
Exploring Cryptography Using the Sage

Computer Algebra System

by

Minh Van Nguyen

Thesis submitted

in partial fulfillment of the Requirements for the Degree of

Bachelor of Science (Honours) in Computer Science

Supervisor: Dr Alasdair McAndrew

School of Engineering and Science

Victoria University

December, 2009

c© Copyright

by

Minh Van Nguyen

2009

Exploring Cryptography Using the Sage

Computer Algebra System

Declaration

I hereby declare that this submission is my own work and to the best of my knowl-
edge it contains no material previously published or written by another person, nor
material which to a substantial extent has been accepted for the award of any other
degree or diploma at Victoria University or any other educational institution, except
where due acknowledgement is made in the thesis. Any contribution made to the re-
search by colleagues, with whom I have worked at Victoria University or elsewhere,
during my candidature, is fully acknowledged.

I also declare that the intellectual content of this thesis is the product of my
own work, except to the extent that assistance from others in the project’s design
and conception or in style, presentation and linguistic expression is acknowledged.
Information derived from the published and unpublished work of others has been
acknowledged in the text and a list of references is given.

Minh Van Nguyen
05 December 2009

iii

Exploring Cryptography Using the Sage

Computer Algebra System

Minh Van Nguyen
nguyenminh2@gmail.com

Victoria University, 2009

Supervisor: Dr Alasdair McAndrew
Alasdair.McAndrew@vu.edu.au

Abstract

Cryptography has become indispensable in areas such as e-commerce, the legal safe-
guarding of medical records, and secure electronic communication. Hence, it is
incumbent upon software engineers to understand the concepts and techniques un-
derlying the cryptosystems that they implement. An educator needs to consider
which topics to cover in a course on cryptography as well as how to present the
concepts and techniques to be covered in the course. This thesis contributes to the
field of cryptography pedagogy by discussing and implementing small-scale cryp-
tosystems whose encryption and decryption processes can be stepped through by
hand. Our implementation has been accepted and integrated into the code base of
the computer algebra system Sage. As Sage is free and open source, students and
educators of cryptology need not worry about paying license fees in order to use
Sage, but can instead concentrate on exploring cryptography using Sage’s built-in
support for cryptography.

iv

Acknowledgements

I am indebted to several people whose support, inspiration and encouragement have

been invaluable during the course of writing and performing the work described

in the thesis. First and foremost is my thesis supervisor Dr Alasdair McAndrew

who provided a stimulating environment during the time that we worked together.

His probing questions and indefatigable support have contributed to enhancing the

quality of the thesis.

The majority of my software development effort took place on the compute node

sage.math [101], which is one of four machines comprising the Sage cluster and

supported by US National Science Foundation Grant No. DMS-0821725. I wish to

extend my gratitude to Associate Professor William A. Stein of the University of

Washington, USA, for allowing me access to the Sage cluster in order to develop and

test all of the software implementation described in this thesis. Professor Stein is a

technical reviewer of my implementation of S-DES [83]. He also provided me with

access to the machine bsd.math.washington.edu and expended considerable effort

so that I have access to the computer network SkyNet, which is a research network

of the US Department of Defense and administered by Mariah Lenox. Software

testing conducted on the Sage cluster, the machine bsd.math.washington.edu,

and SkyNet has contributed to enhancing the quality, stability and portability of

my enhancements to the cryptography module of the Sage computer algebra system.

Martin Albrecht of the University of London, UK, is a technical reviewer of my

implementation of S-DES [83] and the sole technical reviewer of my implementation

of Mini-AES [80]. His constructive and timely feedback played a considerable role

in enhancing the quality of those two implementations. He also read an early draft

of this thesis and made numerous suggestions to clarify the exposition of Chapters 1

and 2. I also wish to thank Mr Albrecht for reminding me that Sage distributes the

PyCrypto library. This observation has contributed to improving the exposition of

Chapter 2.

Nick Alexander of the University of California at Irvine, USA, is the sole technical

reviewer of my patch at ticket #6222 [85]. Sage developer and release manager Mike

Hansen reviewed my implementation [79] of an algorithm for solving the subset sum

problem over super-increasing sequences. He is also the sole technical reviewer of

my patch at ticket #6176 [81], and co-reviewed my patches at ticket #7123 [78].

Prior to starting development of the Sage implementation of cryptosystems de-

scribed in Chapters 3 to 6, I submitted a patch to ticket #5529 [77] in order to

enhance the documentation of the Sage cryptography module. Associate Professor

v

John Palmieri of the University of Washington, USA, is the technical reviewer of

that patch. His comments and reviewer patch for ticket #5529 have contributed

to improving the overall quality of the documentation for the Sage cryptography

module.

I wish to acknowledge Professor Robert A. Beezer of the University of Puget

Sound, USA, for bringing to my attention both the chi-square and squared-differences

statistical measures and our subsequent discussion on using those measures for crypt-

analysis of the shift and affine cryptosystems. Professor Beezer is the technical re-

viewer of my implementation of the shift [84, 82, 78] and affine [76] cryptosystems.

His feedback have contributed to considerably enhancing my original implementa-

tions. Professor Beezer also reviewed a draft of the thesis and provided comments

on typographical and stylistic errors.

I would like to extend my gratitude to Professor Bernhard Esslinger, leader of

the CrypTool [37] project, for inviting me to join the project’s documentation team.

Since joining the documentation team of CrypTool, I have had ample opportunities

to enhance the CrypTool tutorial with Sage code for learning cryptography. Some of

the cryptography implementations described in the thesis have made their way into

the CrypTool tutorial as examples showing the working of particular cryptosystems.

Professor Esslinger also made numerous comments on a draft of the thesis that help

to clarify many issues.

Finally, I wish to thank Brett Robertson of Victoria University, Australia, and

two anonymous reviewers for reading a draft of the thesis. Mr Robertson made

numerous comments that help to improve the organization of the thesis and the

exposition of Chapters 1 and 7. One of the two anonymous reviewers reminded me

that Sage also supports the PyCrypto library, an observation which helps to improve

my exposition of Chapter 2. The anonymous reviewers, and many people who read a

draft of the thesis, pointed out numerous grammatical, spelling and stylistic errors.

Any errors that remain are solely my responsibility.

Minh Van Nguyen

Victoria University

December 2009

vi

Contents

Abstract . iv

Acknowledgements . v

List of Tables . ix

List of Figures . x

List of Algorithms . xi

1 Introduction . 1
1.1 Cryptography and computer security 2
1.2 Thesis outline . 3

2 A Survey of CAS for Cryptography Education 5
2.1 Computer algebra systems . 6
2.2 CAS in cryptography education . 7
2.3 Sage mathematics software system 9
2.4 CAS functionalities for cryptography education 10
2.5 The RSA algorithm in Sage . 16
2.6 Extending Sage’s cryptographic functionalities 17

3 The Shift Cryptosystem . 19
3.1 Congruence and congruence classes 19
3.2 Plaintext and ciphertext alphabets 22
3.3 Encryption and decryption functions 22
3.4 Cryptanalysis . 23
3.5 Example Sage usage . 26

4 The Affine Cryptosystem . 31
4.1 Greatest common divisors . 31
4.2 Multiplicative groups . 33
4.3 Encryption and decryption functions 36
4.4 Cryptanalysis . 37
4.5 Example Sage usage . 38

5 Simplified Data Encryption Standard 43
5.1 The S-DES secret keys . 44
5.2 Encryption and decryption functions 46
5.3 Example Sage usage . 50

vii

6 Mini Advanced Encryption Standard 55
6.1 Structure of finite fields . 56
6.2 The Mini-AES irreducible polynomial 57
6.3 Components of Mini-AES . 58
6.4 Encryption and decryption functions 63
6.5 Example Sage usage . 64

7 Conclusions and Future Work . 71

Appendix A Sage Manual for Shift Cryptosystem 73
A.1 Class documentation . 73
A.2 Public methods . 77
A.3 Private methods . 91

Appendix B Sage Manual for Affine Cryptosystem 95
B.1 Class documentation . 95
B.2 Public methods . 98
B.3 Private methods . 110

Appendix C Sage Manual for Simplified DES 113
C.1 Class documentation . 113
C.2 Public methods . 114
C.3 Private methods . 131

Appendix D Sage Manual for Mini-AES 135
D.1 Class documentation . 135
D.2 Public methods . 137
D.3 Private methods . 160

Appendix E Sage Manual for Super-Increasing Sequences 165
E.1 Class documentation . 165
E.2 Public methods . 166
E.3 Private methods . 170

References . 173

viii

List of Tables

2.1 Classical cryptosystems in FriCAS, Maple, Mathematica, Matlab,
Maxima and Sage. 14

2.2 Number theoretic functionalities in FriCAS, Maple, Mathematica,
Matlab, Maxima and Sage. 14

2.3 Hashing and digital signatures in FriCAS, Maple, Mathematica, Mat-
lab, Maxima and Sage. 15

2.4 Knapsack cryptosystems in FriCAS, Maple, Mathematica, Matlab,
Maxima and Sage. 15

2.5 Support for AES, DES, finite fields and elliptic curves in FriCAS,
Maple, Mathematica, Matlab, Maxima and Sage. 15

3.1 Assigning capital letters of the English alphabet to numbers. 22
3.2 The characteristic frequency probability distribution of Beker and

Piper [15]. 24
3.3 The characteristic frequency probability distribution of Lewand [57]. . 25

5.1 The S-box S0 of simplified DES. 48
5.2 The S-box S1 of simplified DES. 49

6.1 All 16 elements in the finite field F2[x]/(x4 + x3 + 1). 58
6.2 Converting between nibbles, Mini-AES polynomials and integers. . . . 58
6.3 The S-box of NibbleSub. 59
6.4 Representing the NibbleSub S-box as elements of F2[x]/(x4 + x3 + 1). 60
6.5 The NibbleSub S-box for decryption. 60
6.6 Generating the round keys of Mini-AES. 62

ix

List of Figures

1.1 The encryption/decryption cycle. 1

5.1 The S-DES permutation P10. 44
5.2 The S-DES permutation P8. 44
5.3 The left-shift function L1. 45
5.4 The left-shift function L2. 45
5.5 Generating subkey K1. 46
5.6 Generating subkey K2. 46
5.7 The initial permutation and its inverse. 47
5.8 The sub-block switch function. 48
5.9 The Feistel round function ΠF,Ki

. 49
5.10 The expansion function E. 49
5.11 The permutation function P4. 50
5.12 The mixing function F . 51

6.1 Two rounds in Mini-AES encryption. 65
6.2 Two rounds in Mini-AES decryption. 66

x

List of Algorithms

2.1 The RSA algorithm for encryption and decryption. 16

xi

xii

Chapter 1

Introduction

Cryptography is the science (and sometimes art) of secret writing in which the goal
is to hide information. Originally the preserve of diplomats and military organiza-
tions, cryptography has become indispensable in areas such as e-commerce, the legal
safeguarding of medical records, transmission of military orders, and even something
seemingly routine as secure email communications. Imagine that we are composing
a confidential email to someone. Having written the email, we can send it in one of
two ways. The first, and usually convenient, way is to simply send the email and
not care about how it would be delivered. Sending an email in this manner is simi-
lar to writing our confidential message on a postcard and post it without enclosing
our postcard inside an envelope. Anyone who can access our postcard can see our
message. On the other hand, we can scramble the confidential message in one way
or another prior to sending the email. Scrambling our message is similar to enclos-
ing our postcard inside an envelope. While this particular method of hiding our
postcard message is not 100% secure, at least we know that anyone wanting to read
our postcard has to open the envelope. The discipline of cryptography offers more
secure techniques for hiding messages than enclosing messages inside an envelope.

plaintext ciphertext

encrypt

decrypt

Figure 1.1: The encryption/decryption cycle.

In cryptography parlance, our message is referred to as plaintext. The process
of scrambling our message using a key is called encryption. After encrypting our
message, the scrambled version is called ciphertext. From the ciphertext, we can
recover our original unscrambled message via a process known as decryption. Fig-
ure 1.1 illustrates the encryption and decryption processes. A cryptosystem is a
combination of the encryption and decryption algorithms, whereas cryptanalysis is
the science (and sometimes art) of undermining or “breaking” encryption schemes.
Our discussion so far has excluded other aspects and subtleties of cryptography.

1

2 CHAPTER 1. INTRODUCTION

Readers who require an in-depth discussion of cryptography are referred to special-
ized texts such as Hoffstein et al. [48], Menezes et al. [67], Mollin [68], Stinson [113],
and Trappe and Washington [114].

As we alluded to earlier, an encryption or decryption algorithm relies on a key,
which may be a number or sequence of bits having some desirable properties. Cryp-
tosystems can be distinguished based upon how they use their keys. A secret-
or symmetric-key cryptosystem uses the same secret key for both encryption and
decryption. In contrast, a public-key cryptosystem uses a public key to encrypt
messages and decryption is performed using a corresponding private key. Public
keys may be distributed or publicized, but for security reasons private keys are to
be kept confidential.

No matter how strong or secure looking a cryptosystem is, it can be attacked or
undermined in one way or another. In general, this statement does not hold true for
the one-time pad, which is a prominent example of a cryptosystem that has been
theoretically proven using results from information theory to be secure. Whether
the one-time pad is practical or not is another issue. One method of assessing the
strength of a cryptosystem is to study its robustness when subjected to all known
attack techniques. Numerous classes of attacks can be mounted against a cryptosys-
tem, with the most common technique being the brute-force attack, otherwise known
as exhaustive key search: one simply decrypts a ciphertext using all the known keys
of a cryptosystem until a key is found that results in some meaningful plaintext. At-
tack techniques come and go, but a vital time-honoured principle is what is known as
Kerckhoffs’ principle, named after Auguste Kerckhoffs von Nieuwenhof (1835–1903)
who discussed it in 1883 in an essay entitled La Cryptographie militaire. Kerckhoffs’
principle states that the security of a cryptosystem should not be based on any of
its aspects but the secret key. That is, every aspect of a cryptosystem including its
encryption and decryption routines are assumed to be well-known, but the problem
generally is to determine the secret key.

1.1 Cryptography and computer security

Cryptography is one of many aspects of computer security. Choosing a secure cryp-
tosystem is merely part of the work, as well as ensuring that the cryptosystem is
implemented and applied in such a way as to not compromise its security. Cryp-
tosystems abound that have been demonstrated to be strong and hence supposedly
secure. However, if the implementation (whether that be hardware, software, or a
combination of both) of a cryptosystem is flawed or vulnerable in some way, then by
exploiting the flaw/vulnerability, an attack can be mounted against the cryptosys-
tem. For practical guidelines on implementing a cryptosystem, refer to Ferguson
and Schneier [38], or Schneier [104].

The use of a cryptosystem is not a guarantee of system security. Bruce Schneier
is often credited with the phrase, “Security is a process, not a product.” By this,
he means that cryptography is not some magic dust that one could sprinkle on
a computer system and thus the system is secured. Rather, system security is
a combination of tools, techniques, and strategies all operating within a specific
context. These ideas are elaborated in further details with numerous examples in
Schneier [105].

1.2. THESIS OUTLINE 3

1.2 Thesis outline

This section presents an outline of the remainder of the thesis and our contribution to
the field of cryptography pedagogy using a computer algebra system (CAS). Chap-
ter 2 provides a description of CASs and outlines basic functionalities that all such
systems support. Next, we outline topics that may be encountered in a course on
cryptography, and review previous work on using CASs in cryptography education.
After briefly touching upon various CASs, we discuss the relatively nascent free open
source computer algebra system Sage and summarize the underlying philosophical
principle that governs its existence and development model. In order to integrate
CASs into a cryptography curriculum, one requires an understanding of functionali-
ties specific to cryptography education that any CAS needs to support. Such a list of
fundamental functionalities are presented, based upon which we compare and con-
trast the general purpose computer algebra systems FriCAS, Maple, Mathematica,
Matlab, Maxima and Sage.

Sage is the primary focus of the thesis. Through our survey of CASs with respect
to their support for cryptography education, we identify missing functionalities in
Sage and set out to fill in a number of those functionalities. Chapter 3 describes the
shift cryptosystem, one of many cryptosystems we have identified as missing built-
in support in Sage. The chapter begins with some results from elementary number
theory that lay the mathematical foundation of the shift cryptosystem. The math-
ematical concepts are then tied together to define the encryption and decryption
functions, as well as to describe techniques for attacking this cryptosystem. The
chapter concludes with numerous examples illustrating our Sage implementation of
the shift cryptosystem.

A second cryptosystem for which Sage lacks built-in support is the affine cryp-
tosystem. This cryptosystem is specified in Chapter 4, which generalizes the shift
cryptosystem and continues the development of number theoretic techniques begun
in Chapter 3. We then apply these mathematical concepts to analyze the key space
of the affine cryptosystem, in addition to defining its encryption and decryption
functions. All of the attack methods discussed in Chapter 3 can be brought to bear
on the affine cryptosystem. Our implementation of this cryptosystem follows the
same general interface as used by our implementation of the shift cryptosystem.
Examples illustrating functionalities of our affine cryptosystem implementation are
presented towards the end of Chapter 4.

Sage supports the full Data Encryption Standard (DES) through the PyCrypto
third-party library, which is designed to provide cryptographic services instead of
serving as a teaching tool. Chapter 5 describes a simplified version of DES known
as S-DES that can be used as a teaching tool to introduce students of cryptology
to the general structure of the full DES algorithm. The presentation includes the
encryption and decryption functions of S-DES, as well as the permutation and round
functions that comprise its foundation. We also provide numerous examples to
illustrate functionalities of our Sage implementation of S-DES.

Our survey of computer algebra systems in Chapter 2 shows that Sage has built-in
support for the Advanced Encryption Standard (AES) and some small-scale variants
of the latter system. However, the existing support in Sage for AES and the latter’s
small-scale variants are designed as a framework for comparing different cryptana-
lytic techniques that can be brought to bear on the full AES algorithm. In order

4 CHAPTER 1. INTRODUCTION

to provide a simplified variant of AES that could be used in cryptography peda-
gogy, Chapter 6 describes a small-scale version of AES known as Mini-AES that
allows cryptology students to manually step through the general structure of AES.
Towards the end of Chapter 6, we also provide examples illustrating functionalities
of our Sage implementation of Mini-AES.

Finally, Chapter 7 concludes the thesis and provides some directions for future
research. Note that all of our enhancements to Sage as described in the thesis
have been integrated into the Sage standard library and have undergone public peer
reviews to ensure technical accuracy, completeness of documentation, and seamless
integration into the Sage code base. The reference manual of our implementation
is provided in Appendices A to E, while the source code of our implementation is
available with the latest stable release of Sage, which as of this writing is Sage 4.2.1.

Chapter 2

A Survey of CAS for
Cryptography Education

In this chapter, we survey a number of general purpose computer algebra systems
for which a literature search reveals that those systems have been used for teach-
ing and learning cryptography. The systems we shall consider are FriCAS, Maple,
Mathematica, Matlab, Maxima and Sage. Our survey does not take into account
special purpose software tools nor special purpose computer algebra systems such as
Magma and Pari/GP. These latter two special purpose systems have efficient imple-
mentation of many algorithms required by various modern cryptosystems. However,
to cover Magma and Pari/GP, or indeed any other special purpose software tools,
would go beyond the scope of our investigation.

We begin in section 2.1 with a description of what computer algebra systems
are, and various basic functionalities that all such systems support. Section 2.2
briefly touches upon topics that may be covered in a course on cryptography, and
review previous work reported in the literature on using computer algebra systems
in cryptography pedagogy. Throughout the section, we highlight the abundance use
of closed source proprietary computer algebra systems in cryptography education,
as compared to the paucity of literature reporting on the use of open source counter-
parts. Section 2.3 discusses the open source computer algebra system Sage, describes
the underlying philosophical principle that governs its existence and development
model, and survey cryptography research that has made use of functionalities of
Sage. We next consider in section 2.4 functionalities specific to cryptography ed-
ucation that a computer algebra system needs to support. This is followed by a
comparison of the above six systems with respect to cryptography related func-
tionalities. Section 2.5 considers a case in which a lack of built-in support for a
cryptosystem can be compensated for by using a computer algebra system’s pro-
gramming language to work through the encryption and decryption processes of the
cryptosystem.

One of the conclusions that can be drawn from our survey is that Sage has sup-
port for a wider range of functionalities for teaching and learning cryptography than
any other computer algebra systems considered in this chapter. Despite extensive
software support for cryptography education, our survey also indicates that Sage
lacks built-in support for various topics found in a course on cryptography. Sec-
tion 2.6 identifies numerous missing features in Sage, and refers to various chapters

5

6 CHAPTER 2. A SURVEY OF CAS FOR CRYPTOGRAPHY EDUCATION

and appendices in the thesis that describe our work on filling in some of the missing
functionalities.

2.1 Computer algebra systems

A computer algebra system (CAS) is a mathematics software package that is able to
perform both symbolic and numerical mathematical computation. Among the early
CASs were Macsyma [34, 50, 61] and REDUCE [45, 75], both of which are still in
use and have only recently been distributed under open source licenses. We shall not
attempt a definition of the term “open source”, but interested readers are referred
to the Open Source Initiative [90] for a discussion of the definition of “open source”
as well as examples of open source software licenses. A modern descendant of Mac-
syma is Maxima [62]. From 1982 until 2001, William Schelter of The University of
Texas at Austin maintained the Maxima branch of Macsyma. Starting from 1998,
Maxima is licensed under the terms of the GNU General Public License (GPL)
Version 2. As of January 2009, REDUCE [45] is covered by a modified Berkeley
Software Distribution (BSD) license and the project is hosted on SourceForge.net.
Modern general purpose, closed source proprietary CASs include Maple by Maple-
soft, Matlab by The MathWorks, and Mathematica by Wolfram Research. Modern
general purpose, open source CASs include Axiom (including its forks OpenAxiom
and FriCAS), Maxima, Sage [112] and Yacas [94].

Irrespective of whether a CAS is open source or closed source, one may expect a
CAS to support at minimum the following functionalities (this list is taken from [65]):

• Arbitrary precision arithmetic — Arithmetic over the integers, rationals, reals
or complex numbers to any desired precision.

• Algebra of polynomials — Arithmetic of polynomials; factorization over the
integers, rationals, reals, complex numbers or finite fields; simplification and
partial fraction decomposition of rational functions.

• Calculus — Limits, derivatives, symbolic summation and product, definite and
indefinite integration, and expansions of functions.

• Linear algebra — Solving systems of linear equations in both symbolic and
numeric form, matrix algebra, determinants, eigenvalues and eigenvectors.

• Solution of non-linear equations — Solutions by radicals of all polynomials
of degree less than five, and numerical solutions to any desired precision of
systems of non-linear equations.

• Knowledge of functions — Support for transcendental functions and their prop-
erties.

• Graphics — Graphs of functions of one and two variables, parametric plots in
two and three dimensions.

Many CASs support much more than the above bare-bone functionalities. Some
CASs support all or a subset of the following functionalities:

• User interface — A command line interface; a graphical user interface.

2.2. CAS IN CRYPTOGRAPHY EDUCATION 7

• Animation — Animation of two- or three-dimensional graphics.

• Networking and grid computing — Support for parallel or distributed compu-
tation.

• Statistics — Standard probability distributions including binomial, Poisson,
hypergeometric, normal, Student’s t; mean, variance, correlation coefficients,
chi-square test, regression.

• Transforms — Laplace, Fourier, fast Fourier, Mellin, and Z transforms.

• Solution of differential equations — Numerical or closed form solutions.

• Solution of difference equations — Closed form solutions of various types of
difference equations.

• Special functions — Knowledge of transcendental functions including gamma
and beta functions, Riemann’s zeta function, hypergeometric functions. Func-
tions arising from solutions of differential equations including Bessel, Airy,
Mathieu, Legendre, Laguerre, Jacobi and elliptic functions. Knowledge of
various classes of orthogonal polynomials.

