical p-adic

sigma function

The main result of this chapter is Proposition 19, which gives an algorithm for

computing the p-adic sigma function σp(t) modulo a certain ideal Jr,λ ⊆ ZpJtK.

This ideal appears quite naturally in the context of computing p-adic heights

(Chapter 9). The running time of the algorithm is quasilinear in the size of the

output, so is optimal up to logarithmic factors.

Definition 18. For integers r ≥ 2 and λ ≥ 0, let Jr,λ be the ideal of ZpJtK

generated by

{pmax(0,r−2+(3−j)(λ+1))tj}j≥0 = {pr+3λ+1, pr+2λt, pr+λ−1t2, pr−2t3, . . .}.

The ideal Jr,λ has a triangular shape: if a power series f is known modulo

Jr,λ, then we know its constant term modulo pr+3λ+1, and the precision of the

coefficients drops off linearly with slope λ + 1. The quotient ring ZpJtK/Jr,λ is

72
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finite, and its elements require O(r2(λ+ 1)−1 log p) bits to store.

Proposition 19. Assume that 0 ≤ λ ≤ r. Given E2(E, ω) modulo pr−2 as input,

σp(t) may be determined modulo Jr,λ in time Õ(r2(λ+ 1)−1 log p).

The proof is given in §8.3 below.

8.1 Some auxiliary power series

Let x(t) and y(t) be the power series expansions of x and y around the origin. Let

w(t) = −1/y(t), and let

s(t) =
x′(t)

2y(t) + a1x(t) + a3

,

so that s(t)dt is the series expansion of the invariant differential ω. The first few

terms of each series are given by

x(t) = t−2 − a1t
−1 − a2 + · · · ,

y(t) = −t−3 + a1t
−2 + a2t

−1 + · · · ,

w(t) = t3 + a1t
4 + (a2

1 + a2)t
5 + · · · ,

s(t) = 1 + a1t+ (a2
1 + a2)t

2 + · · · .

(See also [Sil92, Ch. IV], which discusses these expansions in some detail, using

slightly different notation.)

Let k ≥ 1 and n ≥ 1 be integers, and let R = Z/pkZ. Our first task is to

compute the above series over R, with n terms each.
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Proposition 20. The series t2x(t), t3y(t), t−3w(t) and s(t) may be computed up

to O(tn), with coefficients in R, in time Õ(nk log p).

Proof. The series w(t) satisfies the algebraic equation

w = t3 + a1tw + a2t
2w + a3w

2 + a4tw
2 + a6w

3,

and so it may be solved using Newton’s method. We start with the initial approx-

imation w(t) = t3, and then repeatedly apply the Newton iteration

w′ = w − w − t3 − a1tw − a2t
2w − a3w

2 − a4tw
2 − a6w

3

1− a1t− a2t2 − 2a3w − 2a4tw − 3a6w2

=
t3 − a3w

2 − a4tw
2 − 2a6w

3

1− a1t− a2t2 − 2a3w − 2a4tw − 3a6w2
.

The arithmetic is performed using truncated power series in R[t]. It is straight-

forward to check that the number of correct terms doubles with each iteration.

Each iteration requires several power series multiplications and one reciprocal. As

is typical in applications of Newton’s method to power series, the total time to

obtain n terms is a constant multiple of the time required for a length n poly-

nomial multiplication. Therefore the total time to compute n terms of w(t) with

coefficients in R is Õ(n log(pk)) = Õ(nk log p).

Given t−3w(t) up to O(tn), we may then deduce x(t) = t/w(t), y(t) = −1/w(t)

and s(t) = x′(t)/(2y(t) + a1x(t) + a3), also with coefficients in R, to the desired

number of terms, in time Õ(nk log p).
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8.2 A p-adic version of Brent’s algorithm

We digress to develop a tool that we will need in §8.3 to solve a differential equation

of the form

F ′

F
= f,

where f is a power series with p-adic coefficients. Formally the solution is given

by

F (t) = exp

(∫
f(t)dt

)
,

but is this computationally problematic since both the integration and exponen-

tation steps introduce denominators, causing some loss of p-adic precision.

