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Abstract

Empirical Evidence for the Birch and Swinnerton-Dyer Conjecture

Robert L. Miller

Chair of the Supervisory Committee:
Professor William Stein

Mathematics

The current state of knowledge about the Birch and Swinnerton-Dyer conjecture relies on

some of the deepest and most difficult mathematical endeavors, including the modularity

theorem of Wiles, Breuil, Conrad, Diamond and Taylor, which was instrumental in the proof

of Fermat’s last theorem. There are also the Euler systems of Kato and Kolyvagin, Rubin’s

work on curves with complex multiplication, Néron’s classification and Tate’s algorithm,

and the formula of Gross and Zagier. Despite all of this mathematical energy there is still

much to be learned. Many facts about the conjecture only become clear one case at a time,

after hard computation. We prove the full Birch and Swinnerton-Dyer conjecture for many

specific elliptic curves of analytic rank zero and one and conductor up to 5000 by combining

theoretical and computational methods.
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Chapter 1

INTRODUCTION

In this chapter we recall the statement of the Birch and Swinnerton-Dyer conjecture for

elliptic curves over the rational numbers. In the second chapter we collect results about the

conjecture for elliptic curves over the rational numbers of analytic rank at most one. In the

third chapter we examine some techniques for performing descents on elliptic curves, which

is useful in many of the cases where the more general theory breaks down. New results

are found in the fourth chapter, in which we use the theory established in the previous two

chapters when the analytic rank is at most one, in particular proving Theorem 1.1. Appendix

A contains the tables referred to in Chapter 4 and in Theorem 1.1. For a statement of the

conjecture for abelian varieties over global fields, see Appendix B. For the remainder we

specialize to E an elliptic curve over Q.

Suppose E/Q is an elliptic curve and let E(Q) denote the set of points of E with

coordinates in Q, noting that E(Q) is an abelian group whose identity we will denote O.

The Mordell-Weil theorem states that E(Q) is finitely generated, i.e.,

E(Q) ∼= Zr × E(Q)tors.

Let ap = p + 1 −#E(Fp) where E(Fp) is the mod-p reduction of E—this requires that E

be a minimal Weierstrass model. In cases of good reduction (p - ∆(E) where ∆(E) is the

discriminant), E(Fp) is a group and in cases of bad reduction, E(Fp) is singular and the

nonsingular points form a group. Define

L(E/Q, s) =
∏

p|∆(E)

1
1− app−s

∏
p-∆(E)

1
1− app−s + p · p−2s

,

which converges for <(s) > 3/2 and has an analytic continuation to the complex plane. The

Birch and Swinnerton-Dyer conjecture asserts that rank(E(Q)) = ords=1L(E/Q, s)1. For

1If you can prove this for every elliptic curve E over Q, the Clay Mathematics Institute will give you a
million dollars. [54]
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this reason we define ran(E/Q) = ords=1L(E/Q, s) to be the analytic rank of E.

The determinant of the height pairing matrix, i.e., the regulator of E(Q), is denoted

Reg(E(Q)). With ω denoting the minimal invariant differential let Ω(E) =
∫
E(R) |ω| be the

so-called “real period” of E, which is the real period (the least positive real element of the

canonical period lattice) times the order of the component group of E(R). Let cp(E) denote

the Tamagawa numbers and let X(Q, E) denote the Shafarevich-Tate group. The Birch

and Swinnerton-Dyer conjectural formula (assuming that r = ran) is:

L(r)(E/Q, 1)
r!

=
Ω(E) ·

∏
p cp(E) · Reg(E(Q)) ·#X(Q, E)

#E(Q)2
tors

,

which of course requires that X(Q, E) is finite, which is part of the conjecture. #X(Q, E)an

denotes the order predicted by the conjecture, which is not even known to be a rational

number for a single curve of analytic rank greater than one.

For simplicity of notation (following [22]) we define the following:

Definition. BSD(E/Q, p): We have rank(E(Q)) = ran(E/Q), #X(Q, E)(p) <∞, #X(Q, E)an

is a rational number and

ordp(#X(Q, E)an) = ordp(#X(Q, E)(p)).

Note that the full conjecture for E/Q is equivalent to BSD(E/Q, p) for all primes p. The

rest of this paper if devoted to proving the following result:

Theorem 1.1. Suppose E/Q is an elliptic curve of rank at most 1 and conductor N(E) <

5000. If (E, p) 6= (1155k, 7) and (E, p) is not isogenous to one of the 223 pairs listed in

Tables A.9, A.11, A.12, A.13 and A.15, then BSD(E/Q, p) is true.

Note that this gives the full Birch and Swinnerton-Dyer conjecture for 16501 curves of

the 16725 of rank at most one and conductor at most 5000. The essential obstructions to

proving BSD (for rank(E(Q)) ≤ 1 and N(E) < 5000) are reducible representations (the

127 curves in Tables A.11, A.12 and A.13), additive reduction (the 96 curves in Table A.9

and A.15) and situations in which p divides two distinct Tamagawa numbers (the pair

(E, p) = (1155k, 7)).
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Suppose the conductor of E/Q is N . By [53] and [6] every elliptic curve over Q has a

modular parametrization, which is a nonconstant morphism ψ : X0(N) - E. In other

words, every elliptic curve is a Weil curve. If for each isogenous curve E′ with modular

parametrization ψ′ : X0(N) - E′ we have that ψ′ = ϕ ◦ ψ for some isogeny ϕ, then we

say that E is an optimal elliptic curve, often called a strong Weil curve in the literature.

Every elliptic curve E/Q has an optimal elliptic curve in its isogeny class, and by the

characterizing property this optimal curve is unique. Thus we can use optimal curves as

isogeny class representatives and, by isogeny invariance of the BSD formula, focus on optimal

curves.

A remark about computation is in order: Whenever we prove a theorem with the help

of a computer, interesting questions arise. Aside from the philosophical points, there is the

very real question of errors, both in hardware and software. Any computer-assisted proof

implicitly includes as a hypothesis the statement that the software used did not encounter

any bugs during execution.

There is a also benefit to computation which some may not expect, which comes in this

investigation in the form of some of the tables and exceptions at the end of Chapter 4.

These kinds of examples can point to areas of inquiry not fully addressed in the current

theory—in particular the curves in Table A.9 are all rank 1 curves with CM where there are

no known techniques to bound the p-primary subgroup of the Shafarevich-Tate group at all.

These sorts of examples arising from computation often lead to innovation and discovery

and they challenge us to think about what is necessary to provably verify something.

Few software programs for serious number theory research have been proven correct.

However it is often noted in the literature, as it is in Birch and Swinnerton-Dyer’s seminal

note itself, that the kind of algorithms which occur in number theory, and more importantly

the errors computational number theorists are likely to make implementing them, are often

of a very particular sort. Either the software will work correctly or very quickly fail in an

obvious way—perhaps it will crash or give answers that make no sense at all. In fact the

computational work behind the theorems of Chapter 4 uncovered several bugs (which have

all been fixed). There are sometimes different implementations of the same algorithm or

even different algorithms which implement the same theory. For example, the author used
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four different implementations of 2-descent to verify the computational claims of Theorem

3.8.
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Chapter 2

ELLIPTIC CURVES OVER Q

2.1 Imaginary quadratic twists

Since a fair amount of material to come will depend on the properties of a quadratic twist

ED of an elliptic curve E by D < 0, let us establish some of its properties here. Suppose

E is an elliptic curve over Q, and let IsomQ(E) denote the set of isomorphisms E - E

defined over Q.

Given a cocycle ξ ∈ H1(GQ, IsomQ(E)) we can construct an elliptic curve as described

in [43, ch. X] by constructing its field of functions. Let Q(E)ξ be a field isomorphic to Q(E)

via some Q-isomorphism Z : Q(E) - Q(E)ξ. We can define an action of GQ on Q(E)ξ

via Z:

Z(f)σ = Z (ξ∗σ(fσ)) for all σ ∈ GQ and all f ∈ Q(E),

where ξ∗σ : Q(E) - Q(E) is induced by ξσ : E - E. Letting F denote the fixed field

of Q(E)ξ under the action of GQ, we have F ∩Q = Q and that QF = Q(E)ξ. Thus F is an

extension of Q of transcendence degree 1 with F ∩ Q = Q, i.e., there exists a curve Eξ/Q

with Q(Eξ) ∼= F .

Let χ : GQ - {±1} denote the quadratic character associated to Q(
√
D)/Q, i.e.,

χ(σ) =
√
D
σ
/
√
D, and use it to define a cocycle ξ : GQ - IsomQ(E) by ξσ = [χ(σ)]. If

E is given in short Weierstrass form

E : y2 = x3 + ax+ b,

then [−1](x, y) = (x,−y). We can express the action of σ ∈ GQ on Q(x, y)ξ by

√
D
σ

= χ(σ)
√
D, xσ = x, yσ = χ(σ)y.

Thus u = x and v = y/
√
D are functions in Q(x, y)ξ fixed by GQ and satisfy the equation

Dv2 = u3 + au+ b. If the given Weierstrass equation for E is minimal and the minimality
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of its twist is needed, then multiplying u by D and v by D2, we obtain the alternate form

ED : v2 = u3 + aD2u+ bD3.

The discriminant of the twist will be minimal as long as we assume gcd (∆(E), D) = 1,

since ∆(ED) = −16
(

4
(
aD2

)3 + 27
(
bD3

)2) = D6∆(E). The two curves are related by the

Q(
√
D)-isomorphism

ϕ : E - ED : ϕ(x, y) =
(
Dx,D3/2y

)
.

Let σ denote complex conjugation and note that if xσ = x and yσ = ±y then

ϕ(x, y)σ = (Dx,D3/2y)σ = (Dx,∓D3/2y) = ϕ((x,∓y)) = [∓1]ϕ(x, y).

This shows that ϕ exchanges the ±1-eigenspaces of σ. With K = Q(
√
D), the following

lemma gives a relationship between the Mordell-Weil groups E(Q), ED(Q) and E(K).

Lemma 2.1. We have E(Q) = E(K)+ and under ϕ−1 we may identify ED(Q) = E(K)−.

Under this identification we have that

1. the intersection is two torsion:

E(Q) ∩ ED(Q) = E(Q)[2],

2. if E(K) has rank r and E(K)[2] has rank s, then

[E(K)/tors : (E(Q) + ED(Q))/tors] ≤ 2r

and

[E(K) : E(Q) + ED(Q)] ≤ 2r+s,

3. and if E(K) has rank 1, E(Q) has rank 0 and E(Q)[2] = 0, then

E(K)/tors = ED(Q)/tors.
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Proof. Let σ be the nontrivial element of G = Gal(K/Q), which is induced by complex

conjugation since D < 0. Considering E(K) as a Z[G]-module, since σ2 − 1 = 0, we

are interested in the +1-eigenspace E(K)+ = ker(σ − 1) and the -1-eigenspace E(K)− =

ker(σ+ 1) of E(K), which are interchanged by the K-isomorphism ϕ. The former is simply

E(Q) by definition and the latter is ϕ−1(ED(Q)). We have that E(K)+∩E(K)− = E(Q)[2],

since P ∈ E(K)+ ∩ E(K)− is equivalent to P = P σ = −P .

Let z ∈ E(K) and note that

2z = (z + zσ) + (z − zσ) ∈ E(K)+ + E(K)−.

Therefore since 2E(K) ⊆ E(K)+ + E(K)− we have that

[E(K)/tors : (E(K)+ + E(K)−)/tors] ≤ [E(K)/tors : 2E(K)/tors] = 2r

and

[E(K) : E(K)+ + E(K)−] ≤ [E(K) : 2E(K)] = 2r+s.

Now suppose that E(K) has rank 1 and choose z such that E(K) = Zz ⊕ E(K)tors.

Suppose further that E(K)+ has rank 0. Then zσ + z ∈ E(K)+ must be torsion—say

zσ + z = t. Choose a so that 2a + 1 is equal to the odd part of the order of t and let

w = z + at. The element

wσ + w = zσ + at+ (z + at) = zσ + z + 2at = (2a+ 1)t

is in E(Q)[2]. If we further suppose that E(Q)[2] = 0, then wσ +w = 0, which implies that

w ∈ E(K)−. Since w ≡ z modulo torsion, we have E(K)/tors = E(K)−/tors.