• Number theory — Integer factorization, primality testing, prime number gen-
eration, greatest common divisor, least common multiple, quadratic and higher
order residues; number theoretic functions such as ϕ(n), π(n), and d(n); sup-
port for other functionalities arising from elementary number theory.

• Programming language — It should be possible to extend the functionalities
of the CAS using a programming language.

• Typesetting — Format output in LATEX for inclusion in documents.

• Other areas of mathematics — Specialized packages or functions for dealing
with group theory, combinatorics, formal power series, geometry, topology,
graph theory, mathematical optimization, algebraic number theory, etc.

2.2 CAS in cryptography education

Cryptography is a subject rich in both theory and applications, with a strong foun-
dation in mathematics and at the same time whose influences can be felt in e-
commerce and financial transactions. It is this richness in both theory and practice
that allows cryptography to be taught from various perspectives. A course in cryp-
tography might emphasize the mathematical foundation of classical and modern
cryptosystems [48, 53, 92, 113], weave the historical foundation into the main dis-
cussion [13, 68], or be a generic computer security course [9, 41, 91, 103]. One could
also blend theory with practice [100, 113] by incorporating special purpose software
tools as a teaching aide [19, 26, 37, 92, 108]. On the surface, it seems there is a
lack of consensus on a syllabus for an undergraduate course in cryptography. How-
ever, the SIGCSE recommendations for computer science curricula [4] include the
following topics:

8 CHAPTER 2. A SURVEY OF CAS FOR CRYPTOGRAPHY EDUCATION

• Historical overview of cryptography

• Private-key cryptography and the key-exchange problem

• Public-key cryptography

• Digital signatures

• Security protocols

• Applications (zero-knowledge proofs, authentication, and so on)

Modern CASs, and their range of supported functionalities, open up many oppor-
tunities for incorporating them in mathematics and computer science education. In-
deed, CASs have been used for teaching since their inception in the 1970s. For discus-
sions on using CASs in mathematics education, see for example Buchberger [23, 24],
Koepf [54], McAndrew [65], Monagan [69], Naismith and Sangwin [73], Pletsch [95],
and Villate [117].

Since the mid-1990s, there has been some interest in using CASs for teaching
cryptography. Baliga and Boztas [11] report their experience in using Maple for
teaching introductory cryptography courses to advanced undergraduates in engi-
neering as well as postgraduate students in information security. A CAS such as
Maple allows students to explore non-trivial examples of encryption and decryption,
bearing in mind that it is a teaching and learning tool and the student is not required
to master the CAS. Understanding the limited support in Maple for the advanced
algebra required by modern cryptography, Baliga and Boztas had also started us-
ing Magma [21], a specialized closed source CAS produced by the Computational
Algebra Group of the University of Sydney for exploring problems in algebra, num-
ber theory, geometry and combinatorics. Cosgrave [30] also reports a similar in-
vestigation since the mid-1990s into using Maple for teaching number theory and
cryptography. The cryptography topics covered are primarily seen as applications
of elementary number theory, with special emphasis on modern cryptosystems and
digital signature schemes based on number theory. Cosgrave’s coverage of cryp-
tography using a CAS does not cover classical cryptosystems, whereas Baliga and
Boztas cover classical together with number theoretic cryptosystems. Eisenberg [35]
discusses a mathematics course in which a student project is viewed as an applica-
tion of linear algebra to cryptography. As part of a linear algebra course, students
use Mathematica to implement Hill cipher [46, 47] encryption and decryption as well
as cryptanalyzing the Hill cryptosystem.

Since the investigations of Baliga and Boztas [11], Cosgrave [30] and Eisen-
berg [35], there have been textbooks and specialized CAS packages that integrate
the use of a CAS into a cryptography curriculum. The textbook by Trappe and
Washington [114] covers both classical and modern cryptosystems. Of special note
is its integration of Maple, Mathematica and Matlab into the topics covered. The
authors use built-in commands of these CASs wherever possible and have also writ-
ten custom commands [115] using the programming languages of those CASs to fill
in various gaps. The textbook of Klima et al. [52] treats classical and modern cryp-
tosystems as applications of algebra, and does not cover cryptography in as much
depth as Trappe and Washington. Each cryptosystem presented is immediately fol-
lowed by a discussion on using Maple and Matlab to carry out the encryption and

2.3. SAGE MATHEMATICS SOFTWARE SYSTEM 9

decryption procedures. Similar to Trappe and Washington, Klima et al. have also
written custom commands in the programming languages of Maple and Matlab to fill
in cryptography specific functionalities missing from those two CASs. May [63, 64]
has developed a complete set of Maple worksheets for teaching both classical and
modern cryptosystems. Buchanan [22] has also developed a similar set of worksheets
for Mathematica, but mainly focusing on modern cryptosystems based on number
theory.

All the CASs considered so far for teaching cryptography—Magma, Maple,
Mathematica and Matlab—are closed source software. A license fee for any of
those CASs can be in the hundreds of US dollars for a single student license, and
up to thousands of US dollars for a department-wide license. Partly due to the
costs of the above closed source CASs, there have been renewed interests since the
mid-2000s to teach cryptography using open source CASs. McAndrew [66] has used
the open source computer algebra systems Axiom and Maxima to teach cryptogra-
phy, modelling the Axiom and Maxima computer laboratory exercises on those of
May [63, 64]. Kohel [55] has taught a similar course using Sage, but with strong
emphasis on mathematical foundation and algorithmic aspects of cryptography.

2.3 Sage mathematics software system

Sage [111] is an open source CAS distributed under the terms of the GNU GPL
version 2 or any later version of that license [39]. The licensing terms guarantee
that anyone is at liberty to copy, study, modify, improve and redistribute Sage
and its source code, provided that the original terms of the license are adhered to.
Started in 2005 by William Stein [110, 112], Sage is a young general purpose CAS
compared to more established CASs such as Axiom, Magma, Maple, Mathematica,
Matlab and Maxima. We shall not attempt a review of functionalities and features
of Sage, but refer the reader to Beezer [14] and Gray [43] for such reviews.

The philosophical foundation of Sage as expressed by Joyner and Stein [51] can
be summarized as applying the system of open exchange and peer review character-
istic of scientific discourse to the development of mathematical software. A similar
model of software development has been advocated since the early 1980s by Richard
Stallman and the Free Software Foundation [109, 120], and by the open source move-
ment [70, 89, 97] since the late 1990s. As regards the specific area of mathematical
software, concerns about development being closed source and motivated by com-
mercial interests have been voiced as early as 1995 or even earlier by Neubüser [74],
who was the creator of GAP [40] for computational group theory. Neubüser’s con-
cerns are emphasized by the following quotation, which he originally wrote within
the context of his discussion of the development of software tools for computational
group theory, including GAP, Magma and the latter’s predecessor Cayley:

You can read Sylow’s Theorem and its proof in Huppert’s book in the
library without even buying the book and then you can use Sylow’s
Theorem for the rest of your life free of charge, but . . . for many computer
algebra systems license fees have to be paid regularly for the total time
of their use. In order to protect what you pay for, you do not get the
source, but only an executable, i.e. a black box. You can press buttons
and you get answers in the same way as you get the bright pictures from

10 CHAPTER 2. A SURVEY OF CAS FOR CRYPTOGRAPHY EDUCATION

your television set but you cannot control how they were made in either
case.

With this situation two of the most basic rules of conduct in mathematics
are violated: In mathematics information is passed on free of charge
and everything is laid open for checking. Not applying these rules to
computer algebra systems that are made for mathematical research . . .
means moving in a most undesirable direction. Most important: Can we
expect somebody to believe a result of a program that he is not allowed
to see? Moreover: Do we really want to charge colleagues in Moldava
several years of their salary for a computer algebra system?

Similar concerns have also been expressed by 2006 Fields medalist Andrei Ok-
ounkov [71]. A prominent example in which the guiding philosophy of Sage can
be seen in practice is the requirement that all changes to Sage be publicly peer
reviewed.

Since its inception in 2005, Sage has been used as a computational tool in cryp-
tography research. Albrecht [5, 6] has used the support for advanced algebra in
Sage in order to mount an algebraic attack against the Courtois Toy Cipher [31].
In [59], Maitra and Sarkar employ Sage’s support for computational number theory
to extend the class of weak encryption exponents in RSA [98] beyond the results pre-
viously reported by Nitaj [88] and Wiener [119]. In response to the National Institute
of Standards and Technology’s 2007 call [87] for a proposal for a new cryptographic
hash function family (SHA-3), Bertoni et al. [18] submitted the candidate Keccak

family of hash functions, whose design is based in part on computational work using
Sage. Further work on cryptology using Sage can be found in Albrecht and Cid [7],
Albrecht et al. [8], Aner [10], Bard [12], Bernstein et al. [16, 17], Boneh et al. [20],
Maitra and Sarkar [60], Velichkov et al. [116], and Weinmann [118].

Given that Sage supports functionalities for research in cryptography, how does
Sage compare to other CASs in terms of support of functionalities for cryptogra-
phy education? We answer this question in section 2.4, in which several CASs are
compared in terms of their support for cryptography specific functionalities.

2.4 CAS functionalities for cryptography educa-

tion

To support cryptography education, a CAS needs to support all or a subset of the
following functionalities (this list is adapted from [66]):

• Arithmetic with arbitrary precision integers.

• String and character manipulation, including functionalities for determining
ASCII codes.

• Support for common alphabets: binary, octal and hexadecimal number sys-
tems; the radix-64 alphabet; and capital letters of the English alphabet.

• Topics from elementary number theory: modular arithmetic, primitive roots,
primality testing, prime number generation, integer factorization, discrete log-
arithms.

2.4. CAS FUNCTIONALITIES FOR CRYPTOGRAPHY EDUCATION 11

• Linear algebra.

• Support for knapsack and subset sum problems, including solving super-increasing
sequences.

• Computation over finite fields, including manipulation of matrices with entries
over finite fields.

• Elliptic curves and their arithmetic over finite fields.

We now compare six general purpose CASs with respect to the above crypto-
graphic functionalities. Our choice of CASs are:

• FriCAS 1.0.3, released on 24 June 2008.

• Maple 12, released on May 2008.

• Mathematica 6.0, released in 2007.

• Matlab 7.2.0.283 (R2006a), released on 27 January 2006.

• Maxima 5.19.1, released on 23 August 2009.

• Sage 3.4, released on 11 March 2009.

For the purpose of comparison, we chose Sage 3.4 instead of the latest version of
Sage. The primary reason is that version 3.4 is the last stable release that does
not contain any of our patches to enhance the functionalities of Sage for teaching
cryptography. FriCAS can be used as an optional package of Sage. As of this writing,
FriCAS 1.0.3 is the latest version that is known to compile and install successfully
as an optional package of the latest stable release of Sage, i.e. Sage version 4.2.1.
Maxima is a standard package of Sage and Maxima 5.19.1 is the latest version that
is distributed with Sage 4.2.1. As of this writing Maple 12, Mathematica 6.0 and
Matlab R2006a are the latest versions installed on the machine sage.math [101].
This is the primary machine on which the development of our enhancement patches
took place and on which the above six CASs have been successfully installed.

Tables 2.1 to 2.5 compare the level of support in FriCAS, Maple, Mathematica,
Matlab, Maxima and Sage of functionalities for teaching cryptography. Table 2.1
compares support with respect to classical cryptosystems, while functionalities es-
sential to modern number theoretic cryptosystems are compared in Table 2.2. In
Table 2.3, we compare the support for various hashing functions and digital signa-
ture schemes, whereas a comparison of support for knapsack-based cryptosystems
is given in Table 2.4. Finally, Table 2.5 compares support for the Data Encryption
Standard (DES), the Advanced Encryption Standard (AES) and various building
blocks required for these two symmetric-key cryptosystems.

A note of explanation is in order for Tables 2.1 to 2.5. The left-most col-
umn of each table lists various cryptographic functionalities that one might en-
counter in a cryptography course such as Barr [13], Bishop [19], Hoffstein et al. [48],
Klima et al. [52], McAndrew [66], Stinson [113], and Trappe and Washington [114].
The remaining columns give an indication of how the listed cryptographic function-
alities are supported in the six CASs. A functionality may be supported by a CAS,
provided by third-party code, or a literature search does not reveal whether or not

12 CHAPTER 2. A SURVEY OF CAS FOR CRYPTOGRAPHY EDUCATION

the functionality is supported. For example, suppose we consider the bottom row of
Table 2.1. The intersection of that row with the column for FriCAS has the acronym
“AM”. This indicates that the Vigenère cipher is not a functionality supported by
FriCAS, but Alasdair McAndrew has provided custom written FriCAS or Axiom
code to support the Vigenère cipher. Where the intersection of a row with a column
contains the tick mark “X”, this indicates that the CAS considered by the column in
question supports the cryptographic functionality considered by the corresponding
row. Again using Table 2.1 as an example, we see that Sage 3.4 has support for the
Vigenère cipher. The other acronyms are explained as follows:

• AM — code written by Alasdair McAndrew to support computer laboratory
sessions of the cryptography course reported in [66].

• KSS — code by Klima et al. [52].

• MM — code by Mike May [64] available from Saint Louis University [63].

• TW — code by Trappe and Washington [114] available at their book’s web-
site [115].

If the intersection of a row with a column contains neither an acronym nor a tick
mark, this indicates a lack of literature reporting on support for the correspond-
ing cryptographic functionality in the CAS under consideration. For example, the
cryptography courses [52, 64, 66, 114] do not provide any software support for the
transposition cipher for FriCAS, Maple, Mathematica, Matlab or Maxima.

From Tables 2.1 to 2.5, a number of factors stand out with regards to CAS
support for cryptography education. Of the six CASs surveyed, only Sage has sup-
port (either built-in or through third-party libraries distributed as standard Sage
packages) for the majority of cryptographic functionalities required by undergrad-
uate cryptography courses such as [52, 64, 66, 114]. FriCAS, Maple, Mathematica,
Matlab and Maxima rely heavily on third-party custom written code to support a
course in cryptography. In some cases where built-in support is lacking, there are
multiple implementations of the same functionalities, as shown in Tables 2.1, 2.3,
and 2.5. FriCAS and Maxima are unique in that these are the only two general
purpose CASs for which a literature search has revealed third-party written code to
support topics in cryptosystems based on knapsack and the subset sum problems.

To the best of our knowledge, Sage 3.4 has better support in terms of functional-
ities for cryptography education than either FriCAS, Maple, Mathematica, Matlab
or Maxima. Bear in mind that this comparison does not take into account special
purpose software such as those by Bishop [19], Chong et al. [26], Esslinger et al. [37],
Patterson [92], or Spillman [108]. Extending our survey to include special purpose
software tools for cryptography education would go beyond the scope of our inves-
tigation. Most of the functionalities in the Sage library, up to and including Sage
version 3.4, for cryptography education are due to David R. Kohel, who is currently
Professeur des universités within the Institut de Mathématiques de Luminy at the
Université de la Mediterranée, France. Support for the full AES and a general frame-
work for constructing S-boxes are due to Martin Albrecht, who is currently a PhD
candidate within the Information Security Group, Royal Holloway, at the University
of London, UK. The number theoretic functionalities, finite fields and elliptic curves
implementations in Sage are due to the number theory development group within

2.4. CAS FUNCTIONALITIES FOR CRYPTOGRAPHY EDUCATION 13

the Sage Development Team, who build upon existing packages such as Givaro [42],
MPIR [44], NTL [107], and Pari/GP [29].

Python is the main programming language for implementing and extending Sage.
As such, the MD5 and SHA family of hash functions that are part of the Python
standard library are distributed with each release of Sage. Sage 3.4 also includes
the Python Cryptography Toolkit (PyCrypto) [56] as part of its repository of stan-
dard packages. PyCrypto implements various cryptographic functionalities includ-
ing hash functions and public-key cryptographic algorithms. The variety of cryp-
tographic algorithms in PyCrypto is much richer than the hashlib module in the
Python standard library. Both hashlib and PyCrypto are designed to provide cryp-
tographic services and the latter is not suitable as a software tool to support a first
course in cryptography. Hence, there is a need to provide wrapper code around these
two modules so that their functionalities could be used in cryptography education.

14
C

H
A

P
T

E
R

2
.

A
S
U

R
V

E
Y

O
F

C
A

S
F
O

R
C

R
Y

P
T

O
G

R
A

P
H

Y
E

D
U

C
A

T
IO

N

functionality FriCAS Maple Mathematica Matlab Maxima Sage

affine cipher KSS, TW TW KSS, TW
Caesar cipher AM KSS, MM, TW TW KSS, TW AM X

Hill cipher AM KSS, MM, TW TW KSS, TW AM X

shift cipher KSS, TW TW KSS, TW X

substitution cipher X

transposition cipher X

Vigenère cipher AM KSS TW KSS, TW AM X

Table 2.1: Classical cryptosystems in FriCAS, Maple, Mathematica, Matlab, Maxima and Sage.

functionality FriCAS Maple Mathematica Matlab Maxima Sage

Euler phi function X X X TW X X

extended GCD X X X X AM X

GCD X X X X X X

integer factorization X X X X X X

inverse modular arithmetic X X X X X

modular arithmetic X X X X X X

modular exponentiation X X X TW X X

n-th prime number AM X X X AM X

next prime number X X X X X

previous prime number X X X X

primality testing X X X TW X X

Table 2.2: Number theoretic functionalities in FriCAS, Maple, Mathematica, Matlab, Maxima and Sage.

2
.4

.
C

A
S

F
U

N
C

T
IO

N
A

L
IT

IE
S

F
O

R
C

R
Y

P
T

O
G

R
A

P
H

Y
E

D
U

C
A

T
IO

N
15

functionality FriCAS Maple Mathematica Matlab Maxima Sage

DSS X

ElGamal signature scheme AM AM
MD5 X

Rabin signature scheme AM AM
RSA signature scheme AM KSS, MM, TW TW KSS, TW AM
SHA family of hash functions X

Table 2.3: Hashing and digital signatures in FriCAS, Maple, Mathematica, Matlab, Maxima and Sage.

functionality FriCAS Maple Mathematica Matlab Maxima Sage

Merkle-Hellman additive knapsack system AM AM
Merkle-Hellman multiplicative knapsack system AM AM
subset sum problem AM AM
super-increasing sequences AM AM

Table 2.4: Knapsack cryptosystems in FriCAS, Maple, Mathematica, Matlab, Maxima and Sage.

functionality FriCAS Maple Mathematica Matlab Maxima Sage

AES KSS, MM X

DES AM MM AM X

elliptic curves KSS TW KSS, TW X

finite fields X X X X X

S-box X

Table 2.5: Support for AES, DES, finite fields and elliptic curves in FriCAS, Maple, Mathematica, Matlab, Maxima and Sage.

16 CHAPTER 2. A SURVEY OF CAS FOR CRYPTOGRAPHY EDUCATION

2.5 The RSA algorithm in Sage

The six CASs surveyed in section 2.4 do not have built-in support for number the-
oretic cryptosystems such as RSA [98], Rabin [96] or ElGamal [36]. Sage supports
various public-key cryptographic functionalities as implemented in PyCrypto, but
this third-party library is not suitable as a cryptography educational tool. However,
the CASs surveyed have substantial built-in support for elementary number theory
so that one could easily work through the encryption and decryption procedures
of the RSA, Rabin or ElGamal cryptosystems using the programming languages of
these CASs. We now illustrate this using Sage for the case of the RSA encryp-
tion/decryption algorithm as presented in Algorithm 2.1.

Choose two primes p and q and let n = pq.1

Let e ∈ Z be positive such that gcd
(
e, ϕ(n)

)
= 1.2

Let d ∈ Z be the multiplicative inverse of e modulo ϕ(n).3

Our public key is the pair (n, e) and our private key is the pair (n, d).4

For any non-zero integer m < n, encrypt m using c ≡ me (mod n).5

Decrypt c using m ≡ cd (mod n).6

Algorithm 2.1: The RSA algorithm for encryption and decryption.

As per Algorithm 2.1, we first randomly choose two positive integers and test
that they are indeed primes:

sage: p = next_prime(randint(10^20, 10^25)); p
4685815961339311313770679
sage: q = next_prime(randint(10^20, 10^25)); q
8213166332425198564484821
sage: is_prime(p); is_prime(q)
True
True
sage: n = p * q; n
38485385893612647530529565399136160386558570363459

Next, we choose an integer 0 < e < ϕ(n) that is coprime to ϕ(n). Then we compute
the multiplicative inverse of e modulo ϕ(n):

sage: e = ZZ.random_element(euler_phi(n))
sage: while gcd(e, euler_phi(n)) != 1:
....: e = ZZ.random_element(euler_phi(n))
....:
sage: e; e < n
12036041725135809493242715057143070093942766266573
True
sage: d = inverse_mod(e, euler_phi(n)); d
14486861768954059444450932867743887374807742208797
sage: mod(d*e, euler_phi(n))
1

Our RSA public key is hence the pair of numbers

n = 38485385893612647530529565399136160386558570363459

e = 12036041725135809493242715057143070093942766266573

2.6. EXTENDING SAGE’S CRYPTOGRAPHIC FUNCTIONALITIES 17

and our private key is

n = 38485385893612647530529565399136160386558570363459

d = 14486861768954059444450932867743887374807742208797.

Finally, we encrypt a message, decrypt the result, and verify that the message
received is indeed the original message:

sage: m = ZZ.random_element(n); m
21349919127563092421183102144348780650216565901522
sage: m < n
True
sage: ciphertext = power_mod(m, e, n); ciphertext
2641960951795938499691669133408906646967227611928
sage: plaintext = power_mod(ciphertext, d, n); plaintext
21349919127563092421183102144348780650216565901522
sage: plaintext == m
True

2.6 Extending Sage’s cryptographic functionali-

ties

In this section, we outline our software implementation in Sage that constitutes the
body of the thesis. A review of Tables 2.1 to 2.5 suggests that one could extend
the cryptographic functionalities of Sage by filling in those functionalities that are
missing. Such missing functionalities include built-in support for:

• the affine and shift cryptosystems, and their cryptanalysis

• number theoretic cryptosystems such as Rabin and ElGamal

• digital signature schemes: ElGamal, Rabin, RSA

• knapsack cryptosystems and solving various classes of subset sum problems

• simplified variants of DES

• simplified variants of AES.

Due to limitation of time, we have chosen to implement the following features in the
Sage standard library:

1. the shift cryptosystem and its cryptanalysis

2. the affine cryptosystem and its cryptanalysis

3. solving the subset sum problem in the particular case of super-increasing se-
quences

4. a simplified variant of DES

5. a simplified variant of AES.

18 CHAPTER 2. A SURVEY OF CAS FOR CRYPTOGRAPHY EDUCATION

As indicated by Table 2.1, the Caesar and shift cryptosystems have built-in
support as of Sage 3.4. However, the functionalities of these two cryptosystems
are simulated using the more general substitution cryptosystem. For purposes of
cryptography pedagogy, we believe that functionalities of the Caesar and shift cryp-
tosystems as well as their cryptanalysis need to be isolated in a separate Python class
within the Sage standard library. Chapter 3 contains the specification of the shift
cryptosystem, from which one can derive the Caesar cryptosystem as a special case;
the reference manual of our Sage implementation is contained in Appendix A. The
specification of the affine cryptosystem together with its cryptanalysis is presented
in Chapter 4; the reference manual of our Sage implementation of this cryptosystem
is contained in Appendix B. Chapters 5 and 6 present specifications of simplified
variants of DES and AES, respectively, and the corresponding reference manual of
our Sage implementation are given in Appendices C and D. Finally, Appendix E
contains the reference manual of our implementation of an algorithm (see Propo-
sition 6.5, pp.354–355 in [48]) for solving the subset sum problem in the specific
case of super-increasing sequences. With this implementation, we hope to lay a
foundation for future work on implementing various knapsack cryptosystems that
use the subset sum problem over super-increasing sequences in their encryption and
decryption processes.