The following result gives an efficient means to find F , without any denomi-

nators appearing in intermediate steps, and with good control over precision loss.

The algorithm we describe is essentially that of Brent [Bre76], with some addi-

tional analysis to track the p-adic error terms (Brent’s algorithm was not originally

designed for the p-adic setting).

Proposition 21. Let k ≥ 1 and 1 ≤ n < pdk/2e, and let R = Z/pkZ. Let

f ∈ R[t]/(tn−1), and suppose that there exists F ∈ R[t]/(tn), with F (0) = 1, such

that F ′/F = f . Then given f as input, F may be determined modulo J in time

Õ(nk log p), where J is the ideal of R[t]/(tn) given by

J = (pk−1tp, pk−2tp
2

, . . .).

Remark. Note that J is the ideal that captures the types of p-adic error terms

that occur in a power series integration. Namely, if g ∈ R[t]/(tn−1), and if the

coefficient of tj in g is divisible by j + 1 for each j, then g has an integral in
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R[t]/(tn); in general it is not uniquely determined, but it is determined at least

modulo J .

Remark. The running time estimate in Proposition 21 is optimal up to logarithmic

factors, since the size of the output data is proportional to nk log p bits.

Proof. We begin with an initial approximation F0(t) = 1 ∈ R[t]/(tn). We will

refine it iteratively, obtaining a sequence Fi ∈ R[t]/(tn) such that Fi−F ∈ J+(t2
i
)

for each i ≥ 0. After dlog2 ne steps, we will have Fi − F ∈ J as desired. Each

step is dominated by a polynomial multiplication and a division of length 2i, so

the total time is a constant multiple of the time required for a single polynomial

multiplication of length n, which is Õ(n log(pk)) = Õ(nk log p).

Now we explain the iterative step. Suppose that Fi − F ∈ J + (t2
i
). Since F

is invertible, we have

Fi = (1 + ε)F

for some ε ∈ J + (t2
i
), and so

F ′
i

Fi

− f =
F ′

F
+

ε′

1 + ε
− f =

ε′

1 + ε
.

Morally speaking we would like to integrate F ′
i/Fi − f to obtain log(1 + ε),

but the latter does not make sense in our ring. Instead, we write

ε′

1 + ε
= ε′ − ε′ε+

ε′ε2

1 + ε
.

The hypothesis n < pdk/2e implies that J 2 = 0, so that ε2 ∈ t2
iJ + (t2

i+1
). We
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also have tε′ ∈ J +(t2
i
), so tε′ε2 ∈ (t2

i+1
), and then ε′ε2 ∈ (t2

i+1−1). Consequently

F ′
i

Fi

− f ∈ ε′ − ε′ε+ (t2
i+1−1).

Therefore F ′
i/Fi − f may be integrated at least up to O(t2

i+1
); that is, we may

compute a G ∈ R[t]/(tn) such that

G ∈ ε− ε2

2
+ J + (t2

i+1

).

(The extra J term is introduced by errors in the integration.) Since ε2 ∈ J+(t2
i+1

)

we have in fact

G ∈ ε+ J + (t2
i+1

).

Now it is straightforward to define Fi+1; we simply take

Fi+1 = Fi(1−G).

From the above estimates this satisfies

Fi+1 ∈ F (1 + ε)(1− ε) + J + (t2
i+1

)

= F − ε2F + J + (t2
i+1

)

= F + J + (t2
i+1

)

as desired.
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8.3 The differential equation for the sigma func-

tion

In this section we prove Proposition 19. We start with the differential equation

(6.5), which may be rewritten as

x(t) + c =
−1

s(t)

(
σ′p(t)

σp(t)s(t)

)′

.

It is convenient to rephrase this in terms of the unit power series

θ(t) = t−1σp(t) = 1 + · · · ∈ ZpJtK.

Solving for σp(t) modulo Jr,λ is equivalent to solving for θ(t) modulo Jr−λ−1,λ.