From the identifications of Lemma 2.1, we have an exact sequence

0 - T1
- X(Q, E)×X(Q, ED) - X(K,E) - T2

- 0, (2.1)

where T1 and T2 are finite 2-groups.

The following lemma is a correction to a formula which appeared in [23, p. 312] without

proof.
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Lemma 2.2. Suppose E/R is an elliptic curve and D < 0 is a square-free fundamental

discriminant. Then

Ω(E) · Ω(ED) ·
√
|D| = [E(R) : E0(R)] · ||ω||2.

Proof. Without loss of generality we may assume that E and ED are in short Weierstrass

form and ϕ : E - ED is defined as above. In this case the minimal invariant differentials

for E and ED are ω = dx
2y and ωD = du

2v , respectively. We calculate their relationship via ϕ:

ϕ∗(ωD) = ϕ∗
(
du

2v

)
= ϕ∗

(
d(Dx)
2D3/2y

)
= D−1/2dx

2y
= D−1/2 ω.

If E(C)± denotes the ±1-eigenspace of E(C) under the action of σ, then we have

Ω(ED) =
∫
ED(R)

|ωD| =
∫
ϕ(E(C)−)

|ωD| =
∫
E(C)−

|ϕ∗ωD| = |D|−1/2

∫
E(C)−

|ω|

and

Ω(E) =
∫
E(R)
|ω| =

∫
E(C)+

|ω|.

The constant ||ω||2 is defined by the formula

||ω||2 =
∫
E(C)

ω ∧ iω.

We now switch to a complex variable via the Weierstrass map. Let Λ ⊂ C be the period

lattice of ω, noting that the image of the invariant differential under the Weierstrass map

f : E(C) - C/Λ is d℘(z)
℘′(z) = dz. In order to avoid overloaded notation, we fix the complex

variable z = xz + iyz and compute dz ∧ idz = 2 dyz ∧ dxz. If Λ = ω1Z ⊕ ω2Z where

<(ω1) > 0, =(ω1) = 0, =(ω2) > 0 and <(ω2) < ω1, then the geometry of C/Λ breaks into

two cases, depending on whether the fundamental domain is rectangular (when ∆(E) > 0)

or not (when ∆(E) < 0). See Figure 2.1, in which E(C)+ (colored red) is either one or two

horizontal pieces, and E(C)− (colored green) is two vertical pieces. Let h be the height of

the fundamental domain D and let b be the width of its base. Then we have

||ω||2 =
∫
D

2 dyz ∧ dxz = 2
∫∫
D
dyz dxz = 2bh,

and

Ω(E) · Ω(ED) ·
√
|D| =

∫
D+

|dz| ·
∫
D−
|dz| = 2bh[E(R) : E0(R)],

which together prove the claim.
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Figure 2.1: The ±1-eigenspaces of C/Λ under complex conjugation.

2.2 Gross-Zagier-Zhang and Kolyvagin

If E is an elliptic curve over Q of conductor N(E), we say that the quadratic imaginary

field K = Q(
√
D) satisfies the Heegner hypothesis for E if each prime p | N(E) splits in K.

If ED is the twist of E by D then

L(E/K, s) = L(E/Q, s) · L(ED/Q, s).

If K satisfies the Heegner hypothesis for E, then the Heegner point yK ∈ E(K) is defined

as follows (see [24] for details). By hypothesis (and some elbow grease) there is an ideal N

of OK such that OK/N is cyclic of order N = N(E). Since OK ⊂ N−1, we have a cyclic

N -isogeny C/OK → C/N−1 of elliptic curves with complex multiplication by OK and a

point x1 ∈ X0(N). By the theory of complex multiplication one can show that x1 is defined

over the Hilbert class field H of K. We fix a modular parametrization ψ : X0(N) → E of

minimal degree taking ∞ to O, which exists by [53] and [6]. There is a unique minimal

invariant differential ω on E over Z and ψ∗(ω) is the differential associated to a normalized

newform on X0(N). We have ψ∗(ω) = α · f where f is a normalized cusp form and α

is some integer [20] constant which we may assume is nonzero. The Manin constant is

c := |α| and the Heegner point is yK := TrH/K(ϕ(x1)) ∈ E(K). It has been conjectured

that c = 1 if E is optimal. Define IK := [E(K)/tors : ZyK ], which we call the Heegner index.

Note that sometimes we may denote the Heegner index by ID to emphasize the dependence

K = Q(
√
D).
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Gross, Zagier and Zhang have proven a deep theorem which expresses the first derivative

of the L-series of E/K at 1 in terms of the canonical height ĥ of the Heegner point yK .

Theorem 2.3 (Gross-Zagier-Zhang). If K satisfies the Heegner hypothesis for E, then

L′(E/K, 1) =
2||ω||2ĥ(yK)

c2 · u2
K ·
√
|∆(K)|

,

where ||ω||2 =
∫
E(C) ω ∧ iω, the quadratic imaginary number field K has 2uK roots of unity

and ∆(K) is the discriminant.

Proof. [23] when D is odd and [57] in general.

Note that uQ(
√
−1) = 2, uQ(

√
−3) = 3 and for all other quadratic imaginary fields K (in

particular those satisfying the Heegner hypothesis) we have uK = 1. Often one requires

that D 6∈ {−1,−3}, but since there are infinitely many D satisfying the Heegner hypothesis

for E if ran(E) ≤ 1, this is a minor issue (see the proof of Theorem 2.6). Note also that the

ĥ appearing in the formula as stated here is the absolute height, whereas the one appearing

in [23, Theorem 2.1, p. 311] is equal to our 2ĥ.

Consider the map ρE,p : GQ → Aut(E[p]), which we call the mod-p representation since

E[p] ∼= (Z/pZ)2 as abelian groups. Let R denote the endomorphism ring R = End(E/C).

We have ρE,p : GQ → AutR(E[p]), where AutR(E[p]) is the subgroup of automorphisms

commuting with the action of R. If E does not have complex multiplication, then R = Z

and AutR(E[p]) = Aut(E[p]) ∼= GL2(Fp). If E does have complex multiplication, then R is

an order in a quadratic imaginary field and AutR(E[p]) ( Aut(E[p]) ∼= GL2(Fp). In either

case, we will say that ρE,p is surjective if its image is AutR(E[p]). Often in the literature

one sees this defined as being “as surjective as possible” in the complex multiplication case.

We have the following powerful theorem of Kolyvagin:

Theorem 2.4. If yK is nontorsion, then E(K) has rank 1 (hence IK < ∞), X(K,E) is

finite,

c3IKX(K,E) = 0 and #X(K,E)
∣∣c4I

2
K ,

where c3 and c4 are positive integers explicitly defined in [29]. The primes dividing c4 are

at most 2 and the odd primes p for which ρE,p is surjective.
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Proof. [29, Theorem A]

Corollary 2.5. If yK is nontorsion, then X(Q, E) and X(Q, ED) are finite and have

orders whose odd parts divide c4I
2
K .

Proof. By the exact sequence (2.1), we have that #X(Q, E)·#X(Q, ED) divides #X(K,E)

up to a power of two.

Theorem 2.6. If ran(E) ≤ 1, then yK is nontorsion. In particular,

r(E) = ran(E),

X(Q, E) is finite, and if p is an odd prime such that ρE,p is surjective, then

ordp(#X(Q, E)) ≤ 2 · ordp(IK).

Proof. We follow the proof given in [19]. If ε = −1 (i.e., ran(E) = 1), then [52] implies that

there are infinitely many D < 0 such that K = Q(
√
D) satisfies the Heegner hypothesis for

E and ran(ED) = 0. If ε = 1 (i.e., ran(E) = 0), then results of [7] and [33] imply that there

are infinitely many D < 0 such that K = Q(
√
D) satisfies the Heegner hypothesis for E. In

this case, for parity reasons, L(ED/Q, 1) is always 0.

We have that

ords=1L(E/K, s) = ords=1L(E/Q, s) + ords=1L(ED/Q, s),

which implies that in either case ran(E/K) = 1 which, by the Gross-Zagier-Zhang formula

(Theorem 2.3), implies that yK is nontorsion. Then Kolyvagin’s theorem implies that E(K)

has rank 1, IK <∞ and that X(K,E) is finite.

By Lemma 2.1, we have

rank(E(K)) = rank(E(Q)) + rank(ED(Q)).

The point yK belongs to E(Q) (up to torsion) if and only if ε = −1. If ε = −1, then

rank(E(Q)) = 1 since yK ∈ E(Q)/tors. If ε = 1, then some multiple of yK is in E(K)−,

which implies that rank(ED(Q)) = 1, hence rank(E(Q)) = 0.
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Lemma 2.7. If B > 0 is such that S = {P ∈ E(Q) : ĥ(P ) ≤ B} contains a set of generators

for E(Q)/2E(Q) then S generates E(Q).

Proof. See [13, §3.5].

Theorem 2.8. If ran(E) ≤ 1, then there are algorithms to compute both the Mordell-Weil

group E(Q) and the Shafarevich-Tate group X(Q, E).

Proof. Following [46], we can naively search for points in E(Q) and the rank of what we

find will eventually climb to r. We can also compute L(k)(E, 1) to a given precision which

will give an upper bound on ran. This upper bound will eventually converge to ran as we

increase the precision. Once our bounds for r and ran are equal, we have computed the

rank.

We can compute the subgroup E(Q)[2] to obtain the rank of E(Q)/2E(Q). A point

search to compute the rank of E(Q) will find independent points P1, ..., Pr of infinite order.

If any sum of Pi is equal to 2Q for Q ∈ E(Q), then we replace one of the Pi involved

in the sum with Q and start over—this halves the index of what we have inside of E(Q).

If no subset of the (modified) Pi sums to twice a rational point, these plus the 2-torsion

generators found above generate E(Q)/2E(Q). Call these generators P1, ..., Ps. Let C =

C(E) be the constant given in [15] such that |ĥ(P ) − h(P )| < C for all P ∈ E(Q) and let

B = max{ĥ(P1), ..., ĥ(Ps)}. We then perform a point search up to naive height B +C, and

by the previous lemma this will guarantee a set of generators of E(Q).

To compute X(Q, E), note that Kolyvagin’s theorem gives an explicit upper bound B for

#X(Q, E). For primes p dividing this upper bound, we can1 perform successive pk-descents

(see Chapter 3) for k = 1, 2, 3, ... to compute X(Q, E)[pk]. As soon as X(Q, E)[pk] =

X(Q, E)[pk+1] we can move on to the next prime. Once we do this for each prime we have

X(Q, E) =
⊕

p|B X(Q, E)[p∞].

Note that if the full BSD conjecture holds, we may theoretically do a single n-descent,

where n2 = #X(Q, E) = #X(Q, E)an, to determine the group structure of X(Q, E).

However, for even moderately sized n this is impractical.

1Recall, we are only proving that an algorithm exists: this scheme quickly becomes computationally
infeasible as p varies.
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For ran(E) ≤ 1, the following theorem will allow us (at least in theory) to compute

#X(Q, E)an exactly, which, together with the previous theorem, shows that the BSD for-

mula for E can be proven for specific elliptic curves via computation.

Theorem 2.9. If ran(E) ≤ 1, then #X(Q, E)an is a rational number with bounded denom-

inator (i.e., there is an easily computed integer n = n(E) such that #X(Q, E)an ∈ Z[n−1]).

Proof. The first fact we will need is that the L-ratio L(F/Q, 1)/Ω(F ) of any elliptic curve

F/Q is a rational number. By [53] and [6] F is modular. Cremona [13, §2.8] gives an

algorithm for computing these quantities for modular curves, however the original result

(that the ratio is rational) is due to Birch.

If ran(E) = 0, we have Reg(E(Q)) = 1 and

#X(Q, E)an =
L(E/Q, 1)

Ω(E)
· (#E(Q)tors)

2∏
p cp

.

If ran(E) = 1, then suppose K = Q(
√
D) satisfies the Heegner hypothesis for E. Note

that L′(E/K, s) = L′(E, s) · L(ED/Q, s). If z is a generator2 of E(Q)/tors, then since

ĥK(z) = 2ĥQ(z), we have

ĥK(yK)

ĥQ(z)
=

2ĥK(yK)

ĥK(z)
= 2[E(K) : ZyK ]2.