Chapter 3

The Shift Cryptosystem

In the second century ad, the Roman historian Suetonius wrote a treatise called
Lives of the Caesars LVI that described a cipher used by Julius Caesar (100 bc —
44 bc). The cipher is known as the Caesar shift cipher or simply the Caesar cipher.
It works by moving a plaintext element by three positions along an alphabet.

This chapter describes a generalization of the Caesar cipher called the shift cryp-
tosystem, which allows for moving a plaintext element any number of positions along
an alphabet. We begin in section 3.1 with some concepts from number theory that
lay the mathematical foundation of the shift cryptosystem. Section 3.2 defines the
plaintext and ciphertext alphabets of the shift cryptosystem together with math-
ematical techniques for manipulating alphabetic elements. In section 3.3, we tie
together the concepts introduced in sections 3.1 and 3.2 to define the encryption
and decryption functions of the shift cryptosystem. Section 3.4 presents a number
of techniques for breaking the shift cryptosystem. Ideas discussed in this chapter
regarding the shift cryptosystem have been implemented as part of the Sage [111]
standard library. The source code of our implementation is available with the latest
stable release of Sage, which as of this writing is Sage version 4.2.1. The refer-
ence manual of our implementation is contained in Appendix A. In section 3.5, we
provide numerous examples illustrating functionalities of our implementation.

3.1 Congruence and congruence classes

We begin with some results from number theory. Concepts presented in this section
shall then be used in section 3.2 to define the plaintext and ciphertext alphabets of
the shift cryptosystem. Our discussion in this section touches upon the theory of
congruences as contained in texts such as Hungerford [49], Shoup [106] and Yan [121].
Denote by Z the set of all integers.

Definition 3.1. Divisibility. Let a, n ∈ Z. We say that n divides a if there exists
some k ∈ Z such that a = kn. Where n divides a, we denote this relationship as
n | a. Otherwise, n does not divide a and we write n ∤ a.

One can show from the definition of divisibility that 0 | a if and only if a = 0.
Furthermore, we have n | a if and only if −n | a, which holds if and only if n | − a.
In many cases, it suffices to consider n ≥ 0.

19

20 CHAPTER 3. THE SHIFT CRYPTOSYSTEM

Definition 3.2. Congruence. Let a, b, n ∈ Z such that n > 0. We say that a is
congruent to b modulo n if n | (a − b). Where a is congruent to b modulo n, we
denote this relationship as a ≡ b (mod n).

The relation of equality “=” on Z is an example of an equivalence relation (see
Chapter 6 of Rosen [99] for an introduction to relations and equivalence relations).
That is, if a, b, c are integers then we have the following properties with respect to
equality:

1. reflexivity: a = a

2. symmetry: if a = b then b = a

3. transitivity: if a = b and b = c then a = c

Congruence also shares the above three properties.

Theorem 3.3. Congruence on Z is an equivalence relation.

Proof. To show that congruence is an equivalence relation, we need to show that
“≡” is reflexive, symmetric and transitive. Let a, b, c, n ∈ Z such that n > 0. For
reflexivity, note that if a ≡ a (mod n) then a − a = 0. But n | (a − a) because
a − a = 0 = kn for k = 0.

To show symmetry, note that if a ≡ b (mod n) then a− b = kn for some integer
k. Furthermore, −(a − b) = −kn is equivalent to b − a = (−k)n and so we have
b ≡ a (mod n) by definition of congruence.

Finally, to show transitivity, suppose a ≡ b (mod n) and b ≡ c (mod n). Then
a − b = k1n and b − c = k2n for some k1, k2 ∈ Z. Add these two equations together
to get (a − b) + (b − c) = k1n + k2n, which simplifies to a − c = (k1 + k2)n and
therefore a ≡ c (mod n) by definition of congruence.

For any fixed integers a and n > 0, there are infinitely many integers b such that
a is congruent to b modulo n. To see why this is the case, note that if

a ≡ b (mod n) (3.1)

then by Definitions 3.1 and 3.2 we have a − b = kn for some k ∈ Z. Solving for
b produces b = a − kn and substitute into the congruence (3.1) to get a ≡ a − kn
(mod n), which clearly holds for any integer values of k. This situation is captured
in the following definition.

Definition 3.4. Congruence class. Let a, n ∈ Z such that n > 0. The con-
gruence class of a modulo n, denoted [a]n, is the set of all integers congruent to a
modulo n. In symbols, we have

[a]n = {b ∈ Z | a ≡ b (mod n)}.

Definitions 3.2 and 3.4, together with Theorem 3.3 and the division algorithm (see
Theorem 1.2.2, p.23 in Yan [121]), can be used to show that for any integer n > 0
there are n distinct congruence classes. This result relies on the idea that if two
integers a and c are congruent to each other modulo n, we can equivalently treat
their respective congruence classes [a]n and [c]n as being equal to each other.

3.1. CONGRUENCE AND CONGRUENCE CLASSES 21

Theorem 3.5. Let a, c, n ∈ Z such that n > 0. Then a ≡ c (mod n) if and only if
[a]n = [c]n.

Proof. First, we need to show that [a]n ⊆ [c]n and [c]n ⊆ [a]n. Equality then follows
by definition of equality between sets. Suppose a ≡ c (mod n) and let b ∈ [a]n. By
definition of congruence class, we have b ≡ a (mod n). Since b ≡ a (mod n) and
a ≡ c (mod n), by transitivity of congruence we have b ≡ c (mod n). Hence b ∈ [c]n
by definition of congruence class and therefore [a] ⊆ [c]n.

Assume now that a ≡ c (mod n) and let b ∈ [c]n. A similar argument to that in
the last paragraph shows that [c]n ⊆ [a]n. Since [a]n ⊆ [c]n and [c]n ⊆ [a]n, it follows
from the definition of equality between two sets that [a]n = [c]n.

Finally, suppose that [a]n = [c]n. We need to show that a ≡ c (mod n). Any
b ∈ [c]n is also b ∈ [a]n. Hence b ∈ [a]n implies that b ≡ a (mod n) by definition
of congruence class, or equivalently a ≡ b (mod n) by symmetry of congruence.
Similarly b ∈ [c]n gives b ≡ c (mod n). Since a ≡ b (mod n) and b ≡ c (mod n), by
transitivity of congruence we have a ≡ c (mod n).

An immediate consequence of Theorem 3.5 is the following result.

Corollary 3.6. Two congruence classes modulo n are either disjoint or identical.

Proof. Consider two congruence classes [a]n and [c]n modulo n. If [a]n and [c]n are
disjoint then we are done. Otherwise, suppose [a]n ∩ [c]n 6= ∅ and let b ∈ [a]n ∩ [c]n.
We have b ∈ [a]n implies b ≡ a (mod n) by definition of congruence class, and
hence a ≡ b (mod n) by symmetry of congruence. Furthermore b ∈ [c]n implies that
b ≡ c (mod n). Since a ≡ b (mod n) and b ≡ c (mod n), we have a ≡ c (mod n)
by transitivity of congruence. By Theorem 3.5, a ≡ c (mod n) is equivalent to
[a]n = [c]n.

The congruence relation modulo n partitions the set of integers into n distinct
congruence classes. This result is proved in Theorem 3.7.

Theorem 3.7. There are exactly n distinct congruence classes modulo n.

Proof. Let a ∈ Z and let r be the remainder when a is divided by n. By the division
algorithm (see p.23 in [121]), a = nq+r where 0 ≤ r < n and q ∈ Z. Then a−r = nq
implies a ≡ r (mod n) and therefore by Theorem 3.5, a ≡ r (mod n) is equivalent
to [a]n = [r]n.

If [a]n is any congruence class modulo n, we now show that [a]n is one of the
congruence classes [0]n, [1]n, [2]n, . . . , [n− 1]n. Note that from the last paragraph we
have [a]n = [r]n where r is the remainder when a is divided by n and 0 ≤ r < n.
Hence [a]n ∈ {[0]n, [1]n, [2]n, . . . , [n − 1]n}. For the case of pair-wise distinctness,
let s, t ∈ Z such that 0 ≤ s < t < n. Then the positive integer t − s < n
implies that n ∤ (t − s). Hence we have t 6≡ s (mod n) and therefore [t]n 6= [s]n by
Theorem 3.5.

The n distinct congruence classes of Theorem 3.7 can be summarized in the fol-
lowing definition. We also refer to the set Z/nZ in Definition 3.8 as the set of integers
modulo n. From hereon, we shall use the notation a ∈ Z/nZ instead of [a]n ∈ Z/nZ
since one can define the set of integers modulo n as Z/nZ = {0, 1, 2, . . . , n − 1}.

Definition 3.8. Integers modulo n. The set of all congruence classes modulo n
is denoted Z/nZ.

22 CHAPTER 3. THE SHIFT CRYPTOSYSTEM

3.2 Plaintext and ciphertext alphabets

By now, we have covered the necessary number theoretic concepts to allow for a
discussion of the plaintext and ciphertext alphabets of the shift cryptosystem. Let
A = {a0, a1, a2, . . . , an−1} be a non-empty alphabet consisting of n elements. Define
a mapping

f : A −→ Z/nZ (3.2)

given by f(ai) = i, which uniquely assigns each alphabetic element ai ∈ A to a
congruence class i ∈ Z/nZ. It is thus clear that the map (3.2) is bijective. Both the
plaintext and its corresponding ciphertext are encoded using elements of A, so that
A is considered as both the plaintext space and ciphertext space. If A denotes the
capital letters of the English alphabet, then Table 3.1 shows the mapping of each
letter to its integer equivalent.

A B C D E F G H I J K L M

0 1 2 3 4 5 6 7 8 9 10 11 12
N O P Q R S T U V W X Y Z

13 14 15 16 17 18 19 20 21 22 23 24 25

Table 3.1: Assigning capital letters of the English alphabet to numbers.

3.3 Encryption and decryption functions

The shift cryptosystem is a symmetric-key cryptosystem in which each secret key k
is an element of Z/nZ. By Theorem 3.7, it is clear that the key space Z/nZ consists
of n possible keys.

Let P = (p0, p1, p2, . . . , pm−1) be a non-empty plaintext consisting of m elements,
each of which is encoded as an element of A and by (3.2) we have pi ∈ Z/nZ. For
each plaintext element p, the encryption function E : Z/nZ×Z/nZ −→ Z/nZ uses
the secret key k to produce a corresponding ciphertext c:

E(k, p) = p + k (mod n). (3.3)

One can think of E as shifting p along A by k positions with wrap around. Ap-
plying the encryption function E to each pi of P results in the ciphertext C =
(c0, c1, c2, . . . , cm−1).

We can recover the plaintext as follows. Given a ciphertext element c and a
secret key k, the decryption function D : Z/nZ×Z/nZ −→ Z/nZ can be described
similarly to E :

D(k, c) = c − k (mod n). (3.4)

This decryption process can be interpreted as moving c along A by n − k positions
with wrap around. The bijection (3.2) is then used to convert elements of the
plaintext and ciphertext to alphabetic elements. We have implemented the shift
cryptosystem in the class

sage.crypto.classical.ShiftCryptosystem

3.4. CRYPTANALYSIS 23

of the Sage standard library. Refer to Appendix A for the reference manual of our
implementation.

Notice that if an integer k is in the key space Z/nZ, then its corresponding
inverse key is −k (mod n). This enables one to express both the encryption and
decryption processes as a general function of the form

F(K, m) = m + K (mod n). (3.5)

If K is a secret key and m is a plaintext element, then F(K, m) defines the encryption
function E in (3.3). On the other hand, where K is the inverse key of a secret key
and m is a ciphertext element, then F(K, m) defines the decryption function D
in (3.4).

3.4 Cryptanalysis

This section discusses a number of techniques that can be used to break the shift
cryptosystem. We begin with the technique of brute-force, otherwise known as
exhaustive key search.

3.4.1 Exhaustive key search

The shift cryptosystem is vulnerable to a brute-force attack. The size of the key
space is precisely the number of elements in the alphabet under consideration. Since
our key space is Z/nZ, then by Theorem 3.7 we need only perform at most n searches
in order to recover a secret key. Given a non-empty ciphertext C, we can search
the key space Z/nZ, decrypting C using each candidate key k ∈ Z/nZ to obtain n
candidate decipherments P0,P1,P2, . . . ,Pn−1. Next, use the map (3.2) to transform
each Pi to elements of the alphabet A and observe which candidate decipherment
results in something meaningful. After using (3.2) to encode Pk as elements of A,
if the result is plausible plaintext, then k is the secret key. The brute-force attack
against the shift cryptosystem is implemented in the method

sage.crypto.classical.ShiftCryptosystem.brute force

of the Sage standard library. See section A.2.1 for the reference manual of this
method.

3.4.2 Monogram frequency analysis

The technique of frequency analysis uses the empirical observation that certain el-
ements of A and various permutations of subsets of A occur more frequently than
others. If P is a non-empty plaintext encoded using letters of the upper-case English
alphabet, and C is the ciphertext corresponding to P, a frequency analysis attack
on C uses statistical properties of the English language.

Monogram frequency analysis specializes frequency analysis to single alphabetic
elements or monograms. This attack performs frequency analysis on monograms (oc-
currences of each single letter), as opposed to frequency analysis of digrams (occur-
rences of letter pairs) or trigrams (occurrences of letter triples). In written English,

24 CHAPTER 3. THE SHIFT CRYPTOSYSTEM

various letters of the English alphabet occur more frequently than others. The let-
ter E appears more often than other vowels such as A, I, O and U. When a table of
relative frequencies is compiled from various written sources such as novels, mag-
azines, newspapers and literary works, one can observe that the probability of a
letter occurring tends to stabilize around a certain value. We call this value the
characteristic frequency probability (CFP) of the letter under consideration. When
this probability is considered for each letter of the English alphabet, the resulting
probabilities for all letters of that alphabet is referred to as the characteristic fre-
quency probability distribution or CFP distribution. Various studies report slightly
different values for the CFP of an English letter. Lewand [57] reports that E has a
CFP of 0.12702, while Beker and Piper [15] report this value as 0.127. Table 3.2
shows the CFP distribution of Beker and Piper [15], whereas Table 3.3 shows the
corresponding CFP distribution of Lewand [57]. The concepts of CFP and CFP
distribution can also be applied to alphabets other than the English alphabet.

Letter CFP Letter CFP

A 0.082 N 0.067
B 0.015 O 0.075
C 0.028 P 0.019
D 0.043 Q 0.001
E 0.127 R 0.060
F 0.022 S 0.063
G 0.020 T 0.091
H 0.061 U 0.028
I 0.070 V 0.010
J 0.002 W 0.023
K 0.008 X 0.001
L 0.040 Y 0.020
M 0.024 Z 0.001

Table 3.2: The characteristic frequency probability distribution of Beker and
Piper [15].

Given a CFP distribution such as Tables 3.2 or 3.3, and a non-empty ciphertext
sample C encoded using upper-case letters of the English alphabet, we construct a
table of relative frequencies of letters in C. We refer to this table as the frequency
probability (FP) distribution corresponding to C. Let T = (t0, t1, t2, . . . , t25) be a
vector of the FP values in an FP distribution where ti ≥ tj for all i, j ∈ Z/nZ such
that i 6= j. Let A = (a0, a1, a2, . . . , a25) be such that ai is the alphabetic element
with the FP value ti. Starting with t0, we make a guess that a0 is the ciphertext
corresponding to E. From Table 3.1 we have the mapping E 7−→ 4 and by (3.2)
we know that a0 7−→ j for some j ∈ Z/nZ. Then the (candidate) secret key is
k ≡ j − 4 (mod 26). Apply Table 3.1 to encode the candidate decipherment Pk

using alphabetic characters. If the result is not a meaningful plaintext, we choose
a1, make a guess that a1 is the ciphertext letter corresponding to E, and repeat the
above procedure to obtain a candidate decipherment. In this way, we work through
each ai ∈ A for i = 0, 1, 2, . . . , 25 until we find some aj that results in a meaningful
plaintext. The technique of monogram frequency analysis can be extended to any
alphabet that has a corresponding CFP distribution.

3.4. CRYPTANALYSIS 25

Letter CFP Letter CFP

A 0.08167 N 0.06749
B 0.01492 O 0.07507
C 0.02782 P 0.01929
D 0.04253 Q 0.00095
E 0.12702 R 0.05987
F 0.02228 S 0.06327
G 0.02015 T 0.09056
H 0.06094 U 0.02758
I 0.06966 V 0.00978
J 0.00153 W 0.02360
K 0.00772 X 0.00150
L 0.04025 Y 0.01974
M 0.02406 Z 0.00074

Table 3.3: The characteristic frequency probability distribution of Lewand [57].

3.4.3 Ranking candidate keys

The technique of frequency analysis of monograms can be combined with a num-
ber of elementary statistical measures in order to provide a procedure for ranking
each key in the key space. Let C be a non-empty ciphertext corresponding to some
plaintext P and let Pk be a candidate decipherment of C. In other words, Pk is
the result of attempting to decrypt C using a candidate key k ∈ Z/nZ which is not
necessarily the same key used to encrypt P. Denote by FA(e) the characteristic fre-
quency probability of e ∈ A and let FPk

(e) be the relative frequency of e as observed
in Pk. The CFP distribution of an alphabet A can be considered as the expected
frequency probability distribution for that alphabet. The relative frequency proba-
bility distribution of Pk provides a distribution of the ratio of character occurrences
over message length, i.e. the length of Pk. One can consider FA(e) as the expected
probability, while FPk

(e) can be considered as the observed probability.
If Pk is of length L, then the observed frequency of e ∈ A is

OPk
(e) = FPk

(e) · L (3.6)

and the expected frequency of e ∈ A is

EA(e) = FA(e) · L. (3.7)

The squared-differences, or residual sum of squares, rank RRSS(Pk) of Pk corre-
sponding to a candidate key k ∈ Z/nZ is given by

RRSS(Pk) =
∑

e∈A

(
OPk

(e) − EA(e)
)2

where the sum is taken over all alphabetic elements. Cryptanalysis by exhaustive
key search produces a candidate decipherment Pk for each possible key k ∈ Z/nZ.
Given a set D =

{
P1,P2, . . . ,Pkr

}
of all candidate decipherments corresponding to

C, the smaller the rank RRSS(Pki
), the more likely it is that ki is the secret key.

This key ranking method is based on the residual sum of squares measure.

26 CHAPTER 3. THE SHIFT CRYPTOSYSTEM

We can also define a key ranking function based on the chi-square statistical
measure. Let OPk

(e) and EA(e) be as in (3.6) and (3.7), respectively. The chi-
square rank Rχ2(Pk) of Pk corresponding to a candidate key k ∈ Z/nZ is given
by

Rχ2(Pk) =
∑

e∈A

(
OPk

(e) − EA(e)
)2

EA(e)

where the sum is taken over all alphabetic elements. We have implemented the
above two key ranking techniques for the shift cryptosystem in the methods

sage.crypto.classical.ShiftCryptosystem.rank by chi square

sage.crypto.classical.ShiftCryptosystem.rank by squared differences

of the Sage standard library. Refer to sections A.2.7 and A.2.8, respectively, for the
reference manual of these two methods.

3.5 Example Sage usage

This section provides examples illustrating functionalities of our Sage [111] imple-
mentation of the shift cryptosystem. The reference manual of our implementation
is contained in Appendix A and the source code is available with the latest stable
release of Sage.

Here we provide some examples illustrating encryption and decryption over var-
ious alphabets. Here is an example over the upper-case letters of the English alpha-
bet:

sage: S = ShiftCryptosystem(AlphabeticStrings()); S
Shift cryptosystem on Free alphabetic string monoid on A-Z
sage: P = S.encoding("The shift cryptosystem generalizes the Caesar cipher.")
sage: P
THESHIFTCRYPTOSYSTEMGENERALIZESTHECAESARCIPHER
sage: K = 7
sage: C = S.enciphering(K, P); C
AOLZOPMAJYFWAVZFZALTNLULYHSPGLZAOLJHLZHYJPWOLY
sage: S.deciphering(K, C)
THESHIFTCRYPTOSYSTEMGENERALIZESTHECAESARCIPHER
sage: S.deciphering(K, C) == P
True

The previous example can also be worked through as follows using functional nota-
tion:

sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: P = S.encoding("The shift cryptosystem generalizes the Caesar cipher.")
sage: K = 7
sage: E = S(K); E
Shift cipher on Free alphabetic string monoid on A-Z
sage: C = E(P); C
AOLZOPMAJYFWAVZFZALTNLULYHSPGLZAOLJHLZHYJPWOLY
sage: D = S(S.inverse_key(K)); D
Shift cipher on Free alphabetic string monoid on A-Z
sage: D(C) == P
True
sage: D(C) == P == D(E(P))
True

3.5. EXAMPLE SAGE USAGE 27

Here is an example over the hexadecimal number system:

sage: S = ShiftCryptosystem(HexadecimalStrings()); S
Shift cryptosystem on Free hexadecimal string monoid
sage: P = S.encoding("Using hexadecimal numbers."); P
5573696e672068657861646563696d616c206e756d626572732e
sage: K = 5
sage: C = S.enciphering(K, P); C
aac8beb3bc75bdbacdb6b9bab8beb2b6b175b3cab2b7bac7c873
sage: S.deciphering(K, C)
5573696e672068657861646563696d616c206e756d626572732e
sage: S.deciphering(K, C) == P
True

An example over the binary number system:

sage: S = ShiftCryptosystem(BinaryStrings()); S
Shift cryptosystem on Free binary string monoid
sage: P = S.encoding("insecure"); P
0110100101101110011100110110010101100011011101010111001001100101
sage: K = 1
sage: C = S.enciphering(K, P); C
1001011010010001100011001001101010011100100010101000110110011010
sage: S.deciphering(K, C)
0110100101101110011100110110010101100011011101010111001001100101
sage: S.deciphering(K, C) == P
True

A shift cryptosystem with key k = 3 is commonly referred to as the Caesar cipher.
Create a Caesar cipher over the upper-case letters of the English alphabet:

sage: caesar = ShiftCryptosystem(AlphabeticStrings())
sage: K = 3
sage: P = caesar.encoding("abcdefghijklmnopqrstuvwxyz"); P
ABCDEFGHIJKLMNOPQRSTUVWXYZ
sage: C = caesar.enciphering(K, P); C
DEFGHIJKLMNOPQRSTUVWXYZABC
sage: caesar.deciphering(K, C) == P
True

Generate a random key for encryption and decryption:

sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: P = S.encoding("Shift cipher with a random key.")
sage: K = S.random_key()
sage: C = S.enciphering(K, P)
sage: S.deciphering(K, C) == P
True

Decrypting with the key K is equivalent to encrypting with its corresponding inverse
key:

sage: S.enciphering(S.inverse_key(K), C) == P
True

Cryptanalyze over the capital letters of the English alphabet using all possible keys:

28 CHAPTER 3. THE SHIFT CRYPTOSYSTEM

sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: P = S.encoding("The shift cryptosystem generalizes the Caesar cipher.")
sage: K = 7
sage: C = S.enciphering(K, P)
sage: Dict = S.brute_force(C)
sage: for k in xrange(len(Dict)):
... if Dict[k] == P:
... print "key =", k
...
key = 7