We have θ′(t)/θ(t) = σ′p(t)/σp(t) + t−1, so θ(t) satisfies the equation

x(t) + c =
−1

s(t)

(
1

s(t)

(
−1

t
+
θ′(t)

θ(t)

))′

. (8.1)

Manipulating this equation formally, we obtain

θ′(t)

θ(t)
= h(t) ∈ ZpJtK, (8.2)

where

h(t) = −1

t
− s(t)

(∫
(x(t) + c)s(t)dt+ C

)
(8.3)

for some constant of integration C. (The formal integration operator is assumed

to output a series with zero constant term.) The constant C is determined by the

condition that σp(t) is an odd function; we will see below that this implies that
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C = a1/2.

Let

n =

⌈
r − 2

λ+ 1

⌉
+ 2.

The algorithm begins by computing an order n approximation to h(t), as follows.

First compute x(t) and s(t), up to n terms, with coefficients modulo pr−2,

using Proposition 20; that is,

x(t) = t−2 − a1t
−1 − a2 + · · ·+O(tn−2),

s(t) = 1 + a1t+ (a2
1 + a2)t

2 + · · ·+O(tn).

Compute the product

(x(t) + c)s(t) = t−2 + c+ · · ·+O(tn−2).

At this stage the coefficients are still correct modulo pr−2 (note that c is obtained

modulo pr−2 from the input E2(E, ω) via (6.6)). This last series is integrable

in ZpJtK, since we know from (8.3) that it is the derivative of −(h(t) + t−1)/s(t),

which lies in ZpJtK. (This fact is the basis of the ‘integrality algorithm’ of [MST06]

for computing E2(E, ω).) After integrating to obtain

∫
(x(t) + c)s(t) dt+ C = −t−1 + C + ct+ · · ·+O(tn−1),

the terms are no longer all correct modulo pr−2; indeed, the coefficient of tj is

correct only modulo pr−2−vp(j).
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Multiplying by s(t) and subtracting from −1/t yields

h(t) = (a1 − C) + (a2
1 − a1C + a2 − c)t+ · · ·+O(tn−1).

The multiplication by s(t) caused the incorrect digits to wash through to higher

order terms, so now the coefficient of tj is correct only modulo pr−2−blogp jc. Denote

by ĥ(t) the approximation to h(t) that we computed by the above procedure.

From the above expression for h(t) we may deduce the value of C. Namely,

we have

σp(t) = tθ(t) = exp

(∫
h(t)dt

)
= t+ (a1 − C)t2 + · · · . (8.4)

To say that σp(t) is odd means that σp(i(t)) = −σp(t), where i(t) = −t−a1t
2+ · · ·

is the formal inverse law [Sil92, IV §1]. Substituting i(t) into the above expression

for σp(t) and equating coefficients of t2 yields C = a1/2.

We now wish to apply Proposition 21 (Brent’s algorithm) to solve (8.2) for

θ(t). We cannot quite do this, because we only have the approximation ĥ(t), not

h(t) itself. This may be sidestepped in the following way. Treating ĥ(t) as an

element of ZpJtK (any lift will do), let

θ̂(t) = exp

(∫
ĥ(t) dt

)
∈ QpJtK.

As argued above, for 0 ≤ j < n − 1 the coefficient of tj in ĥ − h has valuation

at least r − 2 − blogp jc, so for 1 ≤ j < n the coefficient of tj in
∫

(ĥ − h)dt has

valuation at least

r − 2− blogp(j − 1)c − blogp jc.



CHAPTER 8. Computing the canonical p-adic sigma function 81

Therefore for 1 ≤ j < n the coefficient of tj in

θ̂(t)

θ(t)
= exp

(∫
(ĥ(t)− h(t)) dt

)
= 1 +

∑
k≥1

1

k!

(∫
(ĥ(t)− h(t)) dt

)k

has valuation at least

r − 2− blogp(j − 1)c − blogp jc −
⌊

j

p− 1

⌋
,

because vp(j!) ≤ j/(p− 1). Since p ≥ 5 we have

2 + blogp(j − 1)c+ blogp jc+

⌊
j

p− 1

⌋
≤ j

for all j ≥ 2. (It suffices to estimate the left hand side for p = 5. For large enough

j, the j/4 term dominates; one must also check a few small values of j directly.)