By Theorem 2.3 (and since RegE(Q) = ĥQ(z)) we have

#X(Q, E)an =
L′(E/K, 1)

L(ED/Q, 1) · Ω(E) · ĥQ(z)
· (#E(Q)tors)

2∏
p cp

=
ĥK(yK)

ĥQ(z)
· ||ω||2√
|∆(K)| · L(ED/Q, 1) · Ω(E)

· (#E(Q)tors)
2

c2 ·
∏
p cp

=
||ω||2√

|∆(K)| · L(ED/Q, 1) · Ω(E)
· 2 · [E(K) : ZyK ]2 · (#E(Q)tors)

2

c2 ·
∏
p cp

.

By Lemma 2.2, we have that
(

Ω(E) · Ω(ED) ·
√
|∆(K)|

)
/||ω||2 is a rational number. Since

L
(
ED/Q, 1

)
/Ω(ED) is a rational number, we have

||ω||2√
|∆(K)| · L(ED/Q, 1) · Ω(E)

∈ Q,

and since the rest of the expression involves integers, we have #X(Q, E)an ∈ Q.

2Here we are treating z as a generator of E(K) for simplicity—it may be twice a generator, see Section
2.1. We can do this if we are only concerned with showing that a quantity is rational.
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Gross and Zagier first proved this in [23, p. 312].

2.3 Complex Multiplication

If E is an elliptic curve over Q, then End(E/C) is either Z or an order O in a quadratic

imaginary number field K. If the latter is the case, there is an isogeny defined over Q from

E to an elliptic curve E′ with complex multiplication by the maximal order OK . Note that

E has complex multiplication by a non-maximal order if and only if its j-invariant is in

the set {−12288000, 54000, 287496, 16581375}. Suppose, without loss, that E is an elliptic

curve defined over a quadratic imaginary field K and that E has complex multiplication by

the ring of integers OK . The purpose of this section is to prove the following theorem:

Theorem 2.10. Suppose E has CM by the full ring of integers OK .

1. If ran(E) = 0, then BSD(E/Q, p) is true for p ≥ 5.

2. If ran(E) = 1, then:

(a) If p ≥ 3 is split, then BSD(E/Q, p) is true.

(b) If p ≥ 5 is inert and p is a prime of good reduction for E, then

ordp(#X(Q, E)) ≤ 2 · ordp(I),

where I = IQ(
√
D) is any Heegner index for D < −4 satisfying the Heegner

hypothesis.

We will prove this theorem in a sequence of smaller statements, beginning with a theorem

of Rubin:

Theorem 2.11. With w = #O×K , we have

1. If L(E/K, 1) 6= 0 then E(K) is finite, X(K,E) is finite and there is a u ∈ OK [w−1]×

such that

L(E/K, 1) = u · #X(K,E) · ΩΩ
(#E(K))2

.

In other words, BSD(E/K, p) is true for p - w.
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2. If L(E/K, 1) = 0, then either E(K) is infinite, or the p-part of X(K,E) is infinite

for all primes p - #O×K .

3. If E is defined over Q and ran(E/Q) = 1, then BSD(E/Q, p) is true for all odd p

which split in K.

Proof. [37]

Corollary 2.12. If E is defined over Q, has complex multiplication and ran(E/Q) = 0,

then BSD(E/Q, p) is true for all p ≥ 5.

Proof. Since ap(E) = 0 for primes p which are inert in K, and since these are exactly the

primes where the twisting character is nontrivial, we have that

L(E/K, s) = L(E/Q, s)2.

As Silverman notes in [44, p. 176], since E has complex multiplication it must be of

additive reduction at all the bad primes. By [43, Cor. 15.2.1, p. 359] the Tamagawa

product (not including archimedean primes) is at most 4. By Lemma 2.1, we have that

[E(K) : E(Q) +ED(Q)] is a power of two, hence the odd part of #E(K)tors is the square of

the odd part of #E(Q)tors. Lemma 2.2 shows that c∞(E/K) = Ω(E)2 up to a power of two

since E is isogenous to ED. (See Appendix B for the full statement of what BSD means

for E/K, and in particular for a definition of c∞(E/K).) Finally, by the exact sequence

(2.1), BSD(E/Q, p) is equivalent to BSD(E/K, p) for odd primesp. By the first part of the

theorem BSD(E/Q, p) is true for p - #O×K . Since K is quadratic imaginary, only 2 and 3

can divide #O×K .

Lemma 2.13. Let p be a prime of K of good reduction for E which does not divide #O×K .

Then K(E[p])/K is a cyclic extension of degree Norm(p)− 1 in which p is totally ramified.

Proof. [36, Lemma 21(i)]

Lemma 2.14. (OK/pOK)× ∼= AutOK (E[p]).
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Proof. Following unpublished work of A. Lum and W. Stein, let OK = Z[α]. Then via

the isomorphism E[p] ∼= F2
p, the element α acts on F2

p by a matrix M ∈ GL2(Fp). Then

AutOK (E[p]) is isomorphic to the centralizer of M in GL2(Fp). The centralizer of M is

equal to the subgroup it generates since M cannot be a scalar element. In other words, we

can make the identification AutOK (E[p]) = 〈α〉 by viewing α as an element of Aut(E[p]).

We define an isomorphism AutOK (E[p]) → (OK/pOK)× by sending αn to αn + pOK ∈

(OK/pOK)×. If αn ∈ pOK then Mn = 0 in GL2(Fp), hence the map is injective. It is

surjective since OK = Z[α].

Proposition 2.15. If p is a prime of good reduction for E not dividing #O×K which is inert

in K, then ρE,p is surjective.

Proof. When p is inert in K, Norm(p) = p2. By Lemma 2.13 #Gal(K(E[p])/K) =

p2 − 1. Since ρE,p : Gal(K(E[p])/K) → AutOK (E[p]) is injective it suffices to show that

#AutOK (E[p]) = p2 − 1. By Lemma 2.14 this reduces to showing #(OK/pOK)× = p2 − 1

which is true since [OK/pOK : Z/pZ] = 2.

2.4 Bounding the order of X(Q, E)

Suppose ran(E) ≤ 1 for E/Q and that K is a quadratic imaginary field satisfying the

Heegner hypothesis for E with IK = [E(K) : ZyK ]. We have already seen that for analytic

rank zero curves BSD(E/Q, p) is true for primes p > 3 if E has complex multiplication.

Otherwise we have the following theorem of Kato:

Theorem 2.16 (Kato). Suppose E is an optimal non-CM curve, and let p be a prime such

that p - 6N(E) and ρE,p is surjective. If ran(E) = 0 then X(Q, E) is finite and

ordp(#X(Q, E)) ≤ ordp

(
L(E/Q, 1)

Ω(E)

)
.

Proof. [28]

As a corollary to this theorem BSD(E/Q, p) is true for primes p > 3 of good reduction

where E[p] is surjective and p does not divide #X(Q, E)an. Under certain technnical
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conditions on p (explained in [21]), Grigorov has proven the bound on the other side:

ordp(#X(Q, E)) = ordp

(
L(E/Q, 1)

Ω(E)

)
.

Because Kato’s theorem often eliminates most of the primes p > 3, one often does not

need to compute the Heegner index for rank zero curves. However, if there is a bad prime

p > 3 with E[p] surjective then Kato’s theorem does not apply and descents are in general

not feasible. For example, this happens with the pair (E, p) = (2900d1, 5). Interestingly

#X(Q, E) = 25 in this case (this will be proven in Chapter 4). Kolyvagin’s theorem still

gives an upper bound in this case, provided we can get some kind of bound on the Heegner

index. In the example above the methods of Section 2.5 show that IK ≤ 23, implying that

ord5(IK) ≤ 1 and hence ord5(#X(Q, E)) ≤ 2.

Theorem 2.17 (Kolyvagin’s inequality). If p is an odd prime unramified in the CM field

such that ρE,p is surjective then

ordp(#X(Q, E)) ≤ 2 · ordp(IK).

We have the following alternative hypotheses which lead to the same result:

Theorem 2.18 (Cha). If p - 2 ·∆(K), p2 - N(E) and ρE,p is irreducible then

ordp(#X(Q, E)) ≤ 2 · ordp(IK).

Proof. [11, 12]

Theorem 2.19. Suppose E is non-CM and p is an odd prime such that p - #E′(Q)tors

for any E′ which is Q-isogenous to E. If ∆(K) is divisible by exactly one prime, further

suppose that p - ∆(K). Then

ordp(#X(Q, E)) ≤ 2 · ordp(IK).

Proof. [22]

Jetchev [27] has improved the upper bound with the following:
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Theorem 2.20 (Jetchev). If the hypotheses of any of Theorems 2.17, 2.18 or 2.19 apply

to p, then

ordp(#X(Q, E)) ≤ 2 ·
(

ordp(IK)− max
q|N(E)

ordp(cq)
)
.

If p divides at most one Tamagawa number then this upper bound is equal to ordp(#Xan(Q, E)).

All the work done in Chapter 4 was originally inspired by the following result in [22]:

Theorem 2.21. Suppose E is a non-CM elliptic curve over Q of rank(E(Q)) ≤ 1 and

conductor N(E) ≤ 1000, and p is a prime. If p is odd, suppose further that ρE,p is irreducible

and p does not divide any Tamagawa number of E. Then BSD(E/Q, p) is true.

Proof. In the paper [22], the authors used 2-descent to compute #X(Q, E)[2], and in

the cases where this was nontrivial, they used 4-descent to prove that X(Q, E)[2] =

#X(Q, E)[4]. This gives the order of X(Q, E)[2∞], which agrees with the conjectured

order, thus proving BSD(E/Q, 2) for each curve satisfying the hypothesis.

In the rank 1 case the authors used Theorem 2.17 when ρE,p is irreducible and surjective,

leaving a set of pairs (E, p) such that ρE,p is irreducible but not surjective. The remaining

cases all have p2 | N(E), so Theorem 2.18 does not apply. These are dealt with using

Theorem 2.19.

In the rank 0 case, when p - 3N(E), the pairs (E, p) such that ρE,p is not known to be

surjective which satisfy the hypothesis is the single pair (608B, 5). Theorem 2.16 deals with

all the other cases, and Theorem 2.18 handles (608B, 5).

In the general rank 0 case, Theorem 2.17 applies when ρE,p is surjective and p - IK ,

and Theorem 2.19 works for thirteen additional pairs. For the pairs (E, p) which are left, if

p ≥ 5 then p - N(E). Together with the previous paragraph, this shows that BSD(E/Q, p)

is true if p 6= 3.

Finally, 3-descents prove all of the remaining cases except for 681B, where 3-descent

shows that X(Q, E)[3] is nontrivial. Then Theorem 2.17 with D = −8 proves that

#X(Q, E)[3∞] ≤ 9, proving the last case.

There is also an algorithm of Stein and Wuthrich based on the work of Kato, Perrin-

Riou and Schneider (a preprint is available at [47] and the algorithm is implemented in
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Sage [49]). Suppose that the elliptic curve E and the prime p 6= 2 are such that E does

not have additive reduction at p and the image of ρE,p is either equal to the full group

GL2(Fp) or is contained in a Borel subgroup of GL2(Fp). (We recall that a Borel subgroup

is a maximal closed connected solvable subgroup. In GL2(Fp) these are subgroups which are

conjugate to the group of upper triangular matrices. See [26, Section 21] for more details.)

These conditions hold for all but finitely many p if E does not have complex multiplication.

Given a pair (E, p) satisfying this hypothesis, the algorithm either gives an upper bound

for #X(Q, E)[p∞] or terminates with an error. In the case that ran(E) ≤ 1, an error only

happens when the p-adic height pairing can not be shown to be nondegenerate. For curves

up to conductor 5000 of rank 0 or 1 this never happened for those p considered. Note that

it is a standard conjecture that the p-adic height pairing is nondegenerate, and if this is

true for a particular case, it can be shown via a computation.

There are also techniques for bounding the order of X from below. In [17], Cremona

and Mazur establish a method for visualizing pieces of X as pieces of Mordell-Weil groups

via modular congruences, which is explained only in the appendix of [1]. They have also

carried out computations for curves of conductor up to 5500, which are listed in [17]. In

addition, Stein established a method for doing this for abelian varieties as part of his Ph.D.

thesis [48].