We can perform an exhaustive key search only, without using any ranking functions:

sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: P = S.encoding("Shifting using modular arithmetic.")
sage: K = 8
sage: C = S.enciphering(K, P)
sage: pdict = S.brute_force(C)
sage: sorted(pdict.items())
<BLANKLINE>
[(0, APQNBQVOCAQVOUWLCTIZIZQBPUMBQK),
(1, ZOPMAPUNBZPUNTVKBSHYHYPAOTLAPJ),
(2, YNOLZOTMAYOTMSUJARGXGXOZNSKZOI),
(3, XMNKYNSLZXNSLRTIZQFWFWNYMRJYNH),
(4, WLMJXMRKYWMRKQSHYPEVEVMXLQIXMG),
(5, VKLIWLQJXVLQJPRGXODUDULWKPHWLF),
(6, UJKHVKPIWUKPIOQFWNCTCTKVJOGVKE),
(7, TIJGUJOHVTJOHNPEVMBSBSJUINFUJD),
(8, SHIFTINGUSINGMODULARARITHMETIC),
(9, RGHESHMFTRHMFLNCTKZQZQHSGLDSHB),
(10, QFGDRGLESQGLEKMBSJYPYPGRFKCRGA),
(11, PEFCQFKDRPFKDJLARIXOXOFQEJBQFZ),
(12, ODEBPEJCQOEJCIKZQHWNWNEPDIAPEY),
(13, NCDAODIBPNDIBHJYPGVMVMDOCHZODX),
(14, MBCZNCHAOMCHAGIXOFULULCNBGYNCW),
(15, LABYMBGZNLBGZFHWNETKTKBMAFXMBV),
(16, KZAXLAFYMKAFYEGVMDSJSJALZEWLAU),
(17, JYZWKZEXLJZEXDFULCRIRIZKYDVKZT),
(18, IXYVJYDWKIYDWCETKBQHQHYJXCUJYS),
(19, HWXUIXCVJHXCVBDSJAPGPGXIWBTIXR),
(20, GVWTHWBUIGWBUACRIZOFOFWHVASHWQ),
(21, FUVSGVATHFVATZBQHYNENEVGUZRGVP),
(22, ETURFUZSGEUZSYAPGXMDMDUFTYQFUO),
(23, DSTQETYRFDTYRXZOFWLCLCTESXPETN),
(24, CRSPDSXQECSXQWYNEVKBKBSDRWODSM),
(25, BQROCRWPDBRWPVXMDUJAJARCQVNCRL)]

Combine exhaustive key search with the chi-square and squared-differences ranking
functions. With sufficiently long ciphertext, both of these ranking functions give the
same rank to the secret key:

sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: P = S.encoding("Shifting using modular arithmetic.")
sage: K = 8
sage: C = S.enciphering(K, P)
sage: S.brute_force(C, ranking="chisquare")
<BLANKLINE>
[(8, SHIFTINGUSINGMODULARARITHMETIC),
(14, MBCZNCHAOMCHAGIXOFULULCNBGYNCW),
(20, GVWTHWBUIGWBUACRIZOFOFWHVASHWQ),
(13, NCDAODIBPNDIBHJYPGVMVMDOCHZODX),
(1, ZOPMAPUNBZPUNTVKBSHYHYPAOTLAPJ),
(23, DSTQETYRFDTYRXZOFWLCLCTESXPETN),

3.5. EXAMPLE SAGE USAGE 29

(10, QFGDRGLESQGLEKMBSJYPYPGRFKCRGA),
(6, UJKHVKPIWUKPIOQFWNCTCTKVJOGVKE),
(22, ETURFUZSGEUZSYAPGXMDMDUFTYQFUO),
(15, LABYMBGZNLBGZFHWNETKTKBMAFXMBV),
(12, ODEBPEJCQOEJCIKZQHWNWNEPDIAPEY),
(21, FUVSGVATHFVATZBQHYNENEVGUZRGVP),
(16, KZAXLAFYMKAFYEGVMDSJSJALZEWLAU),
(25, BQROCRWPDBRWPVXMDUJAJARCQVNCRL),
(9, RGHESHMFTRHMFLNCTKZQZQHSGLDSHB),
(24, CRSPDSXQECSXQWYNEVKBKBSDRWODSM),
(3, XMNKYNSLZXNSLRTIZQFWFWNYMRJYNH),
(5, VKLIWLQJXVLQJPRGXODUDULWKPHWLF),
(7, TIJGUJOHVTJOHNPEVMBSBSJUINFUJD),
(2, YNOLZOTMAYOTMSUJARGXGXOZNSKZOI),
(18, IXYVJYDWKIYDWCETKBQHQHYJXCUJYS),
(4, WLMJXMRKYWMRKQSHYPEVEVMXLQIXMG),
(11, PEFCQFKDRPFKDJLARIXOXOFQEJBQFZ),
(19, HWXUIXCVJHXCVBDSJAPGPGXIWBTIXR),
(0, APQNBQVOCAQVOUWLCTIZIZQBPUMBQK),
(17, JYZWKZEXLJZEXDFULCRIRIZKYDVKZT)]
sage: S.brute_force(C, ranking="squared_differences")
<BLANKLINE>
[(8, SHIFTINGUSINGMODULARARITHMETIC),
(23, DSTQETYRFDTYRXZOFWLCLCTESXPETN),
(12, ODEBPEJCQOEJCIKZQHWNWNEPDIAPEY),
(2, YNOLZOTMAYOTMSUJARGXGXOZNSKZOI),
(9, RGHESHMFTRHMFLNCTKZQZQHSGLDSHB),
(7, TIJGUJOHVTJOHNPEVMBSBSJUINFUJD),
(21, FUVSGVATHFVATZBQHYNENEVGUZRGVP),
(22, ETURFUZSGEUZSYAPGXMDMDUFTYQFUO),
(1, ZOPMAPUNBZPUNTVKBSHYHYPAOTLAPJ),
(16, KZAXLAFYMKAFYEGVMDSJSJALZEWLAU),
(20, GVWTHWBUIGWBUACRIZOFOFWHVASHWQ),
(24, CRSPDSXQECSXQWYNEVKBKBSDRWODSM),
(14, MBCZNCHAOMCHAGIXOFULULCNBGYNCW),
(13, NCDAODIBPNDIBHJYPGVMVMDOCHZODX),
(3, XMNKYNSLZXNSLRTIZQFWFWNYMRJYNH),
(10, QFGDRGLESQGLEKMBSJYPYPGRFKCRGA),
(15, LABYMBGZNLBGZFHWNETKTKBMAFXMBV),
(6, UJKHVKPIWUKPIOQFWNCTCTKVJOGVKE),
(11, PEFCQFKDRPFKDJLARIXOXOFQEJBQFZ),
(25, BQROCRWPDBRWPVXMDUJAJARCQVNCRL),
(17, JYZWKZEXLJZEXDFULCRIRIZKYDVKZT),
(19, HWXUIXCVJHXCVBDSJAPGPGXIWBTIXR),
(4, WLMJXMRKYWMRKQSHYPEVEVMXLQIXMG),
(0, APQNBQVOCAQVOUWLCTIZIZQBPUMBQK),
(18, IXYVJYDWKIYDWCETKBQHQHYJXCUJYS),
(5, VKLIWLQJXVLQJPRGXODUDULWKPHWLF)]

Here is an example where the chi-square ranking function out-performs the squared-
differences ranking function:

sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: P = S.encoding("Short")
sage: K = 11
sage: C = S.enciphering(K, P)
sage: S.brute_force(C, ranking="chisquare")
<BLANKLINE>
[(11, SHORT),
(25, ETADF),
(10, TIPSU),
(22, HWDGI),
(17, MBILN),
(1, CRYBD),
(24, FUBEG),
(18, LAHKM),
(15, ODKNP),

30 CHAPTER 3. THE SHIFT CRYPTOSYSTEM

(23, GVCFH),
(8, VKRUW),
(16, NCJMO),
(20, JYFIK),
(0, DSZCE),
(12, RGNQS),
(14, PELOQ),
(6, XMTWY),
(13, QFMPR),
(3, APWZB),
(4, ZOVYA),
(7, WLSVX),
(21, IXEHJ),
(9, UJQTV),
(19, KZGJL),
(5, YNUXZ),
(2, BQXAC)]
sage: S.brute_force(C, ranking="squared_differences")
<BLANKLINE>
[(25, ETADF),
(11, SHORT),
(10, TIPSU),
(0, DSZCE),
(14, PELOQ),
(21, IXEHJ),
(22, HWDGI),
(17, MBILN),
(18, LAHKM),
(15, ODKNP),
(24, FUBEG),
(12, RGNQS),
(16, NCJMO),
(4, ZOVYA),
(1, CRYBD),
(6, XMTWY),
(23, GVCFH),
(3, APWZB),
(7, WLSVX),
(9, UJQTV),
(8, VKRUW),
(2, BQXAC),
(13, QFMPR),
(20, JYFIK),
(5, YNUXZ),
(19, KZGJL)]

Chapter 4

The Affine Cryptosystem

Whereas the shift cryptosystem is a generalization of the Caesar cipher, the affine
cryptosystem is in turn a generalization of the shift cryptosystem. The affine cryp-
tosystem is so named since its encryption and decryption functions are affine or
linear functions.

This chapter generalizes the shift cryptosystem discussed in Chapter 3. Sec-
tion 4.1 continues the development of number theoretic techniques started in Chap-
ter 3. The number theoretic techniques are then applied in section 4.2 to analyze the
key space of the affine cryptosystem within an algebraic setting. In section 4.3, we
tie together the concepts and techniques developed in sections 4.1 and 4.2 to define
the encryption and decryption functions of the affine cryptosystem. This is followed
by a brief discussion in section 4.4 of cryptanalytic techniques that can be brought
to bear on the affine cryptosystem. We have implemented the affine cryptosystem
discussed in this chapter as part of the Sage [111] standard library. The source code
of our implementation is available with the latest stable release of Sage, which as
of this writing is Sage 4.2.1. The reference manual of our implementation is con-
tained in Appendix B. Examples illustrating functionalities of our implementation
are presented in section 4.5.

4.1 Greatest common divisors

This section continues the development of the theory of divisibility and congruence
began in section 3.1. Number theoretic concepts discussed in this section play a
vital role in analyzing the structure of the key space of the affine cryptosystem. As
discussed in section 3.1, the notion of divisibility allows one to define congruence,
congruence classes, and use these concepts to prove that a shift cryptosystem whose
key space is Z/nZ, for any integer n > 0, has exactly n possible keys. This section
follows in the footsteps of section 3.1 and develops necessary concepts and techniques
to understand the key space of the affine cryptosystem. Our discussion touches
upon algebraic and number theoretic techniques as contained in algebra and number
theory texts such as Hungerford [49], Shoup [106] and Yan [121].

We begin with a definition of greatest common divisors.

Definition 4.1. Greatest common divisor. Let a, b ∈ Z such that at least one
of them is not zero. The greatest common divisor of a and b, in symbols gcd(a, b),
is the positive integer d such that

31

32 CHAPTER 4. THE AFFINE CRYPTOSYSTEM

1. d | a and d | b

2. if c | a and c | b then c ≤ d.

We can extend this definition by setting gcd(0, 0) = 0.

If gcd(a, b) = d for some integers a and b, we can express d as a linear combination
of a and b. This result is known as Bézout’s identity. Before proving Bézout’s
identity, we first prove an intermediate result.

Theorem 4.2. Let a, b, c, m ∈ Z and consider the equation

a = b + c. (4.1)

If m divides any two of a, b, c in (4.1), then m divides the third.

Proof. Let a, b, c ∈ Z such that a = b + c and suppose m divides any two terms in
the latter equation. We distinguish three separate cases.

1. If m | a and m | b then by definition a = mx and b = my for x, y ∈ Z.
Substituting these into the equation and simplifying produces mx = (my)+ c,
which implies that c = m(x − y) and hence m | c.

2. If m | a and m | c then it follows that a = mx and c = mz for integers x and z.
Substituting these into the equation and simplifying results in mx = mz + b.
Solving for b gives b = m(x − z) and hence m | b.

3. If m | b and m | c then by definition we have b = my and c = mz for integers
y, z. Substituting these into the equation and simplifying yields a = m(y + z)
and it follows that m | a.

In each of the above three cases, we see that whenever m divides any two terms in
equation (4.1) then m also divides the third term.

We now use Theorem 4.2 to prove Bézout’s identity.

Theorem 4.3. Bézout’s identity. Let a, b ∈ Z, one of which is non-zero. Then
there exist x, y ∈ Z such that gcd(a, b) = ax + by.

Proof. Let S be the set all linear combinations defined as

S = {au + bv | u, v ∈ Z}.

Let c = am + bn be the smallest positive integer in S for some m, n ∈ Z. We first
show that c divides both a and b. Since c > 0 and a ∈ Z, use the division algorithm
to obtain q, r ∈ Z such that a = qc+r, where 0 ≤ r < c. Express the remainder r as
r = a−qc and, since c = am+bn, so we have r = a−q(am+bn) = a(1−mq)−bnq,
which implies that r = a(1 − mq) + b(−nq). By hypothesis 0 ≤ r < c and if r 6= 0
then r > 0 such that r < c. But then r is expressible as a linear combination in
terms of a and b and hence r ∈ S by definition of S. Here lies a contradiction
because c ∈ S is by hypothesis the smallest positive integer expressible as a linear
combination of a and b. Hence r = 0. Since a = qc + r and r = 0, then a = qc and
hence c | a. A similar argument shows that c divides b.

4.2. MULTIPLICATIVE GROUPS 33

Next, we show that c = gcd(a, b). Let d = gcd(a, b) so that d | a and d | b. By
Theorem 4.2 we have d | c and by Definition 3.1, c = dz for some z ∈ Z. Since c > 0
and d > 0 by hypothesis, then z > 0. If z > 1 then c is a common divisor of both a
and b such that c > d, in contradiction of our hypothesis that d = gcd(a, b). Thus
z = 1 and it follows that c = d. Therefore gcd(a, b) = ax+ by for some x, y ∈ Z.

It should be noted that Bézout’s identity is an existence result. Given a, b ∈ Z, it
guarantees the existence of x, y ∈ Z such that gcd(a, b) = ax+ by without providing
an algorithm for finding specific values of x and y. The values of x and y whose
existence is guaranteed by Bézout’s identity can be computed using the extended
Euclidean algorithm (see section 4.2, pp.77–81 of Shoup [106]). However, the pair
(x, y) is not unique. Given a pair (x, y) satisfying Bézout’s identity for some fixed
integers a and b, the set

{(

x +
kb

gcd(a, b)
, y −

ka

gcd(a, b)

) ∣
∣
∣
∣

k ∈ Z

}

provides an infinite pairs of integers that also satisfy Bézout’s identity for the chosen
a and b. The following result is an immediate consequence of Bézout’s identity.

Corollary 4.4. If a | bc and gcd(a, b) = 1 then a | c.

Proof. If a | bc with gcd(a, b) = 1, use Theorem 4.3 to obtain

1 = gcd(a, b) = ax + by

for some x, y ∈ Z. Multiply the last equation through by c to get

c = axc + byc.

Since a | ac and a | bc, it follows that a | axc and a | byc. Therefore a | (axc + byc)
as required.

Theorem 4.5. The linear congruence ax ≡ b (mod n) has a unique solution x ∈
Z/nZ for any b ∈ Z/nZ if and only if gcd(a, n) = 1.

Proof. First, we need to show that if ax ≡ b (mod n) has a unique solution for
all b, then gcd(a, n) = 1. Proving this statement is equivalent to showing that its
contrapositive holds. Towards that end, suppose that gcd(a, n) > 1 and consider
the congruence

ax ≡ 0 (mod n). (4.2)

Clearly x = 0 is a solution of (4.2) as well as x = n/ gcd(a, n), thus proving the
contrapositive.

Now let gcd(a, n) = 1. If x1, x2 ∈ Z/nZ are two solutions of ax ≡ b (mod n) then
ax1 ≡ ax2 (mod n). By Definition 3.2 we have n | a(x1 − x2) . Since gcd(a, n) = 1
and n | a(x1 − x2), then n | (x1 − x2) by Corollary 4.4. Conclude by Definition 3.2
that x1 ≡ x2 (mod n) and therefore the solution to ax ≡ b (mod n) is unique.

4.2 Multiplicative groups

Building on the number theoretic techniques of section 4.1, this section reviews
a number of results relating to an algebraic object known as a group. We then

34 CHAPTER 4. THE AFFINE CRYPTOSYSTEM

analyze the structure of a special subset of Z/nZ, known as its multiplicative group,
in terms of group theoretic techniques and the Euler phi function. As we shall
see in section 4.3, the multiplicative group of Z/nZ is crucial in defining the key
space of the affine cryptosystem and obtaining an explicit formula that expresses
the size of that space. See Hungerford [49] for further discussion on group theory,
or Shoup [106] for an interplay between algebra and number theory.

We begin with a definition of groups.

Definition 4.6. Group. A group is a non-empty set G equipped with a binary
operation ∗ that satisfies the following axioms:

1. Closure: If a, b ∈ G then a ∗ b ∈ G.

2. Associativity: a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G.

3. Identity element: There is an element e ∈ G such that a ∗ e = a = e ∗ a for all
a ∈ G.

4. Inverse: For each a ∈ G there is an element d ∈ G such that a ∗ d = e and
d ∗ a = e.

A group G is said to be abelian if a ∗ b = b ∗ a for all a, b ∈ G.

The general group operation is usually denoted as ∗. Some groups have ordinary
addition as its operation, in which case one writes the group operation as +. Various
groups have ordinary multiplication as its operation. In that case, one usually writes
ab instead of a × b where a and b are group elements.

The group axioms guarantee the existence of an identity element in addition to
the existence of an inverse of an element. One can apply those axioms to show that
any group element has unique identity and inverse.

Theorem 4.7. Let G be a group and let a, b, c ∈ G. Then

1. G has a unique identity element.

2. Cancellation: If a ∗ b = a ∗ c then b = c. Similarly, if b ∗ a = c ∗ a then b = c.

3. Each element of G has a unique inverse.

Proof. (1) Let e1 and e2 be identity elements in G. We show that these two identities
are the same. We have e1 ∗ e2 = e1 and e2 ∗ e1 = e2 = e1 ∗ e2, from which we get
e1 = e1 ∗ e2 = e2 so that there is only one identity element.

(2) Use the group axioms to see that each a ∈ G has at least one inverse d ∈ G
such that a∗d = e = d∗a, where e ∈ G is the unique identity element. If a∗b = a∗c
then d ∗ (a ∗ b) = d ∗ (a ∗ c). By associativity and the properties of inverses and
identity, we have the following implications

(d ∗ a) ∗ b = (d ∗ a) ∗ c
=⇒ e ∗ b = c ∗ e
=⇒ b = c.

The case where b ∗ a = c ∗ a is proved by a similar argument.
(3) Suppose d1 and d2 are inverses of some a ∈ G. We show that these two

inverses are equivalent. We have a ∗ d1 = e = a ∗ d2 and using the left cancellation
property we get d1 = d2. Therefore a has a unique inverse.

4.2. MULTIPLICATIVE GROUPS 35

Definition 4.8. Multiplicative inverse. Let a, b ∈ Z/nZ where multiplication
modulo n is the operation on elements of Z/nZ. Then b is a multiplicative inverse
of a if ab ≡ 1 (mod n). We also denote a multiplicative inverse of a by a−1.

Corollary 4.9. An element a ∈ Z/nZ has a multiplicative inverse in Z/nZ if and
only if gcd(a, n) = 1.

Proof. This follows from Theorem 4.5 by setting b = 1.

Specializing the set Z/pZ to the case where p is prime, each non-zero e ∈ Z/pZ
has a multiplicative inverse in Z/pZ. To see why this holds true, note that since
gcd(a, p) = 1 for any non-zero a ∈ Z/pZ, we can apply Bézout’s identity to obtain
1 = am + pn for some m, n ∈ Z. Solve the last equation for np to get am − 1 =
np. Conclude by the definition of congruence to obtain am ≡ 1 (mod p), and by
Definition 4.8 we see that m is a multiplicative inverse of a modulo p.

Theorem 4.10. Let a, b, c, d, n ∈ Z such that n > 0. If a ≡ b (mod n) and c ≡ d
(mod n) then ac ≡ bd (mod n).

Proof. By definition of congruence we have a − b = np and c − d = nq for some
p, q ∈ Z. Consider the equation

n(pc + qb) = npc + nqb = (a − b)c + b(c − d)

hence n |
(
(a−b)c+b(c−d)

)
. However, (a−b)c+b(c−d) = ac−bc+bc−bd = ac−bd,

implying that n | (ac−bd) or equivalently ac−bd = n(pc+qb). Conclude by definition
of congruence that ac ≡ bd (mod n) as required.

We now apply Corollary 4.9 to analyze the multiplicative group of Z/nZ.

Theorem 4.11. Multiplicative group. Let (Z/nZ)∗ = {a ∈ Z/nZ | gcd(a, n) =
1}. Then (Z/nZ)∗ is an abelian group with respect to multiplication modulo n.

Proof. First, note that multiplication modulo n is commutative since multiplication
on the integers is commutative.

If a, b ∈ (Z/nZ)∗, then by Corollary 4.9 both a and b have multiplicative in-
verses, say aa−1 ≡ 1 (mod n) and bb−1 ≡ 1 (mod n). Apply Theorem 4.10 to
get (aa−1)(bb−1) ≡ 1 (mod n) so that (a−1b−1)(ab) ≡ 1 (mod n) by commutativity
of multiplication modulo n as discussed in the first paragraph. Thus a−1b−1 is a
multiplicative inverse of ab and therefore ab ∈ (Z/nZ)∗ by Corollary 4.9.

Associativity of multiplication modulo n follows from associativity of multipli-
cation on the integers. An identity element is 1. Finally, by definition of (Z/nZ)∗

and Corollary 4.9, we see that each element of (Z/nZ)∗ has a multiplicative in-
verse. Conclude by Definition 4.6 that (Z/nZ)∗ is an abelian group with respect to
multiplication modulo n.

The abelian group (Z/nZ)∗ in Theorem 4.11 is often referred to as the multiplica-
tive group of Z/nZ. Its structure, and especially the number of elements it contains,
can be analyzed via a number theoretic function called the Euler phi function.

36 CHAPTER 4. THE AFFINE CRYPTOSYSTEM

Definition 4.12. Euler phi function. If n ∈ Z is positive, then the Euler phi
function of n, denoted ϕ(n), counts the number of integers 0 < a < n such that
gcd(a, n) = 1. In symbols, we have

ϕ(n) =
∑

0<a<n
gcd(a,n)=1

1.

The Euler phi function is also known as the Euler totient function.

If p is prime, then the number of elements in (Z/pZ)∗ is given by the formula in
Corollary 4.13. This result follows from the definitions of primes and the Euler phi
function.

Corollary 4.13. For any prime p > 1, we have ϕ(p) = p − 1.

4.3 Encryption and decryption functions

In the affine cryptosystem, a secret key k is an ordered pair k = (a, b) ∈ Z/nZ ×
Z/nZ. Similarly to the shift cryptosystem, the affine cryptosystem has Z/nZ as
both the plaintext space and the ciphertext space. The encryption function

E : Z/nZ × Z/nZ × Z/nZ −→ Z/nZ

of the affine cryptosystem takes a secret key k = (a, b) ∈ Z/nZ × Z/nZ and a
plaintext element p ∈ Z/nZ to produce a corresponding ciphertext element c ∈
Z/nZ as given by

E(k, p) = ap + b (mod n).

That is
c ≡ ap + b (mod n). (4.3)

In order to solve the congruence equation (4.3) for p, we require that a has a
multiplicative inverse modulo n. If (a, b) ∈ Z/nZ × Z/nZ is a secret key, then
each b ∈ Z/nZ has a unique inverse with respect to addition modulo n, i.e. n − b
or −b (mod n). Restricting a to be elements of the multiplicative group (Z/nZ)∗

guarantees that a has a unique multiplicative inverse modulo n. Thus, the key space
is (Z/nZ)∗ × Z/nZ and so the encryption function can be written as

E : (Z/nZ)∗ × Z/nZ × Z/nZ −→ Z/nZ.

By definition of the Euler phi function, (Z/nZ)∗ consists of ϕ(n) elements. Therefore
the key space consists of ϕ(n) × n possible keys.

To see that the encryption function E is bijective, we require any linear con-
gruence of the form ax + b ≡ y (mod n) to have a unique solution for x. This
congruence is equivalent to ax ≡ y − b (mod n). Hence it suffices to require that
any linear congruence of the form ax ≡ y (mod n) has a unique solution for x. By
Theorem 4.5 the required unique solution exists if and only if gcd(a, n) = 1. This is
certainly the case with the multiplicative group (Z/nZ)∗.