This shows that the coefficients of tj of θ̂(t) and θ(t) agree modulo pr−j for

2 ≤ j < n. For j = 0, 1, the coefficients agree modulo pr−2 (since no precision was

lost in h(t) for those terms at all). In particular, the coefficients of θ̂(t) are integral

for j < n, since θ(t) ∈ ZpJtK and n ≤ r. Therefore we may apply Proposition 21

with F = θ̂, f = ĥ and k = r − 2 to solve the equation

θ̂′(t)

θ̂(t)
= ĥ(t)

for θ̂(t). (The hypothesis n < pdk/2e of Proposition 21 is satisfied as long as r ≥ 3,

since n ≤ r and p ≥ 5. In the special case r = 2 we do not need Proposition 21

at all, instead reading off θ(t) directly from (8.4).)
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Let θ(t) be the approximation for θ̂(t) produced by Proposition 21. We have

θ− θ̂ ∈ J ; that is, the coefficients of tj in θ(t) and θ̂(t) agree modulo pr−2−blogp jc.

Since j ≥ blogp jc + 2 for j ≥ 2 and p ≥ 5, the coefficients of tj in θ(t) and θ(t)

agree modulo pr−j for 2 ≤ j < n.

Since λ ≥ 0 we have

(r − λ− 1)− 2 + (3− j)(λ+ 1) = r − 2 + (2− j)(λ+ 1) ≤ r − j

for j ≥ 2, showing that θ(t) and θ(t) agree modulo Jr−λ−1,λ, except possibly for

the coefficients of t0 and t1. These two terms may be easily computed separately

modulo pr+2λ and pr+λ−1 respectively, via (8.4).

Finally we must analyse the complexity. The application of Proposition 21

costs Õ(r2(λ + 1)−1 log p) since n = O(r/(λ + 1)). The remainder of the algo-

rithm consists of the polynomial arithmetic needed to compute ĥ(t), also costing

Õ(r2(λ+ 1)−1 log p). This completes the proof of Proposition 19.
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Computing the p-adic height

In this chapter we prove Theorem 3. Let P ∈ E(Q) be a non-torsion point, and

let N ≥ 1 be an integer; we wish to compute hp(P ) modulo pN . For the purposes

of estimating running times, we assume that E and P are fixed; we study the

running time only as a function of p and N .

Let n1 = #E(Fp), let n2 be the least common multiple of the Tamagawa

numbers of E, and let n = LCM(n1, n2). Let λ ≥ 0 be an integer, and put

R = pλnP . Then R ∈ E0, and R reduces to a nonsingular point of E(F`) for all

`, so (6.2) and (6.3) imply that

hp(P ) =
1

n2p2λ
hp(R) =

2

n2p2λ
logp

(
σp(R)

d(R)

)
. (9.1)

Put

N ′ = N + 2vp(n).

Note that vp(n1) ≤ 1, and that N ′ = N + O(1) since we are assuming that E

is fixed (in fact usually N ′ = N). To compute hp(P ) modulo pN , from (9.1) it

83
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suffices to compute logp(σp(R)/d(R)) modulo pN ′+2λ, and therefore it suffices to

compute the unit part of σp(R)/d(R) modulo pN ′+2λ, by the following lemma:

Lemma 22. Suppose that u ∈ Z∗
p is a unit and that M ≥ 1 is an integer. To

determine logp u modulo pM it suffices to know u modulo pM .

Proof. Since logp(u+ ε) = logp u+ logp(1 + ε/u), the result amounts to checking

that if vp(ε) ≥ M , then vp(logp(1 + ε)) ≥ M . Using the power series expansion

of logp(1 + x), this follows from the elementary estimate vp(ε
n/n) ≥ vpε, that is,

vp(n) ≤ n− 1 for all n ≥ 1.

Next we have:

Lemma 23. To compute the unit part of σp(R)/d(R) modulo pN ′+2λ, it suffices

to determine α(R), β(R) and d(R) modulo pN ′+2λ, and σp(t) modulo JN ′,λ.

(See Chapter 8 for the definition of the ideal Jr,λ.)