2.5 The Heegner index

The main ingredient to applying Kolyvagin’s work to a specific elliptic curve E of analytic

rank at most 1 is to compute the Heegner index IK = [E(K)/tors : ZyK ], where K = Q(
√
D)

satisfies the Heegner hypothesis for E and yK ∈ E(K) is a Heegner point (and yK is its

image in E(K)/tors). Let z ∈ E(K) generate E(K)/tors.

We can efficiently compute ĥ(yK) provably and to desired precision using the Gross-

Zagier-Zhang formula (Theorem 2.3)), reducing the index calculation to the computation

of the height of z, since

I2
K =

ĥ(yK)

ĥ(z)
.

We have the following corollary of Lemma 2.1:
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Corollary 2.22. Suppose E is an elliptic curve of analytic rank 0 or 1 over Q, in particular

rank(E(Q)) = ran(E(Q)). Let D < 0 be a squarefree integer such that K = Q(
√
D) satisfies

the Heegner hypothesis for E.

1. If ran(F (Q)) = 1, where F ∈ {E,ED}, and if x ∈ F (Q) generates F (Q)/tors, then

IK =


√

ĥ(yK)

ĥ(x)
, 1

2x 6∈ F (K),

2
√

ĥ(yK)

ĥ(x)
, 1

2x ∈ F (K).

2. Suppose ran(E(Q)) = 0. If E(Q)[2] = 0 then let A = 1, otherwise let A = 4. Let

C = C(ED/Q) denote the Cremona-Pricket-Siksek height bound [15]. If there are no

nontorsion points P on ED(Q) with naive absolute height

h(P ) ≤ A · ĥ(yK)
M2

+ C,

then

IK < M.

Note that this is a correction to the results stated in [22]. However, for each case in

which [22] uses this result, the corresponding A is equal to 1. Therefore this mistake does

not impact any of the other results there.

If rank(E(Q)) = 1, then we will have a generator x from the rank verification, and we

can simply check whether 1
2x is in E(K) and use part 1 of the corollary. If rank(E(Q)) = 0

then we may not so easily find a generator of the twist, because a point search may very

well fail since the conductor of ED is D2N(E). However, a failed point search can still be

useful as long as we search sufficiently hard, because of part 2 of the corollary.

Cremona and Siksek [16] describe an algorithm which allows the quick computation of

the minimum height for a nontorsion point on an elliptic curve. This algorithm has been

implemented in Sage [49] by Robert Bradshaw.

Theorem 2.23. Suppose ran(E/Q) = 0. If E(Q)[2] = 0 then let A = 1, otherwise let

A = 4, and let D < 0 be a Heegner discriminant. There is an easily computed constant

H(ED) such that if z ∈ ED(Q) is nontorsion then ĥ(z) > H(ED).
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Corollary 2.24. With the same hypotheses,

IK <

√
A · ĥ(yK)/H(ED).

We will use this Corollary when a point search is infeasible, to at least give some bound

on the order of the Shafarevich-Tate group. If we compute A, ĥ(yK) and H(ED) as above,

then we let S1 = S1(E,D, p) denote the largest nonnegative even integer such that pS1 <

A · ĥ(yK)/H(ED).

If the hypotheses of any of Theorems 2.17, 2.18 or 2.19 apply to p (and hence we can

also use Theorem 2.20), then we will have

ordp(#X(Q, E)) ≤ S1 − 2 max
q|N(E)

ordp(cq).

In the tables the quantity S will be equal to the right hand side of the above inequality. In

particular, S will be an upper bound on the exponent of p in the order of X(Q, E).
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Chapter 3

DESCENT

In studying the arithmetic of the abelian group E(Q) it is natural to consider the map

[n] : E - E, which is multiplication by an integer n. We can use this map to define the

sequence

0 - E[n] - E
[n]

- E - 0,

(where E[n] denotes the kernel) which leads us to the descent sequence

0 - E(Q)/nE(Q)
δ
- H1(Q, E[n]) - H1(Q, E)[n] - 0,

via the long exact sequence of Galois cohomology.

By localizing at all primes p, we obtain the commutative diagram with exact rows which

is used to define the n-Selmer group and the Shafarevich-Tate group:

0 - E(Q)/nE(Q)
δ
- H1(Q, E[n]) - H1(Q, E)[n] - 0

0 -
∏
p

E(Qp)/nE(Qp)
?

δ
-
∏
p

H1(Qp, E[n])
?

-
∏
p

H1(Qp, E)[n]
?

-

α

-

0.

Recall that the n-Selmer group Sel(n)(Q, E) is the kernel of the map α. If φ : E - E′ is

an isogeny of degree n over a number field K, we obtain the analogous diagram:

0 - E′(K)/φE(K)
δ
- H1(K,E[φ]) - H1(K,E)[φ] - 0

0 -
∏
p

E′(Kp)/φE(Kp)
?

δ
-
∏
p

H1(Kp, E[φ])
?

-
∏
p

H1(Kp, E)[φ]
?

-

α

-

0.
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The φ-Selmer group Sel(φ)(K,E) is the kernel of the map α and the image of δ is contained in

it, by exactness of the bottom row and commutativity. By the definition of the Shafarevich-

Tate group, we obtain the short exact descent sequence:

0 - E′(K)/φE(K)
δ
- Sel(φ)(K,E) - X(K,E)[φ] - 0.

To see how the various Selmer and Shafarevich-Tate groups relate to each other under

an isogeny, suppose φ : E - E′ has prime degree p, let φ′ : E′ - E denote the dual

isogeny and consider the diagram:

0 - E[φ] - E
φ
- E′ - 0

0 - E[p]
?

∩

- E

wwwwwwwwww
[p]

- E

φ′

?
- 0

0 - E′[φ′]

φ

?
- E′

φ

? φ′
- E

wwwwwwwwww
- 0.

By taking long exact sequences and truncating, we obtain

0 - E′(K)/φE(K)
δφ- H1(K,E[φ]) - H1(K,E)[φ] - 0

0 - E(K)/pE(K)

φ′

? δ[p]- H1(K,E[p])
?

- H1(K,E)[p]
?

∩

- 0

0 - E(K)/φ′E′(K)

idE(K)

?? δφ′- H1(K,E′[φ′])

φ∗

?
- H1(K,E′)[φ′]

φ∗

?
- 0.
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By restricting to the Selmer groups, we obtain

0 - E′(K)/φE(K)
δφ- Sel(φ)(K,E) - X(K,E)[φ] - 0

0 - E(K)/pE(K)

φ′

? δ[p]- Sel(p)(K,E)
?

- X(K,E)[p]
?

∩

- 0

0 - E(K)/φ′E′(K)

?? δφ′- Sel(φ
′)(K,E′)

φ∗

?
- X(K,E′)[φ′]

φ∗

?
- 0.

In [38] (Lemma 9.1), the authors use this diagram to show that the following sequence is

exact:

0 - E′(K)[φ′]/φ(E(K)[p])

Sel(φ)(K,E) -
�

Sel(p)(K,E) - Sel(φ
′)(K,E)

X(K,E′)[φ′]/φ∗(X(K,E)[p]) -
�

0.

Let us consider the φ-descent sequence more concretely:

E′(K)/φ(E(K)) ⊂
δφ- Sel(φ)(K,E)

π
-- X(K,E)[φ∗].

The map δφ is the connecting homomorphism from Galois cohomology. If P ∈ E′(K),

choose a Q ∈ E(K) such that φ(Q) = P . Then δφ(P ) ∈ H1(K,E[φ]) is represented by

ξQ : GK → E[φ], where

ξQ(σ) = σQ−Q, for all σ ∈ GK .

A simple diagram chase will tell us that by the definition of Sel(φ)(K,E), the image of δ lies

inside Sel(φ)(K,E). The map π comes from the natural surjectionH1(K,E[φ]) -- H1(K,E)[φ].

For [ξ] ∈ Sel(φ)(K,E), ξ is a map GK → E[φ] and π([ξ]) is represented by the composition

GK
ξ- E[φ] ⊂ - E.
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Recall that for M a GK-module, ν a place of K, and Iν ⊂ GK its inertia group, a

cohomology class ξ ∈ H i(K,M) = H i(GK ,M) is said to be unramified at ν if it is trivial

under the natural map H i(GK ,M)→ H i(Iν ,M). For S a finite set of places of K and M a

finite abelian GK module, we define H1(K,M ;S) to be the set of ξ ∈ H1(K,M) such that

ξ is unramified outside of S. In fact, this is a finite set [43, ch. X, Lemma 4.3].

Theorem 3.1. If S is a set of places of K containing infinite places, places at which E has

bad reduction, and places dividing deg(φ), then

Sel(φ)(K,E) ⊆ H1(K,E[φ];S).

Proof. [43, ch. X, Corollary 4.4]

Definition. If E/K is an elliptic curve, a principal homogeneous space for E/K is a smooth

curve C/K together with a simply transitive algebraic group action of E on C defined over

K.

For p ∈ C and P ∈ E, we write the image of P under this action as p+P . In this notation,

simply transitive means that the equation p + P = q for p, q ∈ C always has a unique

solution P , hence we may also write P = p − q. Picking a p0 ∈ C gives an isomorphism

θ : E → C : P 7→ p0 + P , defined over K(p0), thus C is a twist of E, and if C has a point

defined over K, then C is isomorphic to E over K. Two homogeneous spaces are said to be

equivalent if they are isomorphic over K such that the isomorphism is compatible with the

action of E on each.

Definition. The Weil-Châtelet group WC(E/K) is the collection of equivalence classes of

homogeneous spaces for E over K.

The set WC(E/K) is a group by the bijection WC(E/K)↔ H1(K,E) defined as follows:

for {C/K} ∈ WC(E/K), choose any p0 ∈ C and define {σ 7→ pσ0 − p0} to be the corre-

sponding cocycle in H1(K,E). In fact, C/K is in the trivial class if and only if C(K) is

not empty, and Pic0(C) can be canonically identified with E via the “summation map,”

defined by Div0(C)→ E :
∑
ni(pi) 7→

∑
[ni](pi− p0), which is independent of the choice of
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p0 ∈ C. We identify WC(E/K) = H1(K,E), and under this identification, one can think

of X(E/K) as the group of equivalence classes of homogeneous spaces for E/K which have

Kν-rational points for every place ν of K. Under this light, a nontrivial element of X(E/K)

will correspond to a failure of the Hasse principle for some homogeneous space which has

points over each completion Kν , yet no points over K itself.

3.1 Implementations of descents

Cremona’s program mwrank is one of various implementations of 2-descents on elliptic curves,

and consists of Birch and Swinnerton-Dyer’s original algorithm [5] together with an impres-

sive range of improvements spanning years in the literature. This is frequently called the

“principal homogeneous space” method, since it essentially involves a search for principal

homogeneous spaces which represent elements of the 2-Selmer group. These are hyperel-

liptic curves defined by y2 = f(x), where f is a quartic. As such, these are called quartic

covers of the elliptic curve. It is very well described in [13], as long as one is also aware of

the various improvements and clarifications: [14] works out computing equivalence of the

involved quartics, [18] completes the classification of minimal models begun in [5] at p = 2

and even this was further refined in certain cases by [39] and [42] includes an asymptotic

improvement over [5] in determining local solubility. Further, the situation regarding what

mwrank does in higher descents (extensions of φ-descents to 2-descents when φ is an isogeny

of degree 2) is documented mostly in slides titled “Higher Descents on Elliptic Curves” on

Cremona’s website1, as well as some unpublished notes he was kind enough to share.

There is also Denis Simon’s gp [4] script, which has been incorporated into Sage. It

computes the same information as mwrank, but via what is called the “number field method.”

For more of the flavor of this approach, see section 3.2.

The 2-descent methods in Magma [8] were written mostly by Geoff Bailey. Magma’s

4-descent routines are based on [32] and [55], and here the homogeneous spaces each come

from the intersection of two quadric surfaces in P3. The 8-descent routines are based on

[45], and the homogeneous spaces are intersections of three quartics.