By the choice of the key space, note that the decryption function

D : (Z/nZ)∗ × Z/nZ × Z/nZ −→ Z/nZ

4.4. CRYPTANALYSIS 37

is the inverse function of E . Solve the congruence in (4.3) for p to obtain the
corresponding decryption function:

D(k, c) = a−1(c − b) (mod n).

That is
p ≡ a−1(c − b) (mod n). (4.4)

The inverse key corresponding to a key (a, b) ∈ (Z/nZ)∗×Z/nZ can be obtained
as follows. The right-hand side of (4.4) contains the expression a−1(c− b) (mod n),
which evaluates to an element in Z/nZ. Distribute a−1 to get a−1c− a−1b (mod n).
Thus if k = (a, b) is a secret key, then the inverse key k−1 corresponding to k is

k−1 = (a−1, −a−1b). (4.5)

We have implemented the affine cryptosystem in the class

sage.crypto.classical.AffineCryptosystem

of the Sage standard library. The full reference manual of our implementation is
contained in Appendix B.

In general, the expression (4.5) for inverse keys allows for expressing both E and
D as a function of the general form

F(K, m) = Ac + B (mod n).

If K = (a, b) is a secret key and m is a plaintext element, then A = a and B = b
so that F(K, m) defines the encryption function E . Where K = (a−1, −a−1b) is
the inverse key corresponding to a secret key and m is a ciphertext element, then
A = a−1 and B = −a−1b so that F(K, m) defines the decryption function D.

4.4 Cryptanalysis

The affine cryptosystem is vulnerable to all of the attacks described in section 3.4.
Recall that a shift cryptosystem with key space Z/nZ has at most n possible unique
keys. In generalizing the shift cryptosystem, the affine cryptosystem increases the
possible number of unique keys by a factor of ϕ(n), resulting in a total of ϕ(n) × n
possible unique keys. However, the size of the key space of the affine cryptosystem is
still small enough that an exhaustive key search attack is feasible. We can also apply
the technique of monogram frequency analysis (see section 3.4.2) to cryptanalyze
the affine cryptosystem. Another cryptanalytic attack is to combine exhaustive key
search with monogram frequency analysis (as described in section 3.4.3) in order to
rank all of the ϕ(n) × n keys.

The brute-force attack against the affine cryptosystem is implemented in the
method

sage.crypto.classical.AffineCryptosystem.brute force

of the Sage standard library. The two key ranking functions are implemented in the
methods

38 CHAPTER 4. THE AFFINE CRYPTOSYSTEM

sage.crypto.classical.AffineCryptosystem.rank by chi square

sage.crypto.classical.AffineCryptosystem.rank by squared differences

which are also part of the Sage standard library. See sections B.2.1, B.2.7 and B.2.8,
respectively, for the reference manual of our implementation.

4.5 Example Sage usage

This section provides some examples on using the functionalities in our implementa-
tion of the affine cryptosystem. Refer to Appendix B for the full reference manual.
Our Sage implementation supports encryption and decryption over the capital let-
ters of the English alphabet:

sage: A = AffineCryptosystem(AlphabeticStrings()); A
Affine cryptosystem on Free alphabetic string monoid on A-Z
sage: P = A.encoding("The affine cryptosystem generalizes the shift cipher.")
sage: P
THEAFFINECRYPTOSYSTEMGENERALIZESTHESHIFTCIPHER
sage: a, b = (9, 13)
sage: C = A.enciphering(a, b, P); C
CYXNGGHAXFKVSCJTVTCXRPXAXKNIHEXTCYXTYHGCFHSYXK
sage: A.deciphering(a, b, C)
THEAFFINECRYPTOSYSTEMGENERALIZESTHESHIFTCIPHER
sage: A.deciphering(a, b, C) == P
True

We can also use functional notation to work through the previous example:

sage: A = AffineCryptosystem(AlphabeticStrings()); A
Affine cryptosystem on Free alphabetic string monoid on A-Z
sage: P = A.encoding("The affine cryptosystem generalizes the shift cipher.")
sage: P
THEAFFINECRYPTOSYSTEMGENERALIZESTHESHIFTCIPHER
sage: a, b = (9, 13)
sage: E = A(a, b); E
Affine cipher on Free alphabetic string monoid on A-Z
sage: C = E(P); C
CYXNGGHAXFKVSCJTVTCXRPXAXKNIHEXTCYXTYHGCFHSYXK
sage: aInv, bInv = A.inverse_key(a, b)
sage: D = A(aInv, bInv); D
Affine cipher on Free alphabetic string monoid on A-Z
sage: D(C)
THEAFFINECRYPTOSYSTEMGENERALIZESTHESHIFTCIPHER
sage: D(C) == P
True
sage: D(C) == P == D(E(P))
True

Encrypting the ciphertext with the inverse key also produces the plaintext:

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: P = A.encoding("Encrypt with inverse key.")
sage: a, b = (11, 8)
sage: C = A.enciphering(a, b, P)
sage: P; C
ENCRYPTWITHINVERSEKEY
AVENMRJQSJHSVFANYAOAM
sage: aInv, bInv = A.inverse_key(a, b)

4.5. EXAMPLE SAGE USAGE 39

sage: A.enciphering(aInv, bInv, C)
ENCRYPTWITHINVERSEKEY
sage: A.enciphering(aInv, bInv, C) == P
True

For a secret key (a, b) ∈ Z/nZ × Z/nZ, if a = 1 then any affine cryptosystem with
key (1, b) for any b ∈ Z/nZ is a shift cryptosystem. Here is how one can create a
Caesar cipher using the affine cryptosystem:

sage: caesar = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (1, 3)
sage: P = caesar.encoding("abcdef"); P
ABCDEF
sage: C = caesar.enciphering(a, b, P); C
DEFGHI
sage: caesar.deciphering(a, b, C) == P
True

An affine cryptosystem with keys of the form (a, 0) ∈ Z/nZ × Z/nZ is called a
decimation cipher on the Roman alphabet, or decimation cipher for short:

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: P = A.encoding("A decimation cipher is a specialized affine cipher.")
sage: a, b = (17, 0)
sage: C = A.enciphering(a, b, P)
sage: P; C
ADECIMATIONCIPHERISASPECIALIZEDAFFINECIPHER
AZQIGWALGENIGVPQDGUAUVQIGAFGJQZAHHGNQIGVPQD
sage: A.deciphering(a, b, C) == P
True

Generate a random key for encryption and decryption:

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: P = A.encoding("An affine cipher with a random key.")
sage: a, b = A.random_key()
sage: C = A.enciphering(a, b, P)
sage: A.deciphering(a, b, C) == P
True

We can cryptanalyze using the technique of exhaustive key search:

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (3, 7)
sage: P = A.encoding("Linear"); P
LINEAR
sage: C = A.enciphering(a, b, P)
sage: L = A.brute_force(C); len(L) # the number of candidate decipherments
312
sage: sorted(L.items())[:26] # display the first 26 candidate decipherments
<BLANKLINE>
[((1, 0), OFUTHG),
((1, 1), NETSGF),
((1, 2), MDSRFE),
((1, 3), LCRQED),
((1, 4), KBQPDC),
((1, 5), JAPOCB),
((1, 6), IZONBA),

40 CHAPTER 4. THE AFFINE CRYPTOSYSTEM

((1, 7), HYNMAZ),
((1, 8), GXMLZY),
((1, 9), FWLKYX),
((1, 10), EVKJXW),
((1, 11), DUJIWV),
((1, 12), CTIHVU),
((1, 13), BSHGUT),
((1, 14), ARGFTS),
((1, 15), ZQFESR),
((1, 16), YPEDRQ),
((1, 17), XODCQP),
((1, 18), WNCBPO),
((1, 19), VMBAON),
((1, 20), ULAZNM),
((1, 21), TKZYML),
((1, 22), SJYXLK),
((1, 23), RIXWKJ),
((1, 24), QHWVJI),
((1, 25), PGVUIH)]

For a short sample of ciphertext, the chi-square ranking function is more effective
than the squared-differences function:

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (19, 4)
sage: P = A.encoding("Line"); P
LINE
sage: C = A.enciphering(a, b, P)
sage: Rank = A.brute_force(C, ranking="chisquare")
sage: Rank[:5] # display only the top 5 candidate keys
<BLANKLINE>
[((15, 18), NETS),
((19, 4), LINE),
((21, 17), STAD),
((23, 7), SLOT),
((23, 0), HADI)]
sage: Rank = A.brute_force(C, ranking="squared_differences")
sage: Rank[:5] # display only the top 5 candidate keys
<BLANKLINE>
[((15, 18), NETS),
((17, 15), ETUN),
((1, 24), HCTE),
((19, 4), LINE),
((21, 20), DELO)]

As the ciphertext sample increases, both the chi-square and squared-differences rank-
ing functions have similar performance:

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (3, 7)
sage: P = A.encoding("Linear functions for encrypting and decrypting."); P
LINEARFUNCTIONSFORENCRYPTINGANDDECRYPTING
sage: C = A.enciphering(a, b, P)
sage: Rank = A.brute_force(C, ranking="chisquare")
sage: Rank[:10] # display only the top 10 candidate keys
<BLANKLINE>
[((3, 7), LINEARFUNCTIONSFORENCRYPTINGANDDECRYPTING),
((23, 25), VYTCGPBMTENYSTOBSPCTEPIRNYTAGTDDCEPIRNYTA),
((1, 12), CTIHVUKDIBATLIXKLUHIBUPOATINVIEEHBUPOATIN),
((11, 15), HSRYELDAROVSWRQDWLYROLUBVSRIERTTYOLUBVSRI),
((25, 1), NWHIUVFMHOPWEHSFEVIHOVABPWHCUHLLIOVABPWHC),
((25, 7), TCNOABLSNUVCKNYLKBONUBGHVCNIANRROUBGHVCNI),
((15, 4), SHIBVOWZILEHDIJWDOBILOFYEHIRVIGGBLOFYEHIR),
((15, 23), PEFYSLTWFIBEAFGTALYFILCVBEFOSFDDYILCVBEFO),

4.5. EXAMPLE SAGE USAGE 41

((7, 10), IDUFHSYXUTEDNULYNSFUTSVGEDURHUMMFTSVGEDUR),
((19, 22), QVETRGABEFUVLENALGTEFGDSUVEHREMMTFGDSUVEH)]
sage: Rank = A.brute_force(C, ranking="squared_differences")
sage: Rank[:10] # display only the top 10 candidate keys
<BLANKLINE>
[((3, 7), LINEARFUNCTIONSFORENCRYPTINGANDDECRYPTING),
((23, 6), GJENRAMXEPYJDEZMDANEPATCYJELREOONPATCYJEL),
((23, 25), VYTCGPBMTENYSTOBSPCTEPIRNYTAGTDDCEPIRNYTA),
((19, 22), QVETRGABEFUVLENALGTEFGDSUVEHREMMTFGDSUVEH),
((19, 9), DIRGETNORSHIYRANYTGRSTQFHIRUERZZGSTQFHIRU),
((23, 18), KNIRVEQBITCNHIDQHERITEXGCNIPVISSRTEXGCNIP),
((17, 16), GHORBEIDOJMHFOVIFEROJETWMHOZBOAARJETWMHOZ),
((21, 14), AHEZRMOFEVQHTEBOTMZEVMNIQHEDREKKZVMNIQHED),
((1, 12), CTIHVUKDIBATLIXKLUHIBUPOATINVIEEHBUPOATIN),
((7, 18), SNEPRCIHEDONXEVIXCPEDCFQONEBREWWPDCFQONEB)]

42 CHAPTER 4. THE AFFINE CRYPTOSYSTEM

Chapter 5

Simplified Data Encryption
Standard

The Data Encryption Standard (DES) is a symmetric-key cryptosystem developed
at IBM. In 1977, the National Bureau of Standards (which is currently the National
Institute of Standards and Technology, or NIST) adopted DES as an encryption
standard for all “unclassified” applications. The official description of DES origi-
nally appeared in the Federal Information Processing Standards (FIPS) Publication
46 [1], dated 15th January 1977. The standard has since been reaffirmed a total
of five times, each in 1983, 1988, 1993 and 1999. The last reaffirmation of DES is
dated 25th October 1999 as FIPS 46-3 [2]. On 19th May 2005, NIST published an
announcement [86] in the Federal Register to withdraw FIPS 46-3 as well as FIPS 74
Guidelines for Implementing and Using the NBS Data Encryption Standard, and
FIPS 81 DES Modes of Operation.

The full DES algorithm operates on 64-bit blocks of ciphertext/plaintext with
a 56-bit secret key, making the algorithm itself unsuitable for working through by
hand in order to understand its general structure. This chapter describes a simplified
version of DES designed by Schaefer [102] and named as simplified DES or S-DES.
S-DES is a version of DES with all parameters significantly reduced, but at the same
time preserving the structure of DES. A primary goal of S-DES is to allow students
of cryptology to understand the general structure of DES, thus laying a foundation
for a thorough study of DES itself.

We begin in section 5.1 with a description of the key space of S-DES together with
the process whereby subkeys can be generated from an S-DES secret key. Section 5.2
describes the encryption and decryption functions of S-DES. Along the way, the
permutation and round functions that form the heart of S-DES are also specified.
The specification of S-DES as presented in this chapter has been implemented as
part of the Sage [111] standard library. Full source code of our implementation
is available with the latest stable release of Sage, which as of this writing is Sage
version 4.2.1. Refer to Appendix C for the reference manual of our implementation.
Finally, in section 5.3 we provide numerous examples that illustrate functionalities
of our implementation.

43

44 CHAPTER 5. SIMPLIFIED DATA ENCRYPTION STANDARD

5.1 The S-DES secret keys

Denote by
(Z/nZ)k = Z/nZ × · · · × Z/nZ

︸ ︷︷ ︸

k copies

the Cartesian product of k copies of Z/nZ. The S-DES encryption and decryption al-
gorithms operate on 8-bit blocks of ciphertext/plaintext. Let k = (k0, k1, k2, . . . , k9)
be a secret key where each ki ∈ Z/2Z. It follows that there are 210 = 1024 possible
keys within the key space (Z/2Z)10. The secret key is a 10-bit block from which two
subkeys are derived.

The process of deriving the two subkeys corresponding to a secret key k in-
volves various permutation and shifting functions, which we now describe. Let
P10 : (Z/2Z)10 −→ (Z/2Z)10 be a permutation on a 10-bit block defined by

P10(b0, b1, b2, b3, b4, b5, b6, b7, b8, b9) = (b2, b4, b1, b6, b3, b9, b0, b8, b7, b5). (5.1)

Similarly, define a function P8 : (Z/2Z)10 −→ (Z/2Z)8 that takes a 10-bit block,
extracts 8 bits from the input block, and permutes the resulting 8 bits:

P8(b0, b1, b2, b3, b4, b5, b6, b7, b8, b9) = (b5, b2, b6, b3, b7, b4, b9, b8). (5.2)

The function in (5.2) is not strictly a permutation since it is not bijective. However,
we shall refer to P8 as a permutation. Note that the permutation P8 excludes the
bits b0 and b1 from the final permuted sub-block. The permutations P10 and P8 are
illustrated in Figures 5.1 and 5.2 respectively.

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9

b2 b4 b1 b6 b3 b9 b0 b8 b7 b5

Figure 5.1: The S-DES permutation P10.

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9

b5 b2 b6 b3 b7 b4 b9 b8

Figure 5.2: The S-DES permutation P8.

5.1. THE S-DES SECRET KEYS 45

Define a shifting function Ln : (Z/2Z)8 −→ (Z/2Z)8 that partitions an 8-bit
input block into two halves: a left half B1 = (b0, b1, b2, b3, b4) and a right half B2 =
(b5, b6, b7, b8, b9). The function Ln then performs a left shift of n positions on each
Bi with wrap around. That is, if n = 1 then

L1(b0, b1, b2, b3, b4, b5, b6, b7, b8, b9) = (b1, b2, b3, b4, b0, b6, b7, b8, b9, b5) (5.3)

and for n = 2 we have

L2(b0, b1, b2, b3, b4, b5, b6, b7, b8, b9) = (b2, b3, b4, b0, b1, b7, b8, b9, b5, b6). (5.4)

The S-DES algorithm specifies only two left-shift functions, i.e. L1 and L2. These
two left shift functions are illustrated in Figures 5.3 and 5.4 respectively.

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9

b1 b2 b3 b4 b0 b6 b7 b8 b9 b5

Figure 5.3: The left-shift function L1.

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9

b2 b3 b4 b0 b1 b7 b8 b9 b5 b6

Figure 5.4: The left-shift function L2.

Now we are ready to define the subkeys. The first subkey K1 is given by

K1(k) = P8(L1((P10(k)))) (5.5)

which can be described as the function composition K1 = P8 ◦ L1 ◦ P10 where the
order of execution is from right to left. The second subkey K2 is defined as

K2(k) = P8(L2((L1(P10(k))))) (5.6)

which is the function composition K1 = P8 ◦ L2 ◦ L1 ◦ P10. Again, the order of
execution is from right to left. The processes of generating subkeys K1 and K2 are
illustrated in Figures 5.5 and 5.6 respectively.

We have implemented S-DES in the class

46 CHAPTER 5. SIMPLIFIED DATA ENCRYPTION STANDARD

P10 L1 P8

Figure 5.5: Generating subkey K1.

sage.crypto.block cipher.sdes.SimplifiedDES

of the Sage standard library. The reference manual of our implementation can be
found in Appendix C. The procedure for deriving the two subkeys from a secret key
is implemented in the method

sage.crypto.block cipher.sdes.SimplifiedDES.subkey

whose reference manual is contained in section C.2.14.

P10 L1 L2 P8

Figure 5.6: Generating subkey K2.

5.2 Encryption and decryption functions

The encryption and decryption functions of S-DES each takes a 10-bit secret key
and an 8-bit block as input, and produces an 8-bit block as output. Thus there
is a total of 28 = 256 different input and output blocks. Given a plaintext P =
(p0, p1, p2, . . . , pm−1) of m bits such that 8 | m, P is first split into m/8 blocks each
of which contains 8 bits. Identical blocks of input result in identical blocks of output.

The S-DES encryption function

E : (Z/2Z)10 × (Z/2Z)8 −→ (Z/2Z)8

and its corresponding decryption function

D : (Z/2Z)10 × (Z/2Z)8 −→ (Z/2Z)8

can each be described as a composition of five other functions: an initial permutation
P and its inverse permutation P−1, two Feistel round functions ΠF,K1

and ΠF,K2

operating on the first and second subkeys respectively, and a bit switching function
σ. Using these five maps, E and D are given by the following function compositions

E = P−1 ◦ ΠF,K2
◦ σ ◦ ΠF,K1

◦ P (5.7)

D = P−1 ◦ ΠF,K1
◦ σ ◦ ΠF,K2

◦ P (5.8)

where the order of execution is from right to left. We now describe each of the five
individual functions in (5.7) and (5.8) whose composition in various order define E
and D.

The above encryption and decryption functions are implemented in the methods

5.2. ENCRYPTION AND DECRYPTION FUNCTIONS 47

sage.crypto.block cipher.sdes.SimplifiedDES.encrypt

sage.crypto.block cipher.sdes.SimplifiedDES.decrypt

of the Sage standard library. Refer to sections C.2.2 and C.2.3, respectively, for the
reference manual of these two methods.

5.2.1 Permutation and switch functions

Similarly to the derivation of the subkeys, E relies on a number of functions that
permute the bits of an input block. One such permutation function is the initial
permutation function

P : (Z/2Z)8 −→ (Z/2Z)8

which permutes the eight bits of an input block as follows:

P (b0, b1, b2, b3, b4, b5, b6, b7) = (b1, b5, b2, b0, b3, b7, b4, b6). (5.9)

From (5.9), we see that the inverse permutation P−1 : (Z/2Z)8 −→ (Z/2Z)8 is

P−1(b0, b1, b2, b3, b4, b5, b6, b7) = (b3, b0, b2, b4, b6, b1, b7, b5). (5.10)

The initial permutation function (5.9) and its inverse permutation (5.10) are illus-
trated in Figure 5.7. Their implementation is contained in the method

sage.crypto.block cipher.sdes.SimplifiedDES.initial permutation

whose reference manual is given in section C.2.4.

b0 b1 b2 b3 b4 b5 b6 b7

b1 b5 b2 b0 b3 b7 b4 b6

b0 b1 b2 b3 b4 b5 b6 b7

Figure 5.7: The initial permutation and its inverse.

However, unlike the subkey derivation process, E uses a switch function

σ : (Z/2Z)8 −→ (Z/2Z)8

instead of a left-shift function. The switch function σ interchanges the first 4 bits
of an input block with the last 4 bits of the input block. That is,

σ(b0, b1, b2, b3, b4, b5, b6, b7) = (b4, b5, b6, b7, b0, b1, b2, b3). (5.11)

48 CHAPTER 5. SIMPLIFIED DATA ENCRYPTION STANDARD

In other words, σ first partitions its input block into two sub-blocks of equal length,
and then proceeds to switch those sub-blocks around. The sub-block switching
function (5.11) is illustrated in Figure 5.8. Our Sage implementation is contained
in the method

sage.crypto.block cipher.sdes.SimplifiedDES.switch

and the reference manual is given in section C.2.15.

b0 b1 b2 b3 b4 b5 b6 b7

b4 b5 b6 b7 b0 b1 b2 b3

Figure 5.8: The sub-block switch function.

5.2.2 The Feistel round function

The function
ΠF,Ki

: (Z/2Z)8 × (Z/2Z)8 −→ (Z/2Z)8 (5.12)

is a Feistel-like round function that mimics the structure of the round function in
the full DES algorithm. See FIPS 46-3 [2] for a complete description of the DES
round function or refer to cryptography texts such as Mollin [68], Stinson [113], or
Trappe and Washington [114]. The Feistel function (5.12) relies on two substitution
boxes, or S-boxes, called S0 and S1 as shown in Tables 5.1 and 5.2 respectively.

Input Output Input Output

0000 01 1000 00
0001 00 1001 10
0010 11 1010 01
0011 10 1011 11
0100 11 1100 11
0101 10 1101 01
0110 01 1110 11
0111 00 1111 10

Table 5.1: The S-box S0 of simplified DES.

Let b = (b0, b1, b2, . . . , b7) be a block of 8 bits where each bi ∈ Z/2Z, let L
and R be the left-most 4 bits and right-most 4 bits of b respectively, and let F :
(Z/2Z)4 × (Z/2Z)8 −→ (Z/2Z)4 be a function mapping a 4-bit block and an 8-bit
subkey to a 4-bit output. Then

ΠF,Ki
(L, R) =

(
L ⊕ F (R, Ki), R

)

5.2. ENCRYPTION AND DECRYPTION FUNCTIONS 49

Input Output Input Output

0000 00 1000 11
0001 01 1001 00
0010 10 1010 01
0011 11 1011 00
0100 10 1100 10
0101 00 1101 01
0110 01 1110 00
0111 11 1111 11

Table 5.2: The S-box S1 of simplified DES.

where Ki is the i-th subkey and ⊕ denotes addition in Z/2Z. One can also interpret
⊕ as the operation of bit-wise exclusive-or. Figure 5.9 illustrates the round function
ΠF,Ki

.

Li Ki Ri

⊕
F (Ri, Ki)

Li+1 Ri+1

Figure 5.9: The Feistel round function ΠF,Ki
.

n0 n1 n2 n3

n3 n0 n1 n2 n1 n2 n3 n0

Figure 5.10: The expansion function E.

The mixing function F can be described as follows. Consider an expansion
function E : (Z/2Z)4 −→ (Z/2Z)8 that takes a 4-bit block B = (n0, n1, n2, n3) and

50 CHAPTER 5. SIMPLIFIED DATA ENCRYPTION STANDARD

expands it into an 8-bit block B∗ according to the rule

E(n0, n1, n2, n3) = (n3, n0, n1, n2, n1, n2, n3, n0).