Proof. Observe that

σp(R)

d(R)
=
−α(R)

β(R)

(
1 +

∑
j≥1

cj+1t(R)j

)
, (9.2)

where the coefficients cj are as in (6.1). Since β(R) is a p-adic unit, it suffices to

compute α(R), β(R), and 1 +
∑

j≥1 cj+1t(R)j modulo pN ′+2λ.

Furthermore, since nP ∈ E0 we have vp(t(nP )) ≥ 1, and then vp(t(R)) ≥

1+λ, since multiplication by p on the formal group increases the p-adic valuation

of the parameter t. Therefore we need to know cj+1 modulo pN ′+2λ−j(λ+1) =

pN ′−2+(2−j)(λ+1) for 1 ≤ j ≤ b(N ′ + 2λ)/(λ+ 1)c. This is equivalent to knowledge

of σ(t) modulo JN ′,λ.
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Finally we may prove Theorem 3.

Proof of Theorem 3. Let 0 ≤ λ ≤ N ′; we will select the optimal value of λ below.

We first use Proposition 19 with r = N ′ to compute σp(t) modulo JN ′,λ in time

Õ(N2(λ+ 1)−1 log p).

Next compute Q = n2P . This is a constant-time operation, since P and E

(and hence n2) are assumed fixed. Note that R = pλn′Q, where n′ = n/n2, and

that Q reduces to a non-singular point of E(F`) for all ` (by definition of n2).

Now apply Proposition 17 with m = pλn′ and L = pN ′+2λ, obtaining ±α(R),

β(R) and ±d(R) modulo L. Using the fact that n′ ≤ n = O(p) and N ′ = O(N),

the time cost is Õ(logL logm) = Õ(Nλ log2 p).

We have collected enough information to apply Lemma 23, thereby obtaining

the unit part of σp(R)/d(R) modulo pN ′+2λ from (9.2). (Note that the sign am-

biguities in α(R) and d(R) are inconsequential. In t = −dα/β the signs cancel

out, and the p-adic logarithm is insensitive to the sign of its input.) The cost

of evaluating (9.2) is O((N ′ + 2λ)/(λ + 1)) = O(N/(λ + 1)) ring operations in

Z/pN ′+2λZ, for a bit-complexity of Õ(N2(1 + λ)−1 log p).

Finally we must evaluate the p-adic logarithm in (9.1) to obtain hp(P ). Using

the series expansion of logp(1 + x), this requires O(N ′ + 2λ) ring operations, for a

cost of Õ(N2 log p); with a more sophisticated algorithm one can obtain Õ(N log p)

[Ber, §16].

Summing all the estimates, we obtain

Õ(N2(λ+ 1)−1 log p+Nλ log2 p)

for the total running time. By choosing λ =
√
N , we balance the exponents of N

in these two terms, obtaining the estimate Õ(N3/2 log2 p).
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Example computations

The author implemented the above algorithms in the computer algebra system

Sage [SJ05], building on an implementation of the algorithm of [MST06] by Robert

Bradshaw, Jennifer Balakrishnan, Liang Xiao, William Stein, and the author.

The code is freely available under a GPL license, and is distributed as a standard

component of Sage (version 2.10.2 and later).

The following sample computations were performed on the same machine as

described in Chapter 5.

10.1 Large prime case

We will take the elliptic curve ‘92b1’ from Cremona’s database, which has equation

y2 = x3 − x+ 1 and conductor 92 = 22 · 23. A generator of the group of rational

points is P = (x, y) = (1, 1).

Let p = 1011 + 3 and N = 6. We need to compute E2 modulo p4. Using the

algorithm implementing Theorem 2(b), Sage finds that the matrix of Frobenius
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on the standard basis for Monsky–Washnitzer cohomology is given by

64304585760876115698175680344198318130013083 42503972380936025561124602310186734870477220

97128558385368210540568141789457735335273547 35695414251123884302364319655812481869943749


modulo p4. The computation time was 42 minutes. As a consistency check, one

may verify that the determinant of this matrix is p (mod p4), and that the trace

is

100000000012000000000540000000010799999956832 ≡ −43249 (mod p4),

which agrees with other point-counting algorithms.

From the matrix Sage finds immediately that

E2 = 74470168280485533213508423470741122284560152 +O(p4).