1http://www.warwick.ac.uk/~masgaj/
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Jeechul Woo, a 2010 Ph.D. student of Noam Elkies, has implemented a gp script (which

has been ported to Sage [49] but not yet merged as of this writing) for doing 3-isogeny

descents when the curve has a rational 3-torsion point, based on [56].

3.2 Schaefer-Stoll

For D an étale algebra over K, define

D(S,m) = {α ∈ D×/(D×)m : α is unramified outside of S},

where we say that α ∈ D× is unramified at ν if the extension of étale K-algebras D( p
√
α)/D

is unramified at all places of D lying above ν.

Note that if E[m] ⊂ E(K), we have that µm ⊂ K×. Then E[m] ∼= (µm)2 as trivial

GK-modules, hence H1(K,E[m]) ∼= H1(K, (µm)2) = Hom(GK , µm)2. Hilbert’s theorem 90

implies that δK : K×/(K×)m → Hom(GK , µm) is an isomorphism. Then in this case we

have

H1(K,E[m];S) ∼= K(S,m)×K(S,m).

We can then use this isomorphism to enumerate elements of H1(K,E[m];S), and for

each element ξ, determine whether it is in the m-Selmer group. This is done by taking a

corresponding principal homogeneous space C/K in the Weil-Châtelet group, and checking

whether C(Kν) 6= ∅ for each ν ∈ S. This demonstrates the effectiveness of the method to

compute the m-Selmer group, but often we do not need to extend K so that E[m] ⊂ E(K),

since other similar methods are available.

For the following, assume p is an odd prime, and again that φ : E - E′ is an isogeny

over K with kernel E[φ] of prime exponent p. We have the following improvement to

Theorem 3.1:

Theorem 3.2. If S is a finite set of places of K containing the places above p and the

places ν such that at least one of the Tamagawa numbers cE,ν or cE′,ν is divisible by p, then

Sel(φ)(K,E) ⊆ H1(K,E[φ];S).
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If we consider the following diagram:

E′(K)/φ(E(K)) ⊂
δφ - H1(K,E[φ];S)

∏
ν∈S

E′(Kν)/φ(E(Kν))

∏
ν∈S resν

?
⊂

∏
ν∈S δφ,ν-

∏
ν∈S

H1(Kν , E[φν ]),

∏
ν∈S resν

?

we may reformulate the definition of the Selmer group as follows:

Sel(φ)(K,E) = {ξ ∈ H1(K,E[φ];S) : resν(ξ) ∈ imδφ,ν for all ν ∈ S}.

Proof. [38, Prop. 4.6]

From now on, let us suppose S satisfies the hypothesis of Theorem 3.2. Following [38],

let φ′ : E′ → E be the dual isogeny of φ and let X be a Galois-invariant subset of E′[φ′]\{O}

which spans E′[φ′]. Considering X as a finite étale subscheme of E′, let D be the finite étale

K-algebra corresponding to X. The étale algebra D =
∏m
i=1Di decomposes as a product

of finite extensions Di of K. If α = (α1, ..., αm) we say that D( p
√
α)/D is unramified at a

prime p = (p1, ..., pm) if each Di( p
√
αi)/Di is unramified at pi. Here we say p lies above ν if

each pi lies above ν.

Note that we can use algorithms for computing S-class groups ClS and S-units US in

the number fields Di to compute D(S, n) =
∏m
i=1Di(S, n) via the exact sequences

1→ US(Di)/US(Di)n → Di(S, n)→ ClS(Di)[n]→ 1.

Next, we use the Weil pairing eφ : E[φ]×E′[φ′]→ µp together with the Kummer isomor-

phism k : H1(K,µp(D))→ D×/(D×)p. The Weil pairing induces an injection wφ : E[φ]→

µp(D) = {X(K)→ µp} taking P to eφ(P, ·). If the induced map w∗φ : H1(K,E[φ])→ H1(K,µp(D))

is injective (both globally and locally in S), then we may form the following diagram, and

transfer computations in H1(K,E[φ];S) to computations in D(S, p):
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E′(K)/φ(E(K)) ⊂
δφ - H1(K,E[φ];S) ⊂

k ◦ w∗φ - D(S, p)

∏
ν∈S

E′(Kν)/φ(E(Kν))

∏
ν∈S resν

?
⊂

∏
ν∈S δφ,ν-

∏
ν∈S

H1(Kν , E[φν ])

∏
ν∈S resν

?
⊂

∏
ν∈S kν ◦ w∗φ,ν-

∏
ν∈S

D×ν /(D
×
ν )p

∏
ν∈S resν

?

Under this new diagram, we have

Sel(φ)(K,E) ∼= {α ∈ im(k ◦ w∗φ) : resν(α) ∈ im(kν ◦ w∗φ,ν ◦ δφ,ν) for all ν ∈ S}.

This description of the φ-Selmer group depends on w∗φ being injective globally and locally

for ν ∈ S. If φ = [p] and G = Gal(K(E[p])/K), then this is the case if p - #G or p - #X [38,

Prop. 6.4]. In particular, if we set X = E[p] \ {O}, then p - #X = p2 − 1. If we partition

X into orbits under the GK-action, we need only take a union of orbits which spans E[p]

such that p does not divide its order.

To make this description of the Selmer group more effective, define F : E′ → D as

follows. For each P ∈ X, choose a function fP in K(P )(E′) with divisor div(fP ) = pP −pO

such that for σ ∈ GK we have σfP = fσP . Then F is the rational function from E′ to D

which sends a point R to the function P 7→ fP (R). We call a degree-0 divisor on E′ over

K good if its support avoids X ∪ {O}. Every point of E′(K) can be represented by a good

divisor, and we can evaluate F on a good divisor
∑

j njQj to find
∏
j F (Qj)nj ∈ D×. By

evaluating on good divisors, F induces a well-defined map from E′(K)/φ(E(K)) to D(S, p)

which turns out to be equal to the composition k ◦ w∗φ ◦ δφ. Under this new notation, we

have

E′(K)/φ(E(K)) ⊂
F

- D(S, p)

∏
ν∈S

E′(Kν)/φ(E(Kν))

∏
ν∈S resν

?
⊂

∏
ν∈S Fν-

∏
ν∈S

D×ν /(D
×
ν )p,

∏
ν∈S resν

?

and

Sel(φ)(K,E) ∼= {α ∈ im(k ◦ w∗φ) : resν(α) ∈ Fν(E′(Kν)/φ(E(Kν))) for all ν ∈ S}.
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To compute the Selmer group using this description we must be able to find the im-

age of Fν(E′(Kν)) in D×ν /(D
×
ν )p, for ν ∈ S. Work in [38] allows us to find the size of

E′(Kν)/φ(E(Kν)), which involves computing the norm of the leading coefficient of the

power series representation of φ on formal groups when φ 6= [p]. Once we know the size, we

can search for good divisors defined over Kν whose classes span the group. Using Fv, it is

typically easier to compute independence in D×ν /(D
×
ν )p.

Suppose we have an étale algebra D/K corresponding to a GK-set X with GL2-action.

Further assume that the stabilizers in GL2(Fp) of points in X meet the center trivially.

Then by [38, Lemma 7.2] there is an étale subalgebra D+ of D corresponding to the orbits

in X of the center F×p of GL2(Fp), and D/D+ is a cyclic extension of degree p − 1. Let

µp(D)(1) denote the submodule of µp(D) consisting of elements for which the action of a

central element α ∈ F×p is multiplication by α.

The last remaining step is computing im(k◦w∗φ) in D(S, p). We do so in the generic case

φ = [p], X = E[p] \ {O}. Let A denote the étale algebra corresponding to X = E[p] \ {O}

(here we are following the notation of [38], so D will now become A, and D will assume a

new role below), and let B denote the étale algebra corresponding to the set of affine lines in

E[p] avoiding the origin, i.e., corresponding to E[p]∨\{O}, where E[p]∨ = Hom(E[p],Z/pZ).

We let Y denote the GK-set of pairs (P, `) ∈ E[p]\{O}×E[p]∨ \{O}, and let D denote the

étale algebra corresponding to Y . Let g be a primitive root mod p and σg the automorphism

of A/A+ corresponding to the action of g on X.

Theorem 3.3. We have the following exact sequence:

0 - E[p]
wp- µp(A)(1) u- µp(B)(1) w∨p- E[p]∨ ⊗ µp - 0,

where u is defined by

ϕ 7→

(
` 7→

∏
P∈`

ϕ(P )

)
.

Furthermore, the sequence

0 - H1(K,E[p])
wp- H1(K,µp(A)(1))

u- H1(K,µp(B)(1))

is also exact.

H1(K,E[p]) ∼= ker
(
g − σg : A×/(A×)p → A×/(A×)p

)
∩ ker(u),



31

and u : A×/(A×)p → B×/(B×)p is induced by the composition

NormD/B ◦ ι(A ⊂ - D) : A→ B.

Proof. [38]

Corollary 3.4.

Sel(p)(K,E) ∼= {ξ ∈ A(S, p) : resν(ξ) ∈ imFν for all ν ∈ S}.

Michael Stoll has kindly provided some unpublished notes regarding the special case of

an isogeny of prime degree, which can be useful to prove that X(Q, E)[`] = 0 when E[`]

is reducible. These notes consider a degree ` isogeny φ : E - E′ over Q where either

` > 3 or ` = 3 and E has no special fibers of Kodaira type IV or IV* and normalized

so that E[φ] contains real points. In [38], the set of usual primes to consider is restricted

to {`} ∪ {p : `|cp(E)cp(E′)}. If `|cp(E)cp(E′) then both curves have split multiplicative

reduction at p, and there are two cases: cp(E) = `cp(E′) or cp(E′) = `cp(E).

Proposition 3.5. If p 6= ` and cp(E′) = `cp(E), then Fp has trivial image and the local

condition in Corollary 3.4 becomes that resp(ξ) is trivial.

If p 6= ` and cp(E) = `cp(E′), then Fp is surjective so the condition is vacuous.

Proof. (Stoll’s notes)

If p = ` then either Ω(E) = Ω(E′) or Ω(E) = `Ω(E′), so let w ∈ {0, 1} be such that

Ω(E) = `wΩ(E′). In the first case, φ′ is an isomorphism on the kernels of reduction,

otherwise φ is. Stoll proves that

Proposition 3.6. If E[φ](Q`) = 0 = E′[φ′](Q`), then

Sel(φ
′)(Q, E′) ∼= kerα and Sel(φ)(Q, E) ∼= kerβ,

where if w = 0,

α : K(S1, `)(1) - K(S2 ∪ {`}, `)∗ and β : K ′(S2, `)(1) - K ′(S1, `)∗

are the canonical maps and if w = 1,

α : K(S1, `)(1) - K(S2, `)∗ and β : K ′(S2, `)(1) - K ′(S1 ∪ {`}, `)∗.
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Further unraveling of notation is necessary for the above proposition to make sense.

• K is the field of definition of any point in E[φ] and similarly for K ′.

• S1 = {p : cp(E) = `cp(E′)} and S2 = {p : cp(E′) = `cp(E)}.

• K(S, `)(1) is defined above, and

K(S, `)∗ =
∏
p∈S

O×K,p
(O×K,p)`

,

where OK,p = OK ⊗Z Zp.

Corollary 3.7. With the same hypotheses, assume that the class numbers of K and K ′ are

not divisible by `. Then we have

#S1 + w −#S2 ≤ dim kerα ≤ #S1 + 1

and

#S2 − (#S1 + w) ≤ dim kerβ ≤ #S2.

Proof. From Stoll’s notes, we have dimK(S1, `)(1) = #S1 + 1, (dimK(S2, `)∗)
(1) = #S2,

dimK ′(S2, `)(1) = #S2, and (dimK ′(S1, `)∗)
(1) = #S1.

On the other hand, if E′[φ′](Q`) 6= 0 and w = 1 then the maps to consider are instead

α : K(S1 ∪ {`}, `)(1) - K(S2, `)∗ and β : K ′(S2, `)(1) - K ′(S1 ∪ {`}, `)∗.

If w = 0, then an easy description of β is:

β : K ′(S2, `)(1) - K ′(S1, `)∗.

We do not have at present a similar description of α in this case, apart from considering

the image of F` explicitly.