The expansion function is illustrated in Figure 5.10; the expanded block B∗ =
(n3, n0, n1, n2, n1, n2, n3, n0) can be represented as

n3 n0 n1 n2

n1 n2 n3 n0
. (5.13)

The 8-bit subkey Ki = (k0, k1, k2, k3, k4, k5, k6, k7) of F is then added to (5.13) using
addition in Z/2Z to produce

n3 + k0 n0 + k1 n1 + k2 n2 + k3

n1 + k4 n2 + k5 n3 + k6 n0 + k7
=

p0,0 p0,1 p0,2 p0,3

p1,0 p1,1 p1,2 p1,3
. (5.14)

Now read the first row on the right-hand side of (5.14) as the 4-bit string B1 =
p0,0p0,3p0,1p0,2 and input this 4-bit string through S-box S0 to obtain a 2-bit output.
Next, read the second row on the right-hand side of (5.14) as the 4-bit string B2 =
p1,0p1,3p1,1p1,2 and input this 4-bit string through S-box S1 to produce another 2-bit
output. We now have a total of 4 bits as produced by S0 and S1. Denote these 4
bits as b = (b0, b1, b2, b3) and input b into the permutation function P4 : (Z/2Z)4 −→
(Z/2Z)4 given by

P4(b0, b1, b2, b3) = (b1, b3, b2, b0). (5.15)

We take the result of P4 as the output of F . The inner working of the mixing function
F is illustrated in Figure 5.12. The permutation function (5.15) is illustrated in
Figure 5.11 and implemented as the Sage method

sage.crypto.block cipher.sdes.SimplifiedDES.permutation4

whose reference manual is given in section C.2.8.

b0 b1 b2 b3

b1 b3 b2 b0

Figure 5.11: The permutation function P4.

5.3 Example Sage usage

This section provides examples illustrating functionalities of our implementation
of S-DES within the Sage [111] standard library. The reference manual of our
implementation is contained in Appendix C and the source code is available with
the latest stable release of Sage.

5.3. EXAMPLE SAGE USAGE 51

B Ki

B∗

⊕

B1 B2

S0 S1P4

Figure 5.12: The mixing function F .

Our Sage implementation supports encryption of an 8-bit plaintext block. One
can work with a list of 8 bits or a string of 8 bits:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: P = [0, 1, 0, 1, 0, 1, 0, 1]
sage: K = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0]
sage: sdes.encrypt(P, K)
[1, 1, 0, 0, 0, 0, 0, 1]
sage: P = "01010101"
sage: K = "1010000010"
sage: sdes.encrypt(sdes.string_to_list(P), sdes.string_to_list(K))
[1, 1, 0, 0, 0, 0, 0, 1]

Similarly, decryption can be performed on an 8-bit plaintext block whose represen-
tation is as a list of 8 bits or as a string of 8 bits:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: C = [0, 1, 0, 1, 0, 1, 0, 1]
sage: K = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0]
sage: sdes.decrypt(C, K)
[0, 0, 0, 1, 0, 1, 0, 1]
sage: C = "01010101"
sage: K = "1010000010"
sage: sdes.decrypt(sdes.string_to_list(C), sdes.string_to_list(K))
[0, 0, 0, 1, 0, 1, 0, 1]

We can encrypt a random block of 8-bit plaintext using a random key, decrypt the
ciphertext, and compare the result with the original plaintext:

52 CHAPTER 5. SIMPLIFIED DATA ENCRYPTION STANDARD

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES(); sdes
Simplified DES block cipher with 10-bit keys
sage: bin = BinaryStrings()
sage: P = [bin(str(randint(0, 1))) for i in xrange(8)]
sage: K = sdes.random_key()
sage: C = sdes.encrypt(P, K)
sage: plaintxt = sdes.decrypt(C, K)
sage: plaintxt == P
True

We can also encrypt binary strings that are larger than 8 bits in length. However,
the number of bits in that binary string must be positive and a multiple of 8:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: bin = BinaryStrings()
sage: P = bin.encoding("Encrypt this using S-DES!")
sage: Mod(len(P), 8) == 0
True
sage: K = sdes.list_to_string(sdes.random_key())
sage: C = sdes(P, K, algorithm="encrypt")
sage: plaintxt = sdes(C, K, algorithm="decrypt")
sage: plaintxt == P
True

Here is a demonstration of the various permutation functions of simplified DES:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: #
sage: # the initial permutation and its corresponding inverse permutation
sage: sdes = SimplifiedDES()
sage: B = [1, 0, 1, 1, 0, 1, 0, 0]
sage: P = sdes.initial_permutation(B); P
[0, 1, 1, 1, 1, 0, 0, 0]
sage: Pinv = sdes.initial_permutation(P, inverse=True)
sage: Pinv; B
[1, 0, 1, 1, 0, 1, 0, 0]
[1, 0, 1, 1, 0, 1, 0, 0]
sage: #
sage: # the permutation P_10
sage: B = [1, 1, 0, 0, 1, 0, 0, 1, 0, 1]
sage: sdes.permutation10(B)
[0, 1, 1, 0, 0, 1, 1, 0, 1, 0]
sage: sdes.permutation10([0, 1, 1, 0, 1, 0, 0, 1, 0, 1])
[1, 1, 1, 0, 0, 1, 0, 0, 1, 0]
sage: sdes.permutation10([1, 0, 1, 0, 0, 0, 0, 0, 1, 0])
[1, 0, 0, 0, 0, 0, 1, 1, 0, 0]
sage: #
sage: # the permutation P_4
sage: B = [1, 1, 0, 0]
sage: sdes.permutation4(B)
[1, 0, 0, 1]
sage: sdes.permutation4([0, 1, 0, 1])
[1, 1, 0, 0]
sage: #
sage: # the permutation P_8
sage: B = [1, 1, 0, 0, 1, 0, 0, 1, 0, 1]
sage: sdes.permutation8(B)
[0, 0, 0, 0, 1, 1, 1, 0]
sage: sdes.permutation8([0, 1, 1, 0, 1, 0, 0, 1, 0, 1])
[0, 1, 0, 0, 1, 1, 1, 0]
sage: sdes.permutation8([0, 0, 0, 0, 1, 1, 1, 0, 0, 0])
[1, 0, 1, 0, 0, 1, 0, 0]

5.3. EXAMPLE SAGE USAGE 53

We illustrate the operations of the left-shift function as well as the switch function:

sage: # Circular left shift by 1 position of a 10-bit string
sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: B = [1, 0, 0, 0, 0, 0, 1, 1, 0, 0]
sage: sdes.left_shift(B)
[0, 0, 0, 0, 1, 1, 1, 0, 0, 0]
sage: sdes.left_shift([1, 0, 1, 0, 0, 0, 0, 0, 1, 0])
[0, 1, 0, 0, 1, 0, 0, 1, 0, 0]
sage: #
sage: # Circular left shift by 2 positions of a 10-bit string
sage: B = [0, 0, 0, 0, 1, 1, 1, 0, 0, 0]
sage: sdes.left_shift(B, n=2)
[0, 0, 1, 0, 0, 0, 0, 0, 1, 1]
sage: #
sage: # the switch function
sage: B = [1, 1, 1, 0, 1, 0, 0, 0]
sage: sdes.switch(B)
[1, 0, 0, 0, 1, 1, 1, 0]
sage: sdes.switch([1, 1, 1, 1, 0, 0, 0, 0])
[0, 0, 0, 0, 1, 1, 1, 1]

Generating a random key and producing the two subkeys of a secret key:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: #
sage: # generate a random key
sage: sdes = SimplifiedDES()
sage: key = sdes.random_key()
sage: len(key) == sdes.block_length()
True
sage: #
sage: # get the subkeys corresponding to a secret key
sage: key = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0]
sage: sdes.subkey(key, n=1) # the first subkey
[1, 0, 1, 0, 0, 1, 0, 0]
sage: key = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0]
sage: sdes.subkey(key, n=2) # the second subkey
[0, 1, 0, 0, 0, 0, 1, 1]

Illustrating the S-boxes of S-DES and the Feistel round function:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: #
sage: # the S-boxes of simplified DES
sage: sdes = SimplifiedDES()
sage: sbox = sdes.sbox()
sage: sbox[0]; sbox[1]
(1, 0, 3, 2, 3, 2, 1, 0, 0, 2, 1, 3, 3, 1, 3, 2)
(0, 1, 2, 3, 2, 0, 1, 3, 3, 0, 1, 0, 2, 1, 0, 3)
sage: #
sage: # the Feistel round function
sage: B = [1, 0, 1, 1, 1, 1, 0, 1]
sage: K = [1, 1, 0, 1, 0, 1, 0, 1]
sage: sdes.permute_substitute(B, K)
[1, 0, 1, 0, 1, 1, 0, 1]

54 CHAPTER 5. SIMPLIFIED DATA ENCRYPTION STANDARD

Chapter 6

Mini Advanced Encryption
Standard

The Data Encryption Standard (DES) operates on 56-bit keys, giving rise to a
key space of 256 = 72, 057, 594, 037, 927, 936 possible keys. On 28th January 1997,
RSA Laboratories launched a series of cryptographic challenges, one of which was to
recover a plaintext that had been encrypted using DES. A few months after the chal-
lenge was launched, the DESCHALL (an abbreviation of DES Challenge) project
led by Matt Curtin, Justin Dolske and Rocke Verser announced on 18th June 1997
that it had recovered the secret key required to decipher the ciphertext. Assisted
by a world-wide network of people who donated their computers’ spare time and
organized via the Internet, DESCHALL attempted an exhaustive key search and
succeeded in finding the key after searching nearly a quarter of the key space. The
DESCHALL project not only demonstrated that a brute-force attack against DES
was possible, but also that such an attack can be executed using commodity com-
puter hardware. An account of the DESCHALL project can be found in Curtin [32],
written by one of the leaders of the project.

In response to the success of the DESCHALL project, and theoretical attacks
against DES such as the one presented by Campbell and Wiener [25], the National
Institute of Standards and Technology (NIST) issued in 1997 a call for proposals
of a new encryption standard. On 26th November 2001 after about five years of
intense scrutiny of all submitted candidate algorithms, the Rijndael cipher [33] was
officially adopted as the Advanced Encryption Standard (AES) and standardized in
FIPS 197 [3].

The parameters of the full AES algorithm make the algorithm itself unsuitable
for stepping through by hand. This chapter describes a simplified version of AES
designed by Phan [93] and named Mini-AES. Phan’s Mini-AES is a simplified vari-
ant of AES with all parameters significantly reduced, but preserving the general
structure of AES to allow cryptology students to manually work through the sim-
plified version. As an AES variant, Mini-AES is different from SR [27, 28], which is
a family of parameterizable variants of AES designed as a framework for compar-
ing different cryptanalytic techniques that can be brought to bear on the full AES
algorithm. The central goal of Mini-AES is as a teaching tool in the same way that
S-DES [102] and the simplified AES of Musa et al. [72] can be used in cryptology
pedagogy.

55

56 CHAPTER 6. MINI ADVANCED ENCRYPTION STANDARD

Section 6.1 presents an algebraic structure known as a finite field and outlines
a number of results concerning finite fields. This sets the stage for a discussion in
section 6.2 of the finite field that is specific to Mini-AES. Building on the mathemat-
ical foundation outlined in the previous two sections, in section 6.3 we present the
individual functions whose composition in various order constitute the Mini-AES en-
cryption and decryption algorithms as discussed in section 6.4. The specification of
Mini-AES as described in Phan [93] and the present chapter has been implemented as
part of the Sage [111] standard library. The reference manual of our implementation
is contained in Appendix D and full source code is available with the latest stable
release of Sage, which as of this writing is Sage version 4.2.1. Finally, section 6.5
provides examples illustrating functionalities of our Sage implementation.

6.1 Structure of finite fields

Arithmetic in finite fields and the structure of such objects lay the mathematical
foundation of AES and its many variants. This section provides a survey of algebraic
techniques used in AES, Mini-AES, simplified AES and SR. Our discussion touches
upon only enough algebraic concepts to allow for a description of Mini-AES. See
Hungerford [49] for an in-depth coverage of algebra, or Lidl and Niederreiter [58] for
a thorough survey of finite fields.

We begin with a definition of fields.

Definition 6.1. Finite field. A field is a non-empty set F having two opera-
tions (usually denoted as addition and multiplication) such that the following prop-
erties hold. For all a, b, c ∈ F we have

1. Closure for addition and multiplication: a + b ∈ F and ab ∈ F .

2. Associative addition and multiplication: a + (b + c) = (a + b) + c and a(bc) =
(ab)c.

3. Commutative addition: a + b = b + a.

4. Commutative multiplication: ab = ba.

5. Additive identity: there is an element 0F ∈ F such that a + 0F = a = 0F + a
for all a ∈ F .

6. Multiplicative identity: there is an element 1F ∈ F such that 1F 6= 0F and
a1F = a = 1Fa for all a ∈ F .

7. Distributive laws: a(b + c) = ab + ac and (a + b)c = ac + bc.

8. Additive inverse: for each a ∈ F , the equations a + x = 0F and x + a = 0F

have solutions in F .

9. Multiplicative inverse: for each a 6= 0F in F , the equations ax = 1F and
xa = 1F have solutions in F .

A field is said to be finite, hence the name finite field, if it contains a finite number
of elements. The order of a finite field is its number of elements.

6.2. THE MINI-AES IRREDUCIBLE POLYNOMIAL 57

A non-empty set having two operations that satisfy properties 1, 2, 3, 5, 7
and 8 of Definition 6.1 is said to be a ring. The ring Z/nZ, for n ∈ Z such that
n > 1, features prominently in the encryption and decryption processes of the
shift cryptosystem (Chapter 3), the affine cryptosystem (Chapter 4), and simplified
DES (Chapter 5). Let I = {0, 1, 2, . . . , n − 1} consists of all non-negative integers
less than n. Each congruence class in Z/nZ can be labelled with a unique element
in I, i.e. we have a bijection of sets between Z/nZ and I. We use this bijection to
carry the ring structure of Z/nZ over to I. In effect, one can identify Z/nZ as I
and define the former as Z/nZ = {0, 1, 2, . . . , n − 1}. For each prime p ∈ Z, it can
be shown that Z/pZ is a field of p elements (see Theorem 1.38, p.14 in [58]), hence
Z/pZ can be identified as the Galois field Fp of order p.

Denote by Fp[x] the set consisting of all polynomials with coefficients in the
field Fp. Let f(x) be a polynomial in Fp[x] and let Fp[x]/(f(x)) be the set of all
congruence classes modulo f(x). Whereas each prime p allows Z/pZ to be a field,
irreducible polynomials play a similar role for Fp[x]/(f(x)). To see why this is the
case, we require some definitions.

Definition 6.2. Irreducible polynomial. Let F be a field and F [x] a polynomial
ring with coefficients in F . If f(x), g(x) ∈ F [x], we say that f(x) is an associate
of g(x) if there exists a non-zero c ∈ F such that f(x) = c · g(x). A non-constant
polynomial p(x) ∈ F [x] is said to be irreducible if its only divisors are its associates
and all the non-zero constant polynomials in F [x].

It can be shown (see Theorem 5.10, p.129 in [49]) that Fp[x]/(f(x)) is a field
if and only if f(x) is an irreducible polynomial in Fp[x]. Furthermore, elements of
Fp[x]/(f(x)) are polynomials in Fp[x] of degree at most d − 1, with d being the
degree of f(x) (see Corollary 5.5, p.121 in [49]). Any two finite fields with the same
order are isomorphic (see Corollary 10.27, p.367 in [49]).

6.2 The Mini-AES irreducible polynomial

Mini-AES considers the polynomial ring F2[x] and the specific polynomial f(x) =
x4 + x3 + 1 ∈ F2[x], which is irreducible in F2[x]. The encryption and decryption
algorithms operate on polynomials in the finite field

F2[x]/(x4 + x3 + 1) (6.1)

of 24 = 16 elements, all of which are enumerated in Table 6.1. The field in (6.1) is
equivalent up to isomorphism to the finite field F24 . In fact, all monic irreducible
polynomial in F2[x] of degree at most 4 are

f1(x) = x4 + x3 + x2 + x + 1

f2(x) = x4 + x3 + 1

f3(x) = x4 + x + 1

and any fi(x) results in a finite field F2[x]/(fi(x)) that is isomorphic to (6.1).
It can be shown that there is a bijection from (6.1) to the Cartesian product

F4
2 = F2 ×F2 ×F2 ×F2, allowing for the identification of each element of the finite

field (6.1) as a 4-tuple (a0, a1, a2, a3) where each ai ∈ F2. For ease of notation, we

58 CHAPTER 6. MINI ADVANCED ENCRYPTION STANDARD

write the 4-tuple as a0a1a2a3, which can be considered as a 4-bit string or a nibble.
The field operation + on elements of (6.1) can be identified with the exclusive-or
operator ⊕ on bits and bytes. The nibble a0a1a2a3 can in turn be considered as the
binary representation of a non-negative integer. The conversion between nibbles,
polynomials in (6.1), and integers is presented in Table 6.2.

0 x3

1 x3 + 1
x x3 + x
x + 1 x3 + x + 1
x2 x3 + x2

x2 + 1 x3 + x2 + 1
x2 + x x3 + x2 + x
x2 + x + 1 x3 + x2 + x + 1

Table 6.1: All 16 elements in the finite field F2[x]/(x4 + x3 + 1).

nibble Mini-AES polynomial integer nibble Mini-AES polynomial integer

0000 0 0 1000 x3 8
0001 1 1 1001 x3 + 1 9
0010 x 2 1010 x3 + x 10
0011 x + 1 3 1011 x3 + x + 1 11
0100 x2 4 1100 x3 + x2 12
0101 x2 + 1 5 1101 x3 + x2 + 1 13
0110 x2 + x 6 1110 x3 + x2 + x 14
0111 x2 + x + 1 7 1111 x3 + x2 + x + 1 15

Table 6.2: Converting between nibbles, Mini-AES polynomials and integers.

6.3 Components of Mini-AES

The Mini-AES encryption and decryption algorithms operate on 16-bit blocks of
ciphertext/plaintext and a 16-bit secret key from which two round keys are derived
using a key schedule. It follows that the key space consists of 216 = 65, 536 possible
keys. A message to be encrypted or decrypted must first be broken up into blocks
of 16 bits each. The blocks can then be encrypted or decrypted individually one
after the other, or each block can be encrypted/decrypted in parallel with the other
blocks. Consider the set

M = M2

(
F2[x]/(x4 + x3 + 1)

)
(6.2)

of all 2 × 2 matrices with entries over F2[x]/(x4 + x3 + 1). If b = (b0, b1, b2, b3) is a
16-bit input block, each bi is a nibble so that bi can be considered as a polynomial in
the finite field (6.1). Use Table 6.2 to obtain the specific polynomial corresponding
to each bi. The whole 16-bit block b is then structured as an element in the matrix
space M.

We have implemented Mini-AES as the class

6.3. COMPONENTS OF MINI-AES 59

sage.crypto.block cipher.miniaes.MiniAES

in the Sage standard library. For the reference manual of our implementation, refer
to Appendix D.

Before presenting the Mini-AES encryption and decryption algorithms, we first
describe the individual components that make up those algorithms. Mini-AES is
comprised of four individual components: NibbleSub, ShiftRow, MixColumn and
KeyAddition. Each round of Mini-AES encryption or decryption involves applying
some combination of these four components.

6.3.1 NibbleSub

The NibbleSub function
γ : M −→ M

takes as input a 2×2 matrix of nibbles and substitutes each of these nibbles according
to the S-box given in Table 6.3. The values in the S-box of Table 6.3 are taken from
the first row of the first S-box of DES. Using the conversion rule in Table 6.2,
the NibbleSub S-box can equivalently be presented with entries in the finite field
F2[x]/(x4 + x3 + 1) (see Table 6.4).

Input Output Input Output

0000 1110 1000 0011
0001 0100 1001 1010
0010 1101 1010 0110
0011 0001 1011 1100
0100 0010 1100 0101
0101 1111 1101 1001
0110 1011 1110 0000
0111 1000 1111 0111

Table 6.3: The S-box of NibbleSub.

However, note that the NibbleSub S-box presented in Table 6.3 (and equivalently
in Table 6.4) is to be used in the encryption algorithm. The S-box for decryption is
obtained from Table 6.3 by reversing the role of the “Input” and “Output” columns.
Thus the previous “Input” column for encryption now becomes the “Output” column
for decryption, and the previous “Output” column for encryption is now the “Input”
column for decryption. The S-box used for decryption can then be specified as given
in Table 6.5. Again, we can apply the conversion Table 6.2 to present the finite
field elements in the NibbleSub decryption S-box as nibbles. Where the NibbleSub
function is used in the decryption algorithm, we denote the NibbleSub decryption
function as γ−1.

NibbleSub is implemented in the method

sage.crypto.block cipher.miniaes.MiniAES.nibble sub

and its reference manual can be found in section D.2.12.

60 CHAPTER 6. MINI ADVANCED ENCRYPTION STANDARD

Input Output

0 x3 + x2 + x
1 x2

x x3 + x2 + 1
x + 1 1
x2 x
x2 + 1 x3 + x2 + x + 1
x2 + x x3 + x + 1
x2 + x + 1 x3

x3 x + 1
x3 + 1 x3 + x
x3 + x x2 + x
x3 + x + 1 x3 + x2

x3 + x2 x2 + 1
x3 + x2 + 1 x3 + 1
x3 + x2 + x 0
x3 + x2 + x + 1 x2 + x + 1

Table 6.4: Representing the NibbleSub S-box as elements of F2[x]/(x4 + x3 + 1).

Input Output

0 x3 + x2 + x
1 x + 1
x x2

x + 1 x3

x2 1
x2 + 1 x3 + x2

x2 + x x3 + x
x2 + x + 1 x3 + x2 + x + 1
x3 x2 + x + 1
x3 + 1 x3 + x2 + 1
x3 + x x3 + 1
x3 + x + 1 x2 + x
x3 + x2 x3 + x + 1
x3 + x2 + 1 x
x3 + x2 + x 0
x3 + x2 + x + 1 x2 + 1

Table 6.5: The NibbleSub S-box for decryption.

6.3. COMPONENTS OF MINI-AES 61

6.3.2 ShiftRow

Similarly to NibbleSub, the ShiftRow function

π : M −→ M

also takes as input a 2 × 2 matrix of nibbles. However, instead of performing a
substitution on the nibbles, π performs a rotation on each row of the input matrix.
The first or zero-th row is left unchanged, while the second or row one is rotated left
by one nibble. This has the effect of only interchanging the nibbles in the second
row. Let b0, b1, b2, b3 be four nibbles arranged as the following 2 × 2 matrix

B =

[
b0 b2

b1 b3

]

.

Then the application of π on B is the mapping

[
b0 b2

b1 b3

]

7−→

[
b0 b2

b3 b1

]

.

Note that rotating a row to the left by one nibble is equivalent to rotating the same
row by one nibble to the right. Hence, the function π is its own inverse, i.e. π−1 = π.

ShiftRow is implemented in the method

sage.crypto.block cipher.miniaes.MiniAES.shift row

and its reference manual is given in section D.2.16.

6.3.3 MixColumn

Consider the matrix

A =

[
x + 1 x

x x + 1

]

with entries over F2[x]/(x4 + x3 + 1). Note that A is its own inverse matrix, i.e.
A = A−1 and thus the matrix products A−1A and AA−1 result in the 2× 2 identity
matrix. The MixColumn function

θ : M −→ M

takes a 2 × 2 matrix of nibbles

C =

[
c0 c2

c1 c3

]

.