Finally, Sage uses Theorem 3 to find that hp(P ) is

p · 9226324270539878944369124959203473806055293044599072658 +O(p6).

This last step, including computation of the p-adic sigma function to some preci-

sion, is virtually instantaneous. Observe that the original algorithm of [MST06]

would have required computing the coordinates of the point nP where n ≈ 1011,

which would occupy around 1022 bits of storage — not to mention the computation

time. Clearly, Proposition 17 is essential for handling such large p.
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10.2 High precision case

Continuing with the same curve, we now consider the case p = 5 and N = 3000.

Therefore we require E2 modulo 52998. Since p is small relative to N , Sage uses

the algorithm of Theorem 2(a), based on Kedlaya’s original algorithm [Ked01],

for the Frobenius matrix computation. The first and last few digits of E2 are

E2 = 3 + 2 · 5 + 2 · 53 + 3 · 55 + 2 · 57 + · · ·+ 3 · 52995 + 3 · 52996 +O(52998).

The computation time to obtain E2 was 189 seconds.

After selecting λ = 54, the rest of the algorithm implementing Theorem 3

executes in just 2.5 seconds. The p-adic height turns out to be

hp(P ) = 3 · 5 + 3 · 52 + 2 · 53 + 54 + · · ·+ 4 · 52998 + 2 · 52999 +O(53000).

For such high precision computations, the original algorithm of [MST06] would

have been utterly impractical; the N4 contribution would multiply the above

running time by a factor of perhaps 108.

10.3 Asymptotic behaviour

In this section we give more data illustrating the running time asymptotics pre-

dicted by Theorem 2 and Theorem 3. All the examples below are for the curve

‘37a’ from Cremona’s database, with equation y2 + y = x3 − x and conductor 37.

Table 10.1 gives the time to compute E2 via the algorithm of Theorem 2(a),

for p = 5, with increasing values of N spaced by a factor of
√

2. As expected, the
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running time approximately doubles for each successive row.

N time N time N time
100 0.27s 400 2.24s 1600 41.4s
141 0.43s 566 4.87s 2263 113s
200 0.62s 800 9.46s 3200 203s
283 1.23s 1131 22.9s

Table 10.1: Time to compute E2 via Theorem 2(a) for p = 5 and varying N

Similarly, Table 10.2 shows the running time when we fix N = 100 and take

increasing values of p. Again, we expect the running time to approximately double

for each successive row, which matches the data reasonably well.

p time p time
23 1.5s 197 26.3s
47 3.9s 397 62.6s
97 10.2s

Table 10.2: Time to compute E2 via Theorem 2(a) for N = 100 and varying p

Now we consider Theorem 2(b). In Chapter 5 we already illustrated the asymp-

totic behaviour of our implementation when N is fixed and p varies. Now we

consider the opposite direction: Table 10.3 shows the running time when we fix

p = 10007 and vary N . We expect the running times in successive rows to increase

by a factor of 25/2 ≈ 5.7, matching the data quite well.

N time N time
10 1.5s 40 42s
20 7.4s 80 273s

Table 10.3: Time to compute E2 via Theorem 2(b) for p = 10007 and varying N
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For Theorem 3, we are unable to give any timing data that satisfactorily

illustrates the N3/2 dependence on N or the polylogarithmic dependence on p. In

the case of the variable N , the main difficulty is that in the point-multiplication

step, the N3/2 behaviour would only become visible when N is large enough that

quasilinear time integer arithmetic becomes available for integers of size pN . For

such large values of N , the computation of E2 is essentially infeasible. For the

feasible values of N , we tend to see behaviour closer to quadratic in N . The

situation for illustrating the dependence on p is even worse, since the running

time for the computation of E2 is exponential in log p.

Therefore we should consider the asymptotic running time asserted by Theo-

rem 3 to be mainly of theoretical interest. Nevertheless, in practice we find that

the algorithm given in the proof of Theorem 3 is extremely efficient, in the sense

that the time needed to compute the p-adic height is miniscule compared to the

time expended in computing E2 (witness the examples in §10.1 and §10.2 above).
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