In the cases where α and β are defined, we have

max
{

dim X(Q, E)[`], dim X(Q, E′)[`]
}
≤ dim kerα+ dim kerβ − rank(E(Q)).
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3.3 The primes p = 2 and p = 3

Theorem 3.8. If E/Q has conductor N(E) < 5000, then BSD(E/Q, 2) is true.

Proof. Assume that E is an optimal curve and let T (E) = ord2(#X(Q, E)an). If T (E) = 0

then a 2-descent proved BSD(E/Q, 2) and if T (E) > 0 then a 2-descent proved X(Q, E)[2] ∼=

Z/2Z×Z/2Z. If T (E) = 2 then a 4-descent proved BSD(E/Q, 2) and if T (E) > 2 then a 4-

descent proved X(Q, E)[4] ∼= Z/4Z×Z/4Z. For the range of curves considered T (E) was at

most 4 and in the case where T (E) = 4, an 8-descent proved that X(Q, E)[8] = X(Q, E)[4]

and hence proved BSD(E/Q, 2). The truth of BSD(E/Q, p) is independent of the isogeny

class of E and every isogeny class contains an optimal curve.

Theorem 3.9. If E/Q has conductor N(E) < 5000, then BSD(E/Q, 3) is true.

Proof. For optimal curves where ord3(#X(Q, E)an) = 0, a 3-descent proved BSD(E/Q, 3).

For the rest we have ord3(#X(Q, E)an) = 2, and in this case a 3-descent proved that

X(Q, E)[3] ∼= Z/3Z × Z/3Z. These 31 remaining optimal curves are shown in Table A.2.

If E is in the set {681b1, 1913b1, 2006e1, 2429b1, 2534e1, 2534f1, 2541d1, 2674b1, 2710c1,

2768c1, 2849a1, 2955b1, 3054a1, 3306b1, 3536h1, 3712j1, 3954c1, 4229a1, 4592f1, 4606b1},

then the algorithm of Stein and Wuthrich [47] proves the desired upper bound. For the

rest of the curves except for 2366d1 and 4914n1, the mod-3 representations are surjective.

Table A.4 displays selected Heegner indexes in this case, which together with Kolyvagin

(and Jetchev for 4675j1 since c17(4675j1) = 3) proves the desired upper bound.

Finally we are left with 2366d1 and 4914n1. Each isogeny class contains a curve F

for which #X(Q, F )an = 1, so we replace these curves with 2366d2 and 4914n2. Then 3-

descent shows that X(Q, F )[3] = 0, and hence BSD(F/Q, 3) for both curves. By Theorem

B.3, BSD(E/Q, 3) only depends on the isogeny class of E, hence the claim is proved.

Corollary 3.10. If rank(E(Q)) = 0, E has conductor N(E) < 5000 and E has complex

multiplication, then the full BSD conjecture is true.
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Chapter 4

CURVES OF CONDUCTOR N < 5000

There are 17314 isogeny classes of elliptic curves of conductor up to 5000. There are

7914 of rank 0, 8811 of rank 1 and 589 of rank 2. There are none of higher rank. There

are only 116 optimal curves which have complex multiplication in this conductor range.

Every rank 2 curve in this range has #X(Q, E)an = 1. For any curve E in this range,

ordp(X(Q, E)an) ≤ 6 for all primes p. If such an E is optimal then ordp(X(Q, E)an) ≤ 4

for all primes p. Table A.1 shows how many curves have nontrivial Xan at each prime, and

what the exponent of that prime is.

4.1 Optimal curves with nontrivial #X(Q, E)an

Theorem 4.1. If E/Q is an optimal curve with conductor N(E) < 5000 and #X(Q, E)an 6=

1, then for every p | #X(Q, E)an, BSD(E/Q, p) is true.

Proof. By table A.1 we have that p ≤ 7, and by the theorems of the previous section, we

may assume that p ≥ 5.

For p = 5, E is one of the twelve curves listed in table A.5. These are all rank 0 curves

with E[5] surjective, so if 5 - N(E) Kato’s theorem 2.16 provides an upper bound of 2 for

ord5(#X(Q, E)). This leaves just 2900d1 and 3185c1. For 2900d1, Corollary 2.22 together

with a point search shows that the Heegner index is at most 23 for discriminant -71, hence

Kolyvagin’s inequality provides the upper bound of 2 in this case. For 3185c1, the algorithm

of Stein and Wuthrich [47] provides the upper bound of 2. In all twelve cases [17] (and the

appendix of [1]) finds visible nontrivial parts of X(Q, E)[5]. Since the order must be a

square, #X(Q, E) must be exactly 25 in each case.

For p = 7 there is only one curve E = 3364c1 and E[7] is surjective. Since 7 - 3364

and E is a rank 0 curve without complex multiplication, Kato’s theorem 2.16 bounds

ord7(#X(Q, E)) from above by 2. Furthermore, Grigorov’s thesis [21, p. 88] shows that
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ord7(#X(Q, E)) is bounded from below by 2.

Note: In fact computations show that if E is any (not necessarily optimal) curve with

conductor N(E) < 5000 and ordp(#X(Q, E)an) 6= 0, then BSD(E/Q, p) is true except for

the isogeny classes in Table A.6. All of these curve-prime pairs (E, p) have E[p] reducible,

and this will be discussed in Section 4.4.

4.2 Rank 0 curves and irreducible mod-p representations

Theorem 4.2. If E/Q is an optimal rank 0 curve with conductor N(E) < 5000 and p

is a prime such that E[p] is surjective and E does not have additive reduction at p, then

BSD(E/Q, p) is true.

The hypothesis that E does not have additive reduction at p is addressed in Section 4.5.

Proof. By theorems of the previous two sections, we may assume that p > 3, E does not have

complex multiplication and ordp(#X(Q, E)an) = 0. In this case Kato’s theorem applies to

E (since the rank part of the conjecture is known for N(E) < 130000), and since E[p] is

surjective and p > 3, we need only consider primes dividing the conductor N(E).

For such pairs (E, p), we can compute the Heegner index or an upper bound for it, which

gives an upper bound on ordp(X(Q, E)). When the results of Kolyvagin and Jetchev were

not strong enough to prove BSD(E/Q, p) using the first available Heegner discriminant, the

algorithm of Stein and Wuthrich [47] was (although to be fair the former may be strong

enough using other Heegner discriminants in these cases). This algorithm always provides

a bound in this situation since p > 3 is a surjective prime of non-additive reduction and E

is rank 0.

For example if E = 1050c1, the first available Heegner index is -311. Bounding the

Heegner index is difficult in this case since it involves point searches of prohibitive height.

However in two and a half seconds the algorithm of Stein and Wuthrich provides an upper

bound of 0 for the 7-primary part of the Shafarevich-Tate group, which eliminates the last

prime for that curve.
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Theorem 4.3. If E/Q is an optimal rank 0 curve with conductor N(E) < 5000, E[p] is

irreducible and E is not of additive reduction at p, then BSD(E/Q, p) is true.

Proof. By the previous theorem we need only consider primes p such that E[p] is not

surjective. Similarly we can assume that p > 3, ordp(#X(Q, E)an) = 0 and that E does

not have complex multiplication. The curve-prime pairs matching these hypotheses can be

found in Table A.7 along with selected Heegner indices. The only prime to occur in these

pairs is 5, and each chosen Heegner discriminant and index is not divisible by 5 except E =

3468h. Further, 5 does not divide the conductor of any of these curves so by Cha’s theorem

2.18, BSD(E/Q, 5) is true for these pairs. For E = 3468h note that one of the Tamagawa

numbers is 5, so by Theorem 2.20, BSD(E/Q, 5) is true for this curve.

4.3 Rank 1 curves and irreducible mod-p representations

Theorem 4.4. If E/Q is a rank 1 curve with conductor N(E) < 5000, p is a prime such

that E[p] is irreducible, E does not have additive reduction at p and (E, p) 6= (1155k, 7),

then BSD(E/Q, p) is true.

Note that for (E, p) = (1155k, 7), we have c3(E) = 7, c5(E) = 7,

ord7(#X(Q, E)an) = 0 and ord7(#X(Q, E)) ≤ 2,

by Jetchev’s improvement to Kolyvagin’s theorem. We may also replace the hypothesis that

E does not have additive reduction at p with the hypothesis that E does not have complex

multiplication and E does not have additive reduction at p, since .

Proof. We may assume in addition that E is optimal, since reducibility and additive reduc-

tion are isogeny-invariant. By Theorems 3.8 and 3.9, if p < 5 then BSD(E/Q, p) is true.

Thus we may assume p ≥ 5. Computing the Heegner index is much easier when E has

rank 1, as noted in Section 2.5. Kolyvagin’s theorem then rules out many pairs (E, p) right

away. Then some combination of Theorems 2.19, 2.18, 2.20 and the algorithm of Stein and

Wuthrich [47] will rule out many more pairs. If no combination of these techniques works

for the first Heegner index one usually computes, then another Heegner discriminant must
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be used. Table A.8 lists rank 1 curves E for which this is necessary such that E[p] is irre-

ducible, E does not have complex multiplication and (E, p) 6= (1155k, 7). All these curves

have E[p] surjective and p does not divide any Tamagawa numbers so it is sufficient to

demonstrate a Heegner index which p does not divide. On the other hand if E has complex

multiplication, there are a handful of pairs (E, p) left where E has additive reduction at p,

and these are listed in Table A.9.

4.4 Reducible mod-p representations

Suppose E is an optimal elliptic curve of conductor N(E) < 5000 and p is a prime such

that E[p] is reducible, i.e., there is a p-isogeny φ : E - E′. If p < 5 or E is a rank 0

curve with complex multiplication, results of the previous sections show that BSD(E/Q, p)

is true. This leaves 464 pairs (E, p). By results in [31], BSD(11a/Q, 5) is true, leaving 463

pairs.1 Table A.10 illustrates the distribution of primes and ranks of these 463 pairs.

The results of Theorem 2.19 can be applied to 339 of these curve-prime pairs, providing

that the Heegner index computation cooperates. This occurs in all but five cases, which

are listed in Table A.11. This table also lists the discriminant out of the first ten for which

the required point search on the twist is easiest (i.e., for which the corresponding height is

smallest). The additional column S is an upper bound for ordp(#X(Q, E)) in each case,

computed using Corollary 2.24 and the technique immediately preceding it.

This leaves 129 pairs of the original 464: 107 5-isogenies, 17 7-isogenies, 2 11-isogenies,

and one isogeny each of degree 19, 43 and 67. The 5-, 7- and 11-isogenies ought to be

feasible, since doing an isogeny descent will require computing the class groups of number

fields of degree up to 10. The remaining three cases are listed in Table A.12, together with

the degrees of the relevant number fields. There are also two cases with rank 2, namely

(E, p) ∈ {(2601l1, 5), (3328d, 5)}. The 119 rank 0 and 1 cases not appearing in Tables A.11

and A.12 are listed in Table A.13 for completeness: if (E, p) does not appear in one of these

three tables for E[p] reducible, then BSD(E, p) is true.

1In http://www.math.fsu.edu/~agashe/math/090526-Agashe-v1.pdf, Agashe explains the conse-
quences of Mazur’s article in more detail, in situations like these.
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4.5 Additive reduction

Suppose E is an optimal rank 0 or 1 elliptic curve with N(E) < 5000, and that p is a prime

such that E[p] is irreducible. If we want to prove BSD(E/Q, p), by Theorems 3.8 and 3.9 we

may assume p > 3 and by Theorem 4.1 we may assume that ordp(#X(Q, E)an) = 0. By the

proof of Theorem 4.4, there are only eighteen rank 1 cases left. There is (E, p) = (1155k, 7),

and E does not have additive reduction at p in this case. There are also the 17 curves listed

in Table A.9.

Assume in addition that E has rank 0, noting that we may now assume that E does not

have complex multiplication. If E does not have additive reduction at p then Theorem 4.3

proves BSD(E/Q, p), so we are left to consider pairs (E, p) which are of additive reduction.

There are 1964 such pairs.

Suppose that E[p] is not surjective. There are 14 such pairs, and Theorem 2.19 applies

to all of them. The Heegner point height calculations listed in Table A.14 prove that

BSD(E/Q, p) is true in these cases. Note that in the cases where p may divide the Heegner

index, it must do so of order at most 1, and in these cases it also divides a Tamagawa

number, so Jetchev’s Theorem 2.20 assists Theorem 2.19.