Using Table 6.2, each nibble ci is then converted to an equivalent element c′i in
F2[x]/(x4 +x3 +1) to obtain the matrix C ′. We then multiply A by C ′ according to
the rules of matrix multiplication. Thus the application of θ on C is the mapping

[
c0 c2

c1 c3

]

7−→

[
x + 1 x

x x + 1

] [
c′0 c′2
c′1 c′3

]

.

To recover C, we multiply A−1 by AC ′ (on the left) to get A−1(AC ′) = (A−1A)C ′ =
C ′. Again, use Table 6.2 to convert elements of C ′ to their corresponding nibbles.

62 CHAPTER 6. MINI ADVANCED ENCRYPTION STANDARD

Therefore, the function θ is its own inverse. We have implemented MixColumn in
the method

sage.crypto.block cipher.miniaes.MiniAES.mix column

of the Sage standard library. See section D.2.11 for its reference manual.

6.3.4 KeyAddition

The KeyAddition function
σKi

: M −→ M

relies on a round key Ki derived from the secret key K using a key schedule. Before
describing the operation of σKi

, we first show how each round key is derived from
the secret key.

Phan’s Mini-AES is defined to have two rounds. The round key K0 is generated
and used prior to the first round, with round keys K1 and K2 being used in rounds
1 and 2 respectively. In total, there are three round keys, each generated from the
secret key K.

Let K = (k0, k1, k2, k3) be a 16-bit secret key and hence each ki is a sub-block
of 4 nibbles. Similarly, denote the 16-bit round keys as K0 = (w0, w1, w2, w3),
K1 = (w4, w5, w6, w7) and K2 = (w8, w9, w10, w11). Each of the two rounds of Mini-
AES encryption or decryption has a corresponding round constant κi. The two
round constants are defined as the nibbles κ1 = 0001 and κ2 = 0010. Equivalently,
we can apply the conversion rules in Table 6.2 to express these round constants as
elements in the finite field F2[x]/(x4 + x3 + 1):

κ1 = 1 and κ2 = x.

The zero-th round key K0 is defined to be the same as the secret key, i.e. K0 = K
or equivalently (k0, k1, k2, k3) = (w0, w1, w2, w3). The generation of the round keys
K1 and K2 are presented in Table 6.6.

Round i Round key Ki

1 w4 = w0 + γ(w3) + κ1

w5 = w1 + w4

w6 = w2 + w5

w7 = w3 + w6

2 w8 = w4 + γ(w7) + κ2

w9 = w5 + w8

w10 = w6 + w9

w11 = w7 + w10

Table 6.6: Generating the round keys of Mini-AES.

We are now ready to define the function σKi
. Let D = (d0, d1, d2, d3) be a 16-bit

block and express D as the 2 × 2 matrix

D =

[
d0 d2

d1 d3

]

6.4. ENCRYPTION AND DECRYPTION FUNCTIONS 63

over the matrix space (6.2). Similarly, let Ki = (k0, k1, k2, k3) be the i-th round key
for i = 0, 1, 2 and express Ki as a 2 × 2 matrix over the matrix space (6.2):

Ki =

[
k0 k2

k1 k3

]

.

Then the KeyAddition function σKi
is given by the following matrix addition map:

[
d0 d2

d1 d3

]

7−→

[
d0 d2

d1 d3

]

+

[
k0 k2

k1 k3

]

.

To recover D, we add D + Ki to Ki to get (D + Ki) + Ki. As each matrix in M
is its own additive inverse, it follows that (D + Ki) + Ki = D + (Ki + Ki) = D.
Therefore, the function σKi

is its own additive inverse.

KeyAddition is implemented in the method

sage.crypto.block cipher.miniaes.MiniAES.add key

of the Sage standard library. Its reference manual is contained in section D.2.1.

6.4 Encryption and decryption functions

Having defined the component functions NibbleSub γ, ShiftRow π, MixColumn θ,
and KeyAddition σKi

, we are now ready to define the encryption function in terms
of these four components. The Mini-AES encryption function

E : M×M −→ M

takes as input a 16-bit plaintext block P and a 16-bit secret key K to produce
a 16-bit ciphertext block C. In terms of the four component functions, E can be
expressed as the function composition

E = σK2
◦ π ◦ γ ◦ σK1

◦ θ ◦ π ◦ γ ◦ σK0

where the order of execution is from right to left.

Each of the two rounds that constitute Mini-AES encryption is a composition
of various component functions. Prior to the first round, KeyAddition is run with
round key K0. The first round is a composition of all four component functions with
round key K1. The second round follows the same sequence of function composition
as the first round, but using round key K2 and excluding MixColumn. The rounds
of Mini-AES encryption can then be expressed as

E = σK2
◦ π ◦ γ

︸ ︷︷ ︸

round 2

◦ σK1
◦ θ ◦ π ◦ γ

︸ ︷︷ ︸

round 1

◦σK0
.

The decryption function

D : M×M −→ M

64 CHAPTER 6. MINI ADVANCED ENCRYPTION STANDARD

is the inverse of E . From our discussion of the inverse component functions in
section 6.3, the decryption function D can be written as

D = (σK2
◦ π ◦ γ ◦ σK1

◦ θ ◦ π ◦ γ ◦ σK0
)−1

= σ−1
K0

◦ γ−1 ◦ π−1 ◦ θ−1 ◦ σ−1
K1

◦ γ−1 ◦ π−1 ◦ σ−1
K2

= σK0
◦ γ−1 ◦ π ◦ θ ◦ σK1

︸ ︷︷ ︸

round 2

◦ γ−1 ◦ π ◦ σK2
︸ ︷︷ ︸

round 1

.

The encryption and decryption functions of Mini-AES are illustrated in Fig-
ures 6.1 and 6.2, respectively, and implemented in the methods

sage.crypto.block cipher.miniaes.MiniAES.encrypt

sage.crypto.block cipher.miniaes.MiniAES.decrypt

Their reference manual is presented in sections D.2.5 and D.2.6, respectively.

6.5 Example Sage usage

This section provides some examples to illustrate functionalities of our Sage imple-
mentation of Mini-AES. Refer to Appendix D for the full reference manual of our
implementation.

We can encrypt a plaintext and decrypt the result as follows:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: P = MS([K("x^3 + x"), K("x^2 + 1"), K("x^2 + x"), K("x^3 + x^2")]); P
<BLANKLINE>
[x^3 + x x^2 + 1]
[x^2 + x x^3 + x^2]
sage: key = MS([K("x^3 + x^2"), K("x^3 + x"), K("x^3 + x^2 + x"), K("x^2 + x + 1")]); key
<BLANKLINE>
[x^3 + x^2 x^3 + x]
[x^3 + x^2 + x x^2 + x + 1]
sage: C = maes.encrypt(P, key); C
<BLANKLINE>
[x x^2 + x]
[x^3 + x^2 + x x^3 + x]
sage: plaintxt = maes.decrypt(C, key)
sage: plaintxt; P
<BLANKLINE>
[x^3 + x x^2 + 1]
[x^2 + x x^3 + x^2]
<BLANKLINE>
[x^3 + x x^2 + 1]
[x^2 + x x^3 + x^2]
sage: plaintxt == P
True

Instead of working with elements over F24 [x]/(x4 +x3 +1), we can also work directly
with binary strings:

6.5. EXAMPLE SAGE USAGE 65

σK0

γ

π

θ

σK1

γ

π

σK2

K0

K1

K2

round 1

round 2

Figure 6.1: Two rounds in Mini-AES encryption.

66 CHAPTER 6. MINI ADVANCED ENCRYPTION STANDARD

σK2

π

γ−1

σK1

θ

π

γ−1

σK0

K2

K1

K0

round 1

round 2

Figure 6.2: Two rounds in Mini-AES decryption.

6.5. EXAMPLE SAGE USAGE 67

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: bin = BinaryStrings()
sage: key = bin.encoding("KE"); key
0100101101000101
sage: P = bin.encoding("AB"); P
0100000101000010
sage: C = maes(P, key, algorithm="encrypt"); C
0101001100011011
sage: plaintxt = maes(C, key, algorithm="decrypt"Now we work with
sage: plaintxt == P
True

Or we could work with integers n such that 0 ≤ n ≤ 15:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: P = [n for n in xrange(16)]; P
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
sage: key = [2, 3, 11, 0]; key
[2, 3, 11, 0]
sage: P = maes.integer_to_binary(P); P
0000000100100011010001010110011110001001101010111100110111101111
sage: key = maes.integer_to_binary(key); key
0010001110110000
sage: C = maes(P, key, algorithm="encrypt"); C
1100100000100011111001010101010101011011100111110001000011100001
sage: plaintxt = maes(C, key, algorithm="decrypt")
sage: plaintxt == P
True

Generate some random plaintext and a random secret key. Encrypt the plaintext
using that secret key and decrypt the result. Then compare the decrypted plaintext
with the original plaintext:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: MS = MatrixSpace(FiniteField(16, "x"), 2, 2)
sage: P = MS.random_element()
sage: key = maes.random_key()
sage: C = maes.encrypt(P, key)
sage: plaintxt = maes.decrypt(C, key)
sage: plaintxt == P
True

Obtaining the round keys from the secret key:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: key = MS([[K("x^3 + x^2"), K("x^3 + x^2 + x + 1")], [K("x + 1"), K("0")]])
sage: maes.round_key(key, 0)
<BLANKLINE>
[x^3 + x^2 x^3 + x^2 + x + 1]
[x + 1 0]
sage: key
<BLANKLINE>
[x^3 + x^2 x^3 + x^2 + x + 1]
[x + 1 0]

68 CHAPTER 6. MINI ADVANCED ENCRYPTION STANDARD

sage: maes.round_key(key, 1)
<BLANKLINE>
[x + 1 x^3 + x^2 + x + 1]
[0 x^3 + x^2 + x + 1]
sage: maes.round_key(key, 2)
<BLANKLINE>
[x^2 + x x^3 + 1]
[x^2 + x x^2 + x]

Here, we illustrate the operation of the function KeyAddition:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: D = MS([[K("x^3 + x^2 + x + 1"), K("x^3 + x")], [K("0"), K("x^3 + x^2")]]); D
<BLANKLINE>
[x^3 + x^2 + x + 1 x^3 + x]
[0 x^3 + x^2]
sage: k = MS([[K("x^2 + 1"), K("x^3 + x^2 + x + 1")], [K("x + 1"), K("0")]]); k
<BLANKLINE>
[x^2 + 1 x^3 + x^2 + x + 1]
[x + 1 0]
sage: maes.add_key(D, k)
<BLANKLINE>
[x^3 + x x^2 + 1]
[x + 1 x^3 + x^2]

Illustrating the operation of the function MixColumn:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: mat = MS([[K("x^2 + x + 1"), K("x^3 + x^2 + 1")], [K("x^3"), K("x")]])
sage: maes.mix_column(mat)
<BLANKLINE>
[x^3 + x 0]
[x^2 + 1 x^3 + x^2 + x + 1]

Illustrating the operation of the function NibbleSub:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: mat = MS([[K("x^3 + x^2 + x + 1"), K("0")], [K("x^2 + x + 1"), K("x^3 + x")]])
sage: maes.nibble_sub(mat, algorithm="encrypt")
<BLANKLINE>
[x^2 + x + 1 x^3 + x^2 + x]
[x^3 x^2 + x]

Illustrating the operation of the function ShiftRow:

6.5. EXAMPLE SAGE USAGE 69

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: mat = MS([[K("x^3 + x^2 + x + 1"), K("0")], [K("x^2 + x + 1"), K("x^3 + x")]])
sage: maes.shift_row(mat)
<BLANKLINE>
[x^3 + x^2 + x + 1 0]
[x^3 + x x^2 + x + 1]
sage: mat
<BLANKLINE>
[x^3 + x^2 + x + 1 0]
[x^2 + x + 1 x^3 + x]

70 CHAPTER 6. MINI ADVANCED ENCRYPTION STANDARD

Chapter 7

Conclusions and Future Work

We have surveyed the general purpose computer algebra systems (CAS) FriCAS,
Maple, Mathematica, Matlab, Maxima and Sage with respect to their support for
functionalities required for cryptography pedagogy. Based on this survey, we iden-
tified various strengths and weaknesses of each CAS and saw that Sage had more
extensive support for cryptography education than the other CASs under considera-
tion. Rather than setting out to match the other CASs feature-for-feature with Sage,
we instead chose to build upon the existing extensive cryptographic functionalities
in Sage in order to fill in various functionalities that our survey shows to be missing
in Sage. The results are software implementation of the following cryptosystems:

• the shift cryptosystem, see Chapter 3 and Appendix A

• the affine cryptosystem, see Chapter 4 and Appendix B

• a simplified variant of the Data Encryption Standard called S-DES, see Chap-
ter 5 and Appendix C

• and a simplified variant of the Advanced Encryption Standard called Mini-
AES, see Chapter 6 and Appendix D.

We have also provided an implementation of an algorithm for solving the subset sum
problem in the particular case of super-increasing sequences (see Appendix E), which
serves as a foundation for future work on implementing knapsack cryptosystems.
All of our enhancements to Sage described in the thesis have been accepted by
the Sage development community and our software patches have been merged into
the code base that constitutes the Sage standard library. The source code of our
implementation is available with the latest stable release of Sage, which as of this
writing is Sage 4.2.1.

Despite what has been accomplished in the thesis, much more work needs to be
done before Sage has built-in support for all of the cryptographic functionalities iden-
tified by our survey in Chapter 2. A direction for future work would include building
upon our support for knapsack problems based on super-increasing sequences to im-
plement various knapsack cryptosystems. One could also implement wrapper code
around the PyCrypto library to expose its functionalities for teaching the RSA,
Rabin and ElGamal public-key cryptosystems, and their corresponding digital sig-
nature schemes including the Digital Signature Standard. Public-key cryptography
based on number theoretic techniques are known to be less efficient in terms of speed

71

72 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

than symmetric-key cryptosystems. For cryptography pedagogy, an overriding con-
cern is software support to enable student exploration of a particular cryptosystem.
Hence, the time efficiency of an implementation is not an issue. However, one still
needs to carefully choose algorithms to maintain a balance between a working im-
plementation and an efficient working implementation. Our implementation of the
shift and affine cryptosystems also provides some support for cryptanalyzing those
two cryptosystems. Continuing along that line, one could implement techniques for
cryptanalyzing all of the cryptosystems identified by our survey.

Once all of the cryptographic functionalities identified in Chapter 2 have been
implemented, an ambitious direction for future research would include using the
Sage implementation in a classroom setting. On the one hand, this would reduce
the amount of duplicate implementation effort. On the other hand, student feedback
could be used to enhance Sage’s support for cryptographic functionalities.

Appendix A

Sage Manual for Shift
Cryptosystem

The shift cryptosystem described in Chapter 3 is implemented in the class

sage.crypto.classical.ShiftCryptosystem (A.1)

via bug tracking tickets #6841 [84], #7010 [82], and #7123 [78]. In this appendix, we
provide the reference manual for the Sage class (A.1). The three bug tracking tickets
#6841, #7010 and #7123 have been merged in the Sage standard library during the
development of Sage versions 4.1.2.alpha4, 4.2.alpha0, and 4.2.alpha1 respectively.
The source code of the class (A.1) is available with the latest release of Sage, which
as of this writing is Sage version 4.2.1.

A.1 Class documentation

Create a shift cryptosystem.

Let A = {a0, a1, a2, . . . , an−1} be a non-empty alphabet consisting of n unique
elements. Define a mapping f : A −→ Z/nZ from the alphabet A to the set Z/nZ
of integers modulo n, given by f(ai) = i. Thus we can identify each element of
the alphabet A with a unique integer 0 ≤ i < n. A key of the shift cipher is an
integer 0 ≤ k < n. Therefore the key space is Z/nZ. Since we assume that A does
not have repeated elements, the mapping f : A −→ Z/nZ is bijective. Encryption
works by moving along the alphabet by k positions, with wrap around. Decryption
reverses the process by moving backwards by k positions, with wrap around. More
generally, let k be a secret key, i.e. an element of the key space, and let p be a
plaintext character and consequently p ∈ Z/nZ. Then the ciphertext character c
corresponding to p is given by

c ≡ p + k (mod n).

Similarly, given a ciphertext character c ∈ Z/nZ and a secret key k, we can recover
the corresponding plaintext character as follows:

p ≡ c − k (mod n).

73

74 APPENDIX A. SAGE MANUAL FOR SHIFT CRYPTOSYSTEM

Use the bijection f : A −→ Z/nZ to convert c and p back to elements of the alphabet
A. Currently, the following alphabets are supported for the shift cipher:

• Upper-case letters of the English alphabet as implemented in the function
AlphabeticStrings().

• The alphabet consisting of the hexadecimal number system as implemented in
HexadecimalStrings().

• The alphabet consisting of the binary number system as implemented in the
function BinaryStrings().

A.1.1 Example usage

Some examples illustrating encryption and decryption over various alphabets. Here
is an example over the upper-case letters of the English alphabet:

sage: S = ShiftCryptosystem(AlphabeticStrings()); S
Shift cryptosystem on Free alphabetic string monoid on A-Z
sage: P = S.encoding("The shift cryptosystem generalizes the Caesar cipher.")
sage: P
THESHIFTCRYPTOSYSTEMGENERALIZESTHECAESARCIPHER
sage: K = 7
sage: C = S.enciphering(K, P); C
AOLZOPMAJYFWAVZFZALTNLULYHSPGLZAOLJHLZHYJPWOLY
sage: S.deciphering(K, C)
THESHIFTCRYPTOSYSTEMGENERALIZESTHECAESARCIPHER
sage: S.deciphering(K, C) == P
True

The previous example can also be done as follows:

sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: P = S.encoding("The shift cryptosystem generalizes the Caesar cipher.")
sage: K = 7
sage: E = S(K); E
Shift cipher on Free alphabetic string monoid on A-Z
sage: C = E(P); C
AOLZOPMAJYFWAVZFZALTNLULYHSPGLZAOLJHLZHYJPWOLY
sage: D = S(S.inverse_key(K)); D
Shift cipher on Free alphabetic string monoid on A-Z
sage: D(C) == P
True
sage: D(C) == P == D(E(P))
True

Over the hexadecimal number system:

sage: S = ShiftCryptosystem(HexadecimalStrings()); S
Shift cryptosystem on Free hexadecimal string monoid
sage: P = S.encoding("Shift encryption."); P
536869667420656e6372797074696f6e2e
sage: K = 5
sage: C = S.enciphering(K, P); C
a8bdbebbc975bab3b8c7cec5c9beb4b373
sage: S.deciphering(K, C)
536869667420656e6372797074696f6e2e
sage: S.deciphering(K, C) == P
True

A.1. CLASS DOCUMENTATION 75

And over the binary number system:

sage: S = ShiftCryptosystem(BinaryStrings()); S
Shift cryptosystem on Free binary string monoid
sage: P = S.encoding("Binary."); P
01000010011010010110111001100001011100100111100100101110
sage: K = 1
sage: C = S.enciphering(K, P); C
10111101100101101001000110011110100011011000011011010001
sage: S.deciphering(K, C)
01000010011010010110111001100001011100100111100100101110
sage: S.deciphering(K, C) == P
True

A shift cryptosystem with key k = 3 is commonly referred to as the Caesar cipher.
Create a Caesar cipher over the upper-case letters of the English alphabet:

sage: caesar = ShiftCryptosystem(AlphabeticStrings())
sage: K = 3
sage: P = caesar.encoding("abcdef"); P
ABCDEF
sage: C = caesar.enciphering(K, P); C
DEFGHI
sage: caesar.deciphering(K, C) == P
True

Generate a random key for encryption and decryption:

sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: P = S.encoding("Shift cipher with a random key.")
sage: K = S.random_key()
sage: C = S.enciphering(K, P)
sage: S.deciphering(K, C) == P
True

Decrypting with the key K is equivalent to encrypting with its corresponding inverse
key:

sage: S.enciphering(S.inverse_key(K), C) == P
True

A.1.2 Exception tests

Currently, the octal number system is not supported as an alphabet for this shift
cryptosystem:

sage: ShiftCryptosystem(OctalStrings())
...
TypeError: A (= Free octal string monoid) is not supported as a cipher\
domain of this shift cryptosystem.

Nor is the radix-64 number system supported:

76 APPENDIX A. SAGE MANUAL FOR SHIFT CRYPTOSYSTEM

sage: ShiftCryptosystem(Radix64Strings())
...
TypeError: A (= Free radix 64 string monoid) is not supported as a\
cipher domain of this shift cryptosystem.

Testing of dumping and loading objects:

sage: SA = ShiftCryptosystem(AlphabeticStrings())
sage: SA == loads(dumps(SA))
True
sage: SH = ShiftCryptosystem(HexadecimalStrings())
sage: SH == loads(dumps(SH))
True
sage: SB = ShiftCryptosystem(BinaryStrings())
sage: SB == loads(dumps(SB))
True

The key K must satisfy the inequality 0 ≤ K < n with n being the size of the
plaintext, ciphertext, and key spaces. For the shift cryptosystem, all these spaces
are the same alphabet. This inequality must be satisfied for each of the supported
alphabets. The capital letters of the English alphabet:

sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: S(2 + S.alphabet_size())
...
ValueError: K (=28) is outside the range of acceptable values for a\
key of this shift cryptosystem.
sage: S(-2)
...
ValueError: K (=-2) is outside the range of acceptable values for a\
key of this shift cryptosystem.

The hexadecimal number system:

sage: S = ShiftCryptosystem(HexadecimalStrings())
sage: S(1 + S.alphabet_size())
...
ValueError: K (=17) is outside the range of acceptable values for a\
key of this shift cryptosystem.
sage: S(-1)
...
ValueError: K (=-1) is outside the range of acceptable values for a\
key of this shift cryptosystem.

The binary number system:

sage: S = ShiftCryptosystem(BinaryStrings())
sage: S(1 + S.alphabet_size())
...
ValueError: K (=3) is outside the range of acceptable values for a key\
of this shift cryptosystem.
sage: S(-2)
...
ValueError: K (=-2) is outside the range of acceptable values for a\
key of this shift cryptosystem.

A.2. PUBLIC METHODS 77

A.2 Public methods

This section documents public methods implemented in the class

sage.crypto.classical.ShiftCryptosystem

of the Sage standard library.

A.2.1 brute force(C, ranking=’none’)

Attempt a brute force cryptanalysis of the ciphertext C.

Input

• C — A ciphertext over one of the supported alphabets of this shift cryptosys-
tem. See the class ShiftCryptosystem for documentation on the supported
alphabets.

• ranking — (default "none") the method to use for ranking all possible keys. If
ranking="none", then do not use any ranking function. The following ranking
functions are supported:

– "chisquare" — the chi-square ranking function as implemented in the
method rank by chi square().

– "squared differences" — the squared differences ranking function as
implemented in the method rank by squared differences().

Output

• All the possible plaintext sequences corresponding to the ciphertext C. This
method effectively uses all the possible keys in this shift cryptosystem to de-
crypt C. The method is also referred to as exhaustive key search. The output
is a dictionary of key, plaintext pairs.