Now we may also assume that E[p] is surjective. For 1871 of the remaining 1950 pairs,

Heegner index computations sufficed to prove BSD(E/Q, p), using Theorem 2.17 and The-

orem 2.20. The remaining 79 cases are listed in Table A.15. Each of these cases have

rank(E(Q)) = 0, and ρE,p surjective. The height h listed in the table is such that if we can

prove that any point P ∈ ED(Q) has height ĥ(P ) > h, then BSD(E/Q, p) is true.
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[34] André Néron. Arithmétique et classes de diviseurs sur les variétés algébriques. In Pro-
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Appendix A

THE TABLES

Table A.1: Number of E where ordp(#X(Q, E)an) = e > 0

General E Optimal E

p e = 2 e = 4 e = 6

2 743 77 3

3 177 0 0

5 33 0 0

7 5 0 0

p e = 2 e = 4 e = 6

2 123 8 0

3 31 0 0

5 12 0 0

7 1 0 0

Table A.2: Optimal E with ord3(#X(Q, E)an) = 2

681b1 2429b1 2601h1 2768c1 3054a1 3712j1 4229a1 4675j1

1913b1 2534e1 2674b1 2849a1 3306b1 3879e1 4343b1 4914n1

2006e1 2534f1 2710c1 2932a1 3536h1 3933a1 4592f1 4963c1

2366d1 2541d1 2718d1 2955b1 3555e1 3954c1 4606b1
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Table A.3: Optimal E with ordp(#X(Q, E)an) = 2 for p ∈ {5, 7}

1058d1 5 2574d1 5 3384a1 5 3364c1 7

1246b1 5 2834d1 5 3952c1 5

1664k1 5 2900d1 5 4092a1 5

2366f1 5 3185c1 5 4592d1 5

Table A.4: Selected Heegner indexes for certain E with ord3(#X(Q, E)an) = 2

E D IK ord3(IK)

2601h1 -8 12 1

2718d1 -119 48 1

2932a1 -31 3 1

3555e1 -56 6 1

3879e1 -35 24 1

E D IK ord3(IK)

3933a1 -56 24 1

4343b1 -19 12 1

4675j1 -19 18 2

4963c1 -19 3 1

Table A.5: Optimal E with ord5(#X(Q, E)an) = 2

1058d1 1664k1 2574d1 2900d1 3384a1 4092a1

1246b1 2366f1 2834d1 3185c1 3952c1 4592d1

Table A.6: Non-optimal (E, p) with ordp(#X(Q, E)an) > 0 where BSD(E/Q, p) was not
proved

546f2 7 870i3 5 1342c3 5 2370m2 5

570l3 5 870i4 5 1922c2 7 2550be2 5

570l4 5 1050o2 5 1938j2 5 3270h2 5

858k2 7 1230k2 7 1950y2 5
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Table A.7: Non-additive reduction, irreducible but not surjective

E p D IK E p D IK E p D IK E p D IK

324b1 5 -23 6 1216i1 5 -31 1 2268b1 5 -47 ≤ 3 4232b1 5 -7 2

324d1 5 -23 2 1296g1 5 -23 2 3132a1 5 -23 6 4232d1 5 -7 6

608b1 5 -31 2 1296i1 5 -23 2 3468c1 5 -47 2

648c1 5 -23 4 1444a1 5 -31 2 3468h1 5 -47 ≤ 11

1044a1 5 -23 12 2268a1 5 -47 6 4176n1 5 -23 ≤ 3

Table A.8: Some Heegner indexes using larger discriminants

E p D IK E p D IK E p D IK

1450c1 5 -151 3 3150i1 5 -479 8 4440f1 5 -259 2

1485e1 5 -131 4 3150bb1 5 -479 4 4485d1 5 -296 2

1495a1 5 -79 3 3310b1 5 -151 3 4550j1 5 -199 4

1735a1 5 -24 4 3450b1 5 -551 28 4675t1 5 -84 9

2090c1 5 -431 8 3480h1 5 -239 2 4680h1 5 -311 8

2145a1 5 -131 2 3630h1 5 -431 3 4725c1 5 -104 8

2275b1 5 -139 2 3760k1 5 -39 1 4800bx1 5 -119 7

2550n1 5 -239 9 3900n1 5 -599 2 4815e1 5 -71 6

2860a1 5 -519 9 3920y1 5 -159 6 4950r1 5 -359 6

2970j1 5 -359 3 4050h1 5 -239 32

2990e1 5 -159 12 4140c1 5 -359 6 2660a1 7 -439 11

3060h1 5 -359 18 4200t1 5 -551 4 4158a1 7 -215 2

3075a1 5 -119 14 4400z1 5 -79 24 4704t1 7 -143 8

3140b1 5 -39 2 4410i1 5 -479 2 4914x1 7 -335 12
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Table A.9: Some rank 1 curves with complex multiplication

225a 5 3136v 7

675a 5 3267d 11

900c 5 3600bd 5

1568g 7 3600be 5

2700h 5 3872a 11

2700l 5 4356a 11

2700p 5 4356c 11

3136t 7 4356b 11

3136u 7

Table A.10: Ranks of certain E for reducible E[p], p > 3

p r = 0 r = 1 r = 2

5 176 156 2

7 50 44

11 4 6

13 10 8

19 1

37 2 2

43 1

67 1
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Table A.11: Heegner index challenge curves, reducible case

E p D1 h D2 S

1950b1 5 -911 62.3 -191 6

2574d1 7 -263 268.9 -95 4

3042o1 5 -23 35.4 -23 4

4950bo1 5 -1151 28.4 -239 4

4950bq1 5 -479 42.7 -479 2

Let zi be a generator of EDi(Q)/tors for i = 1, 2. For each line in the table, If h(z1) > h

then BSD(E/Q, p) is true. Further, since ĥ(z2) ≥ H(ED2), Corollary 2.24 shows that

ordp(#X(Q, E)) ≤ S unconditionally.

Table A.12: Large degree isogenies for N(E) < 5000

E p d

361a1 19 9

1849a1 43 21

4489a1 67 33
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Table A.13: Small degree isogenies for N(E) < 5000

26b1 7 286d1 5 784h1 7 1586d1 5 2290d1 5 3542r1 5

38b1 5 294b1 7 786m1 5 1650r1 5 2318e1 5 3786g1 5

50b1 5 302a1 5 806f1 5 1650s1 5 2350n1 5 3806k1 5

57c1 5 325e1 5 834g1 5 1686c1 5 2370m1 5 3850t1 5

58b1 5 366b1 5 858k1 7 1717c1 5 2550be1 5 4010e1 5

66c1 5 395c1 5 862e1 5 1745e1 5 2651c1 5 4011d1 5

75c1 5 426a1 5 870i1 5 1790d1 5 2715c1 5 4043a1 5

110a1 5 441d1 7 874e1 5 1866i1 5 2766i1 5 4389k1 5

118b1 5 490k1 7 885d1 5 1870h1 5 2786d1 5 4450k1 5

121b1 11 537e1 5 890g1 5 1914o1 5 2850w1 5 4495d1 5

123a1 5 546f1 7 1050o1 5 1914p1 5 2869b1 5 4650bl1 5

150a1 5 550k1 5 1147b1 5 1938j1 5 3025a1 11 4650bp1 5

155a1 5 570l1 5 1155n1 5 1950y1 5 3026d1 5 4730k1 7

158c1 5 574i1 7 1230k1 7 1986g1 5 3075l1 5 4774j1 5

174b1 7 574j1 5 1254k1 5 2090n1 5 3126c1 5 4774k1 5

175a1 5 606f1 5 1293e1 5 2110e1 5 3135h1 5 4790c1 5

186b1 5 665d1 5 1310c1 5 2110h1 7 3136r1 7 4854c1 5

203a1 5 678d1 7 1342c1 5 2170q1 5 3206e1 5 4886f1 5

246b1 5 710d1 5 1479f1 5 2175j1 5 3270h1 5 4910g1 5

258f1 7 762g1 7 1526e1 5 2235f1 5 3333g1 5
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Table A.14: Additive reduction, irreducible but not surjective

E p D IK
∏
q cq E p D IK

∏
q cq

675d1 5 -11 2 1 2400bg1 5 -71 20 10

675f1 5 -11 2 1 2450d1 7 -31 1 1

800e1 5 -31 6 3 2450bd1 7 -31 < 13 7

800f1 5 -31 2 1 4800n1 5 -71 < 5 3

1600i1 5 -31 4 2 4800u1 5 -71 10 5

1600k1 5 -31 4 2 4900s1 5 -31 4 2

2400f1 5 -191 < 5 2 4900u1 5 -31 12 6
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Table A.15: Heegner index challenge curves, surjective additive case

E p D1 h D2 S

1050l1 5 -311 27.2 -311 4

1050n1 5 -2399 63.4 -311 8

1050q1 5 -311 53.8 -311 6

1350o1 5 -239 30.8 -71 4

1470q1 7 -479 223.6 -311 6

1764h1 7 -167 21.5 -47 4

1850d1 5 -471 57.0 -71 4

2100o1 5 -311 94.7 -311 4

2352x1 7 -551 25.9 -47 4

2450bd1 5 -559 63.2 -31 6

2450k1 5 -159 22.5 -31 4

2550bc1 5 -191 37.0 -191 6

2550j1 5 -239 46.3 -191 8

2550z1 5 -1511 30.4 -671 6

2646ba1 7 -47 99.7 -47 6

2646bd1 7 -143 143.4 -47 6

2650k1 5 -679 516.8 -439 6

3038m1 7 -55 40.7 -55 4

3150bc1 5 -1511 40.7 -311 4

3150bd1 5 -1991 3250.0 -839 8

3150bj1 5 -311 24.2 -311 2

3150bn1 5 -1991 252.7 -311 8

3150t1 5 -1151 183.5 -311 6

3185c1 7 -199 69.0 -131 4

3225b1 5 -119 23.0 -71 2

3234c1 7 -503 172.9 -503 4

3350d1 5 -79 43.4 -31 6

3450p1 5 -479 56.8 -479 6

3450v1 5 -191 827.5 -191 10

3630c1 11 -1559 57.9 -239 2

3630l1 11 -239 286.2 -239 6

3630r1 11 -239 37.7 -239 4

3630u1 11 -1319 30.9 -239 2

3650j1 5 -79 62.9 -71 6

3822bc1 7 -647 27.4 -311 4

3822e1 7 -1511 21.9 -335 2

3822u1 7 -503 27.6 -503 4

3822w1 7 -503 152.5 -335 4

3822z1 7 -1823 80.6 -311 6

3850e1 5 -1399 60.1 -271 4

E p D1 h D2 S

3850m1 5 -2351 38.8 -271 2

3850y1 5 -1399 596.4 -271 8

3900k1 5 -1199 106.1 -191 4

3900l1 5 -191 23.5 -191 6

4050bi1 5 -71 32.7 -71 2

4050s1 5 -551 37.0 -119 4

4050x1 5 -119 25.6 -71 4

4200bd1 5 -479 888.7 -311 8

4200m1 5 -719 309.8 -311 8

4350q1 5 -719 104.5 -719 6

4350w1 5 -719 141.5 -71 8

4410b1 7 -671 49.4 -671 2

4410bi1 7 -1319 177.1 -1319 4

4410bj1 7 -311 36.1 -311 4

4410q1 7 -839 49.2 -551 2

4410u1 7 -2231 70.5 -671 4

4550p1 5 -1119 647.4 -1119 6

4606b1 7 -31 54.2 -31 4

4650bo1 5 -119 166.1 -119 8

4650bs1 5 -239 1154.9 -119 10

4650bt1 5 -1511 22.1 -119 2

4650bu1 5 -1199 175.8 -119 10

4650q1 5 -119 75.8 -119 4

4650w1 5 -719 2343.8 -119 10

4725q1 5 -59 47.1 -59 4

4800ba1 5 -71 24.2 -71 4

4850h1 5 -31 131.5 -31 6

4900w1 5 -311 22.0 -31 4

4950bj1 5 -239 57.4 -239 6

4950bk1 5 -239 99.9 -239 6

4950bm1 5 -479 7759.1 -239 10

4950bp1 5 -431 144.8 -239 8

4950w1 5 -1151 50.3 -239 4

4950x1 5 -359 370.8 -359 6

4998bg1 7 -47 50.0 -47 6

4998bk1 7 -47 509.1 -47 8

4998k1 7 -47 178.2 -47 6

4998t1 7 -1487 27.4 -47 4

4998u1 7 -47 31.9 -47 4

Let zi be a generator of EDi(Q)/tors for i = 1, 2. For each line in the table, If h(z1) > h

then BSD(E/Q, p) is true. Further, since ĥ(z2) ≥ H(ED2), Corollary 2.24 shows that

ordp(#X(Q, E)) ≤ S unconditionally.
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Appendix B

ABELIAN VARIETIES OVER GLOBAL FIELDS

This chapter will review the characterization of global fields, the Tamagawa measure on

the Néron model of an abelian variety, the Birch and Swinnerton-Dyer (BSD) conjecture as

generalized by Tate and classical results which support the conjecture.

A global field K is a finite separable extension of either Q or Fq(t), where Fq is a finite

field and t is transcendental over it (called number fields and function fields, respectively—

the term function field will always be meant in this sense, with X(Y ) denoting the field of

X-valued functions on Y ). Global fields are the natural setting for class field theory, and

Artin and Whaples (in [2] and [3]) characterized these fields axiomatically in terms of the

following properties:

• Every valuation of K is either archimedean or discrete with finite residue class field.

• The normalized absolute values |·|v representing the set of places MK satisfy a product

formula ∏
v∈MK

|α|v = 1 for all α ∈ K∗.

For this to make sense, one can assume that |α|v = 1 for all but finitely many places,

or that the product rule is in the sense of absolute convergence.

To define the normalized valuation, let v be a valuation of K and let Kv be the completion

with respect to v. Then for α ∈ Kv, the map x 7→ αx will scale any Haar measure on Kv

by a number which does not depend on the choice of Haar measure. This number is the

normalized valuation |α|v of α.

Let A be an abelian variety defined over a global field K, and let GK be the absolute

Galois group of K. It is helpful to consider A as a scheme over K, because this allows us

to phrase some definitions in a natural way. Let p be a nonzero prime ideal of K and fix
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the notation Op = {α ∈ K : |α|p ≤ 1} for the valuation ring, mp = {α ∈ K : |α|p < 1} for

its maximal ideal and kp = Op/mp for the residue class field. In addition, define OK to be

the ring of integers of K. The abelian variety A is said to have good reduction at p if there

exists a smooth proper scheme X over Op whose generic fiber is A. For example if K = Q

then p = (p) for a prime number p and we have Op = Z(p), mp = pZ(p) and kp = Fp. In this

case A has good reduction at p if there is a smooth proper scheme defined over Z(p) (i.e.,

the coefficients of the defining equation all have denominators that are not divisible by p)

whose generic fiber is A, and the fiber product then gives a scheme over Fp. In general, we

have the following diagram:

A - X � X ×Op kp

Spec(K)
?

- Spec(Op)
?

� Spec(kp).
?

The Néron model of A over OK is a smooth group scheme A over OK whose generic

fiber is A, such that the following universal property is satisfied. For any smooth scheme

X over OK , morphisms XK
- AK = A extend uniquely to morphisms X - A. That

is, there is an isomorphism of morphism groups as illustrated in the following diagram:

AK - A

XK
-

-

X

-

Spec(K)
?

-
-

Spec(OK).
?-

The existence of Néron models is highly nontrivial and is due to Néron [34]. For a prime p of

K, let Ap denote the special fiber of A over the residue class field kp. As an algebraic group

over kp, Ap is not necessarily connected so denote the connected component containing the

identity by A0
p. Since A0

p is a group variety over kp it is an extension of an abelian variety

by a linear group. This linear group is an extension of a torus by a unipotent group, so we

define u(A, p) to be the dimension of the unipotent part and t(A, p) to be the dimension of

the torus (see [40, Chapter VII] and [26, Part VI] for details).

Let ` be a rational prime such that p - `, let L/K be the finite extension L = K(A[`])
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and let G = Gal(L/K). The higher ramification groups are defined by

Gi = {σ ∈ G : ordp(pσ − p) ≥ i+ 1},

which form a decreasing sequence of subgroups of G. The wild ramification index can be

defined via the Hilbert formula

δ(A, p) =
∞∑
i=1

#Gi
#G

dimZ/`ZA[`]/A[`]Gi .

Grothendieck proved in [25] that this is independent not only of the field L but also of the

prime `. (Note that Ogg proved this first for elliptic curves in [35]). For example, if A = E

is an elliptic curve over Q and if all of its two torsion is rational, then A[`] = A[`]Gi for all

i ≥ 1, i.e., δ(E, p) = 0 for all odd primes p.

Finally, define the conductor of A (and of A) to be

N(A) =
∏
p

p2u(A,p)+t(A,p)+δ(A,p).

By [41], if A has good reduction at p then u(A, p) = t(A, p) = δ(A, p) = 0, and if A has

good reduction at p over an extension of K of degree prime to Norm(p) then δ(A, p) = 0.

In particular this is the case if char(kp) > 2dim(A) + 1. For elliptic curves over Q, this

implies that wild ramification only happens for p = 2, 3 and in particular if p ≥ 5 then

ordp(N(E)) = 2u(E, p) + t(E, p) ≤ 2.

The connected Néron model, denoted A0, is the open subgroup scheme of A consisting

of A0
ν at each fiber of A - Spec(OK). For each prime p of K, define the Tamagawa

number cp(A) to be the number of connected components in the fiber over p. It is possible

to use Galois cohomology to show that this is equivalent to

cp(A) = [Akp(kp) : A0
kp

(kp)],

starting with 0→ A0 → A→ Φ→ 0 and using Lang’s theorem.

Following [30, III §5] let WA be the projective OK-module of invariant differentials on

A. Then d := rank(WA) = dim(A) = dim(H0(AK ,Ωd)) and ∧dWA is a submodule of

H0(AK ,Ωd) of rank 1 where ∧d represents the d-fold exterior power (the elements of ∧dWA

are invariant d-forms) and Ωd represents the space of d-forms. Choose a K-basis {ω1, ..., ωd}
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for H0(AK ,Ωd) and let η = ∧iωi. Then ∧dWA ∼= ηaη where aη is a fractional ideal of K.

A complex embedding σ of K represents a scheme morphism Spec(C)→ Spec(K). Taking

the fiber product gives a morphism AC → AK , and we define ησ to be the pullback of η by

this morphism.

If σ is a complex embedding of K (whose image is not contained in R, of course) define

cσ,η(A) =
∫
Aσ(C)

i ησ ∧ ησ,

and if σ is a real embedding of K define

cσ,η(A) =
∫
Aσ(R)

|ησ|.

Finally define

c∞(A) =
Norm(aη)
|∆(K)|d/2

∏
σ

cσ,η(A),

where σ ranges over embeddings corresponding to the archimedean places of K and ∆(K)

denotes the discriminant. This quantity does not depend on the choice of η: If η′ = sη

for s ∈ K∗, then ηaη = η′aη′ = sηaη′ gives aη = saη′ . For a complex embedding σ,

η′σ ∧ η′σ = σ(s)σ(s)ησ ∧ ησ = |σ(s)|2ησ ∧ ησ and for a real embedding σ, |η′σ| = |σ(s)||ησ|.

Because Norm(aη) = Norm(s)Norm(aη′) one sees that c∞(A) is independent of η, by the

product rule for global fields and since Norm(s) =
∏

p |s|p.

If A∨ is the dual abelian variety it will have the same dimension as A and the rank of

A(K) will agree with that of A∨(K). It is proven in [34] that there is a canonical choice

of height function on A(K) × A∨(K). This height is denoted ĥ and called the Néron-Tate

canonical height. A good discussion of the general theory of heights can be found in [30,

ch. II & III].1 The Néron-Tate height is a nondegenerate pairing of A(K) with A∨(K), and

if {P1, ..., Pr} is a basis for A(K), and {Q1, ..., Qr} is a basis for A∨(K), then the regulator

is Reg(A(K)) := |det(〈Pi, Qj〉)ri,j=1|, where 〈P,Q〉 = ĥ(P +Q)− ĥ(P )− ĥ(Q).

The L-function of an abelian variety A is defined as follows. Suppose p is a non-

archimedean prime of K and let Frobp denote the arithmetic Frobenius element of Dp/Ip,

where Dp is the decomposition group and Ip is the inertia group. If ` is a prime not equal

1The reader unfamiliar with these topics should know that details regarding divisors are being
suppressed—see Ibid. for more details.
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to the characteristic of kp then we define the `-adic Tate module T`(A) = lim←−A(Q)[`n].

Let Pp(T ) denote the characteristic polynomial of Frobp restricted to the Ip-invariant piece

T`(A)Ip . Then, the local L-factor at p is defined to be

L(A/K, p, s) = Pp(Norm(p)−s)−1.

The global L-function is defined as the Euler product over local L-factors:

L(A/K, s) =
∏
p

L(A/K, p, s).

This L-function converges for <(s) > 3/2. By the deep results of [53] and [6], if dimA = 1

and K = Q then this function has analytic continuation to the entire complex plane, and

this is also denoted L(A/K, s). This is also true if dimA = 1, A has complex multiplication,

and K is a number field—see [44, II, §10] for details. In both of these cases there is also a

functional equation.

The Shafarevich-Tate group is the kernel of the map H1(K,A) -
∏

pH
1(Kp, A),

which is the product of the restriction maps coming from K ⊂ - Kp over all p (not just the

non-archimedean places). We have the alternating, bilinear Cassels-Tate pairing, originally

defined for elliptic curves in [9] and extended to abelian varieties in [50]:

X(K,A)×X(K,A∨)→ Q/Z.

The Birch and Swinnerton-Dyer conjecture comes in two pieces.

Conjecture B.1. The order of vanishing of L(A/K, s) at s = 1 is equal to the rank of the

Mordell-Weil group A(K).

We define ran(A/K) = ords=1L(A/K, s) to be the analytic rank.

Conjecture B.2. We have

rank(A(K)) = ran(A/K),

the Shafarevich-Tate group is finite, and the leading term of the Taylor series expansion for

L(A/K, s) about s = 1 is given by

L(r)(A/K, 1)
r!

=
c∞(A) ·

∏
p cp(A) ·RA(K) ·#X(K,A)

#A(K)tors ·#A∨(K)tors
.
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Tate has characterized the unique flavor of this conjecture by describing it as relating the

order of vanishing of a function at a point at which it is not known to be defined to the order

of a group that is not known to be finite. There is an analogue to the Birch and Swinnerton-

Dyer conjecture in which all the quantities are known to be defined and finite: the analytic

class number formula for a number field K. Here the object is O×K , and the analogy with the

Néron model comes from taking it to be the integral model of Gm. Its rank is n = r+ s−1,

where r is the number of real embeddings and s is the number of conjugate pairs of complex

embeddings and this is also the order of vanishing of the Dedekind zeta function ζK(s) at

s = 0. The class group X(K,Gm) = ker
(
H1(K,Gm)→

∏
pH

1(Kp,Gm)
)

plays the role of

the Shafarevich-Tate group, and there is a formula for the leading coefficient of the Taylor

expansion:
ζ

(n)
K (0)
n!

=
−1 ·RK ·#X(K)

#(O×K)tors
.

Andrei Jorza has written up a proof of the fact that the class group can be defined in this

way, and the notes are available on his website2. Many similar conjectures have been made

for groups of algebraic cycles by Tate, Lichtenbaum, Deligne, Beilinson, Bloch and Kato.

Originally proven by Cassels for elliptic curves over number fields [10], the following

theorem was proven in full generality by Tate [51]:

Theorem B.3. If K is a number field, the truth of the full BSD conjecture depends only on

the K-isogeny class of A. If K is a function field, then the truth of the full BSD conjecture

is preserved by isogenies of degree prime to the characteristic of K.

The following is due to Artin, Milne, Tate and others:

Theorem B.4. If K is a function field, then ran(A/K) ≥ rank(A(K)). Furthermore, the

full BSD conjecture is equivalent to the statement that the Shafarevich-Tate group is finite.

2http://www.ajorza.org/