Examples

Cryptanalyze using all possible keys for various alphabets. Over the upper-case
letters of the English alphabet:

sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: P = S.encoding("The shift cryptosystem generalizes the Caesar cipher.")
sage: K = 7
sage: C = S.enciphering(K, P)
sage: Dict = S.brute_force(C)
sage: for k in xrange(len(Dict)):
... if Dict[k] == P:
... print "key =", k
...
key = 7

Over the hexadecimal number system:

78 APPENDIX A. SAGE MANUAL FOR SHIFT CRYPTOSYSTEM

sage: S = ShiftCryptosystem(HexadecimalStrings())
sage: P = S.encoding("Encryption & decryption shifts along the alphabet.")
sage: K = 5
sage: C = S.enciphering(K, P)
sage: Dict = S.brute_force(C)
sage: for k in xrange(len(Dict)):
... if Dict[k] == P:
... print "key =", k
...
key = 5

And over the binary number system:

sage: S = ShiftCryptosystem(BinaryStrings())
sage: P = S.encoding("The binary alphabet is very insecure.")
sage: K = 1
sage: C = S.enciphering(K, P)
sage: Dict = S.brute_force(C)
sage: for k in xrange(len(Dict)):
... if Dict[k] == P:
... print "key =", k
...
key = 1

Don’t use any ranking functions, i.e. ranking="none":

sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: P = S.encoding("Shifting using modular arithmetic.")
sage: K = 8
sage: C = S.enciphering(K, P)
sage: pdict = S.brute_force(C)
sage: sorted(pdict.items())
<BLANKLINE>
[(0, APQNBQVOCAQVOUWLCTIZIZQBPUMBQK),
(1, ZOPMAPUNBZPUNTVKBSHYHYPAOTLAPJ),
(2, YNOLZOTMAYOTMSUJARGXGXOZNSKZOI),
(3, XMNKYNSLZXNSLRTIZQFWFWNYMRJYNH),
(4, WLMJXMRKYWMRKQSHYPEVEVMXLQIXMG),
(5, VKLIWLQJXVLQJPRGXODUDULWKPHWLF),
(6, UJKHVKPIWUKPIOQFWNCTCTKVJOGVKE),
(7, TIJGUJOHVTJOHNPEVMBSBSJUINFUJD),
(8, SHIFTINGUSINGMODULARARITHMETIC),
(9, RGHESHMFTRHMFLNCTKZQZQHSGLDSHB),
(10, QFGDRGLESQGLEKMBSJYPYPGRFKCRGA),
(11, PEFCQFKDRPFKDJLARIXOXOFQEJBQFZ),
(12, ODEBPEJCQOEJCIKZQHWNWNEPDIAPEY),
(13, NCDAODIBPNDIBHJYPGVMVMDOCHZODX),
(14, MBCZNCHAOMCHAGIXOFULULCNBGYNCW),
(15, LABYMBGZNLBGZFHWNETKTKBMAFXMBV),
(16, KZAXLAFYMKAFYEGVMDSJSJALZEWLAU),
(17, JYZWKZEXLJZEXDFULCRIRIZKYDVKZT),
(18, IXYVJYDWKIYDWCETKBQHQHYJXCUJYS),
(19, HWXUIXCVJHXCVBDSJAPGPGXIWBTIXR),
(20, GVWTHWBUIGWBUACRIZOFOFWHVASHWQ),
(21, FUVSGVATHFVATZBQHYNENEVGUZRGVP),
(22, ETURFUZSGEUZSYAPGXMDMDUFTYQFUO),
(23, DSTQETYRFDTYRXZOFWLCLCTESXPETN),
(24, CRSPDSXQECSXQWYNEVKBKBSDRWODSM),
(25, BQROCRWPDBRWPVXMDUJAJARCQVNCRL)]

Use the chi-square ranking function, i.e. ranking="chisquare":

A.2. PUBLIC METHODS 79

sage: S.brute_force(C, ranking="chisquare")
<BLANKLINE>
[(8, SHIFTINGUSINGMODULARARITHMETIC),
(14, MBCZNCHAOMCHAGIXOFULULCNBGYNCW),
(20, GVWTHWBUIGWBUACRIZOFOFWHVASHWQ),
(13, NCDAODIBPNDIBHJYPGVMVMDOCHZODX),
(1, ZOPMAPUNBZPUNTVKBSHYHYPAOTLAPJ),
(23, DSTQETYRFDTYRXZOFWLCLCTESXPETN),
(10, QFGDRGLESQGLEKMBSJYPYPGRFKCRGA),
(6, UJKHVKPIWUKPIOQFWNCTCTKVJOGVKE),
(22, ETURFUZSGEUZSYAPGXMDMDUFTYQFUO),
(15, LABYMBGZNLBGZFHWNETKTKBMAFXMBV),
(12, ODEBPEJCQOEJCIKZQHWNWNEPDIAPEY),
(21, FUVSGVATHFVATZBQHYNENEVGUZRGVP),
(16, KZAXLAFYMKAFYEGVMDSJSJALZEWLAU),
(25, BQROCRWPDBRWPVXMDUJAJARCQVNCRL),
(9, RGHESHMFTRHMFLNCTKZQZQHSGLDSHB),
(24, CRSPDSXQECSXQWYNEVKBKBSDRWODSM),
(3, XMNKYNSLZXNSLRTIZQFWFWNYMRJYNH),
(5, VKLIWLQJXVLQJPRGXODUDULWKPHWLF),
(7, TIJGUJOHVTJOHNPEVMBSBSJUINFUJD),
(2, YNOLZOTMAYOTMSUJARGXGXOZNSKZOI),
(18, IXYVJYDWKIYDWCETKBQHQHYJXCUJYS),
(4, WLMJXMRKYWMRKQSHYPEVEVMXLQIXMG),
(11, PEFCQFKDRPFKDJLARIXOXOFQEJBQFZ),
(19, HWXUIXCVJHXCVBDSJAPGPGXIWBTIXR),
(0, APQNBQVOCAQVOUWLCTIZIZQBPUMBQK),
(17, JYZWKZEXLJZEXDFULCRIRIZKYDVKZT)]

Use the squared differences ranking function, i.e. ranking="squared differences":

sage: S.brute_force(C, ranking="squared_differences")
<BLANKLINE>
[(8, SHIFTINGUSINGMODULARARITHMETIC),
(23, DSTQETYRFDTYRXZOFWLCLCTESXPETN),
(12, ODEBPEJCQOEJCIKZQHWNWNEPDIAPEY),
(2, YNOLZOTMAYOTMSUJARGXGXOZNSKZOI),
(9, RGHESHMFTRHMFLNCTKZQZQHSGLDSHB),
(7, TIJGUJOHVTJOHNPEVMBSBSJUINFUJD),
(21, FUVSGVATHFVATZBQHYNENEVGUZRGVP),
(22, ETURFUZSGEUZSYAPGXMDMDUFTYQFUO),
(1, ZOPMAPUNBZPUNTVKBSHYHYPAOTLAPJ),
(16, KZAXLAFYMKAFYEGVMDSJSJALZEWLAU),
(20, GVWTHWBUIGWBUACRIZOFOFWHVASHWQ),
(24, CRSPDSXQECSXQWYNEVKBKBSDRWODSM),
(14, MBCZNCHAOMCHAGIXOFULULCNBGYNCW),
(13, NCDAODIBPNDIBHJYPGVMVMDOCHZODX),
(3, XMNKYNSLZXNSLRTIZQFWFWNYMRJYNH),
(10, QFGDRGLESQGLEKMBSJYPYPGRFKCRGA),
(15, LABYMBGZNLBGZFHWNETKTKBMAFXMBV),
(6, UJKHVKPIWUKPIOQFWNCTCTKVJOGVKE),
(11, PEFCQFKDRPFKDJLARIXOXOFQEJBQFZ),
(25, BQROCRWPDBRWPVXMDUJAJARCQVNCRL),
(17, JYZWKZEXLJZEXDFULCRIRIZKYDVKZT),
(19, HWXUIXCVJHXCVBDSJAPGPGXIWBTIXR),
(4, WLMJXMRKYWMRKQSHYPEVEVMXLQIXMG),
(0, APQNBQVOCAQVOUWLCTIZIZQBPUMBQK),
(18, IXYVJYDWKIYDWCETKBQHQHYJXCUJYS),
(5, VKLIWLQJXVLQJPRGXODUDULWKPHWLF)]

Exception tests

Currently, the octal number system is not supported as an alphabet for this shift
cryptosystem:

80 APPENDIX A. SAGE MANUAL FOR SHIFT CRYPTOSYSTEM

sage: SA = ShiftCryptosystem(AlphabeticStrings())
sage: OctStr = OctalStrings()
sage: C = OctStr([1, 2, 3])
sage: SA.brute_force(C)
...
TypeError: ciphertext must be encoded using one of the supported\
cipher domains of this shift cryptosystem.

Nor is the radix-64 alphabet supported:

sage: Rad64 = Radix64Strings()
sage: C = Rad64([1, 2, 3])
sage: SA.brute_force(C)
...
TypeError: ciphertext must be encoded using one of the supported\
cipher domains of this shift cryptosystem.

A.2.2 deciphering(K, C)

Decrypt the ciphertext C with the key K using shift cipher decryption.

Input

• K — a secret key; a key belonging to the key space of this shift cipher. This
key is an integer k satisfying the inequality 0 ≤ k < n, where n is the size of
the cipher domain.

• C — a string of ciphertext; possibly an empty string. Characters in this
string must be encoded using one of the supported alphabets. See the method
encoding() for more information.

Output

• The plaintext corresponding to the ciphertext C.

Examples

Let’s perform decryption over the supported alphabets. Here is decryption over the
capital letters of the English alphabet:

sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: P = S.encoding("Stop shifting me."); P
STOPSHIFTINGME
sage: K = 13
sage: C = S.enciphering(K, P); C
FGBCFUVSGVATZR
sage: S.deciphering(K, C) == P
True

Decryption over the hexadecimal number system:

A.2. PUBLIC METHODS 81

sage: S = ShiftCryptosystem(HexadecimalStrings())
sage: P = S.encoding("Shift me now."); P
5368696674206d65206e6f772e
sage: K = 7
sage: C = S.enciphering(K, P); C
cadfd0ddeb97d4dc97d5d6ee95
sage: S.deciphering(K, C) == P
True

Decryption over the binary number system:

sage: S = ShiftCryptosystem(BinaryStrings())
sage: P = S.encoding("OK, enough shifting."); P
010011110100101100101100001000000110010101101110011011110111010101100111011\
010000010000001110011011010000110100101100110011101000110100101101110011001\
1100101110
sage: K = 1
sage: C = S.enciphering(K, P); C
101100001011010011010011110111111001101010010001100100001000101010011000100\
101111101111110001100100101111001011010011001100010111001011010010001100110\
0011010001
sage: S.deciphering(K, C) == P
True

A.2.3 enciphering(K, P)

Encrypt the plaintext P with the key K using shift cipher encryption.

Input

• K — a key belonging to the key space of this shift cipher. This key is an integer
k satisfying the inequality 0 ≤ k < n, where n is the size of the cipher domain.

• P — a string of plaintext; possibly an empty string. Characters in this string
must be encoded using one of the supported alphabets. See the method
encoding() for more information.

Output

• The ciphertext corresponding to the plaintext P.

Examples

Let’s perform encryption over the supported alphabets. Here is encryption over the
capital letters of the English alphabet:

sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: P = S.encoding("Shift your gear."); P
SHIFTYOURGEAR
sage: K = 3
sage: S.enciphering(K, P)
VKLIWBRXUJHDU

Encryption over the hexadecimal number system:

82 APPENDIX A. SAGE MANUAL FOR SHIFT CRYPTOSYSTEM

sage: S = ShiftCryptosystem(HexadecimalStrings())
sage: P = S.encoding("Capitalize with the shift key."); P
4361706974616c697a65207769746820746865207368696674206b65792e
sage: K = 5
sage: S.enciphering(K, P)
98b6c5bec9b6b1becfba75ccbec9bd75c9bdba75c8bdbebbc975b0bace73

Encryption over the binary number system:

sage: S = ShiftCryptosystem(BinaryStrings())
sage: P = S.encoding("Don’t shift."); P
010001000110111101101110001001110111010000100000011100110110100001101001011\
001100111010000101110
sage: K = 1
sage: S.enciphering(K, P)
101110111001000010010001110110001000101111011111100011001001011110010110100\
110011000101111010001

A.2.4 encoding(S)

The encoding of the string S over the string monoid of this shift cipher. For example,
if the string monoid of this cryptosystem is AlphabeticStringMonoid, then the
encoding of S would be its upper-case equivalent stripped of all non-alphabetic
characters. The following alphabets are supported for the shift cipher:

• Upper-case letters of the English alphabet as implemented in the function
AlphabeticStrings().

• The alphabet consisting of the hexadecimal number system as implemented in
HexadecimalStrings().

• The alphabet consisting of the binary number system as implemented in the
function BinaryStrings().

Input

• S — a string, possibly empty.

Output

• The encoding of S over the string monoid of this cryptosystem. If S is an
empty string, return an empty string.

Examples

Encoding over the upper-case letters of the English alphabet:

sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: S.encoding("Shift cipher on capital letters of the English alphabet.")
SHIFTCIPHERONCAPITALLETTERSOFTHEENGLISHALPHABET

Encoding over the binary system:

A.2. PUBLIC METHODS 83

sage: S = ShiftCryptosystem(BinaryStrings())
sage: S.encoding("Binary")
010000100110100101101110011000010111001001111001

Encoding over the hexadecimal system:

sage: S = ShiftCryptosystem(HexadecimalStrings())
sage: S.encoding("Over hexadecimal system.")
4f7665722068657861646563696d616c2073797374656d2e

The argument S can be an empty string, in which case an empty string is returned:

sage: ShiftCryptosystem(AlphabeticStrings()).encoding("")
<BLANKLINE>
sage: ShiftCryptosystem(HexadecimalStrings()).encoding("")
<BLANKLINE>
sage: ShiftCryptosystem(BinaryStrings()).encoding("")
<BLANKLINE>

A.2.5 inverse key(K)

The inverse key corresponding to the key K. For the shift cipher, the inverse key
corresponding to K is −K mod n, where n > 0 is the size of the cipher domain, i.e.
the plaintext/ciphertext space. A key k of the shift cipher is an integer 0 ≤ k < n.
The key k = 0 has no effect on either the plaintext or the ciphertext.

Input

• K — a key for this shift cipher. This must be an integer k such that 0 ≤ k < n,
where n is the size of the cipher domain.

Output

• The inverse key corresponding to K.

Examples

Some random keys and their respective inverse keys:

sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: key = S.random_key(); key # random
2
sage: S.inverse_key(key) # random
24
sage: S = ShiftCryptosystem(HexadecimalStrings())
sage: key = S.random_key(); key # random
12
sage: S.inverse_key(key) # random
4
sage: S = ShiftCryptosystem(BinaryStrings())
sage: key = S.random_key(); key # random
1
sage: S.inverse_key(key) # random
1

84 APPENDIX A. SAGE MANUAL FOR SHIFT CRYPTOSYSTEM

sage: key = S.random_key(); key # random
0
sage: S.inverse_key(key) # random
0

Regardless of the value of a key, the addition of the key and its inverse must be
equal to the alphabet size. This relationship holds exactly when the value of the
key is non-zero:

sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: K = S.random_key()
sage: while K == 0:
... K = S.random_key()
...
sage: invK = S.inverse_key(K)
sage: K + invK == S.alphabet_size()
True
sage: invK + K == S.alphabet_size()
True
sage: K = S.random_key()
sage: while K != 0:
... K = S.random_key()
...
sage: invK = S.inverse_key(K)
sage: K + invK != S.alphabet_size()
True
sage: K; invK
0
0

Exception tests

The key K must satisfy the inequality 0 ≤ K < n with n being the size of the
plaintext, ciphertext, and key spaces. For the shift cryptosystem, all these spaces
are the same alphabet. This inequality must be satisfied for each of the supported
alphabets. The capital letters of the English alphabet:

sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: S.inverse_key(S.alphabet_size())
...
ValueError: K (=26) is outside the range of acceptable values for a\
key of this shift cryptosystem.
sage: S.inverse_key(-1)
...
ValueError: K (=-1) is outside the range of acceptable values for a\
key of this shift cryptosystem.

The hexadecimal number system:

sage: S = ShiftCryptosystem(HexadecimalStrings())
sage: S.inverse_key(S.alphabet_size())
...
ValueError: K (=16) is outside the range of acceptable values for a\
key of this shift cryptosystem.
sage: S.inverse_key(-1)
...
ValueError: K (=-1) is outside the range of acceptable values for a\
key of this shift cryptosystem.

A.2. PUBLIC METHODS 85

The binary number system:

sage: S = ShiftCryptosystem(BinaryStrings())
sage: S.inverse_key(S.alphabet_size())
...
ValueError: K (=2) is outside the range of acceptable values for a key\
of this shift cryptosystem.
sage: S.inverse_key(-1)
...
ValueError: K (=-1) is outside the range of acceptable values for a\
key of this shift cryptosystem.

A.2.6 random key()

Generate a random key within the key space of this shift cipher. The generated key
is an integer 0 ≤ k < n with n being the size of the cipher domain. Thus there are
n possible keys in the key space, which is the set Z/nZ. The key k = 0 has no effect
on either the plaintext or the ciphertext.

Output

• A random key within the key space of this shift cryptosystem.

Examples

Generating random keys for shift cryptosystems over different alphabets:

sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: S.random_key() # random
18
sage: S = ShiftCryptosystem(BinaryStrings())
sage: S.random_key() # random
0
sage: S = ShiftCryptosystem(HexadecimalStrings())
sage: S.random_key() # random
5

Regardless of the value of a key, the addition of the key and its inverse must be
equal to the alphabet size. This relationship holds exactly when the value of the
key is non-zero:

sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: K = S.random_key()
sage: while K == 0:
... K = S.random_key()
...
sage: invK = S.inverse_key(K)
sage: K + invK == S.alphabet_size()
True
sage: invK + K == S.alphabet_size()
True
sage: K = S.random_key()
sage: while K != 0:
... K = S.random_key()
...
sage: invK = S.inverse_key(K)
sage: K + invK != S.alphabet_size()

86 APPENDIX A. SAGE MANUAL FOR SHIFT CRYPTOSYSTEM

True
sage: K; invK
0
0

A.2.7 rank by chi square(C, pdict)

Use the chi-square statistic to rank all possible keys. Currently, this method only
applies to the capital letters of the English alphabet.

Algorithm

Consider a non-empty alphabet A consisting of n elements, and let C be a ciphertext
encoded using elements of A. The plaintext P corresponding to C is also encoded
using elements of A. Let M be a candidate decipherment of C, i.e. M is the result
of attempting to decrypt C using a key k ∈ Z/nZ which is not necessarily the same
key used to encrypt P . Suppose FA(e) is the characteristic frequency probability
of e ∈ A and let FM(e) be the message frequency probability with respect to M .
The characteristic frequency probability distribution of an alphabet is the expected
frequency probability distribution for that alphabet. The message frequency proba-
bility distribution of M provides a distribution of the ratio of character occurrences
over message length. One can interpret the characteristic frequency probability
FA(e) as the expected probability, while the message frequency probability FM(e) is
the observed probability. If M is of length L, then the observed frequency of e ∈ A
is

OM(e) = FM (e) · L

and the expected frequency of e ∈ A is

EA(e) = FA(e) · L.

The chi-square rank Rχ2(M) of M corresponding to a key k ∈ Z/nZ is given by

Rχ2(M) =
∑

e∈A

(
OM(e) − EA(e)

)2

EA(e)
.

Cryptanalysis by exhaustive key search produces a candidate decipherment Mk for
each possible key k ∈ Z/nZ. For a set D =

{
Mk1

, Mk2
, . . . , Mkr

}
of all candidate

decipherments corresponding to a ciphertext C, the smaller is the rank Rχ2(Mki
)

the more likely that ki is the secret key. This key ranking method is based on the
Pearson chi-square test.

Input

• C — The ciphertext, a non-empty string. The ciphertext must be encoded
using the upper-case letters of the English alphabet.

• pdict — A dictionary of key, possible plaintext pairs. This should be the
output of brute force() with ranking="none".

A.2. PUBLIC METHODS 87

Output

• A list ranking the most likely keys first. Each element of the list is a tuple of
key, possible plaintext pairs.

Examples

Use the chi-square statistic to rank all possible keys and their corresponding deci-
pherment:

sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: P = S.encoding("Shi."); P
SHI
sage: K = 5
sage: C = S.enciphering(K, P)
sage: Pdict = S.brute_force(C)
sage: S.rank_by_chi_square(C, Pdict)
<BLANKLINE>
[(9, ODE),
(5, SHI),
(20, DST),
(19, ETU),
(21, CRS),
(10, NCD),
(25, YNO),
(6, RGH),
(12, LAB),
(8, PEF),
(1, WLM),
(11, MBC),
(18, FUV),
(17, GVW),
(2, VKL),
(4, TIJ),
(3, UJK),
(0, XMN),
(16, HWX),
(15, IXY),
(23, APQ),
(24, ZOP),
(22, BQR),
(7, QFG),
(13, KZA),
(14, JYZ)]

As more ciphertext is available, the reliability of the chi-square ranking function
increases:

sage: P = S.encoding("Shift cipher."); P
SHIFTCIPHER
sage: C = S.enciphering(K, P)
sage: Pdict = S.brute_force(C)
sage: S.rank_by_chi_square(C, Pdict)
<BLANKLINE>
[(5, SHIFTCIPHER),
(9, ODEBPYELDAN),
(18, FUVSGPVCURE),
(2, VKLIWFLSKHU),
(20, DSTQENTASPC),
(19, ETURFOUBTQD),
(21, CRSPDMSZROB),
(6, RGHESBHOGDQ),
(7, QFGDRAGNFCP),

88 APPENDIX A. SAGE MANUAL FOR SHIFT CRYPTOSYSTEM

(12, LABYMVBIAXK),
(17, GVWTHQWDVSF),
(24, ZOPMAJPWOLY),
(1, WLMJXGMTLIV),
(0, XMNKYHNUMJW),
(11, MBCZNWCJBYL),
(8, PEFCQZFMEBO),
(25, YNOLZIOVNKX),
(10, NCDAOXDKCZM),
(3, UJKHVEKRJGT),
(4, TIJGUDJQIFS),
(22, BQROCLRYQNA),
(16, HWXUIRXEWTG),
(15, IXYVJSYFXUH),
(14, JYZWKTZGYVI),
(13, KZAXLUAHZWJ),
(23, APQNBKQXPMZ)]

Exception tests

The ciphertext cannot be an empty string:

sage: S.rank_by_chi_square("", Pdict)
...
AttributeError: ’str’ object has no attribute ’parent’
sage: S.rank_by_chi_square(S.encoding(""), Pdict)
...
ValueError: The ciphertext must be a non-empty string.
sage: S.rank_by_chi_square(S.encoding(" "), Pdict)
...
ValueError: The ciphertext must be a non-empty string.

The ciphertext must be encoded using the capital letters of the English alphabet as
implemented in AlphabeticStrings():

sage: H = HexadecimalStrings()
sage: S.rank_by_chi_square(H.encoding("shift"), Pdict)
...
TypeError: The ciphertext must be capital letters of the English
alphabet.
sage: B = BinaryStrings()
sage: S.rank_by_chi_square(B.encoding("shift"), Pdict)
...
TypeError: The ciphertext must be capital letters of the English
alphabet.

The dictionary pdict cannot be empty:

sage: S.rank_by_chi_square(C, {})
...
KeyError: 0

A.2.8 rank by squared differences(C, pdict)

Use the squared-differences measure to rank all possible keys. Currently, this method
only applies to the capital letters of the English alphabet.

A.2. PUBLIC METHODS 89

Algorithm

Consider a non-empty alphabet A consisting of n elements, and let C be a ciphertext
encoded using elements of A. The plaintext P corresponding to C is also encoded
using elements of A. Let M be a candidate decipherment of C, i.e. M is the result
of attempting to decrypt C using a key k ∈ Z/nZ which is not necessarily the same
key used to encrypt P . Suppose FA(e) is the characteristic frequency probability
of e ∈ A and let FM(e) be the message frequency probability with respect to M .
The characteristic frequency probability distribution of an alphabet is the expected
frequency probability distribution for that alphabet. The message frequency proba-
bility distribution of M provides a distribution of the ratio of character occurrences
over message length. One can interpret the characteristic frequency probability
FA(e) as the expected probability, while the message frequency probability FM(e) is
the observed probability. If M is of length L, then the observed frequency of e ∈ A
is

OM(e) = FM (e) · L

and the expected frequency of e ∈ A is

EA(e) = FA(e) · L.

The squared-differences, or residual sum of squares, rank RRSS(M) of M corre-
sponding to a key k ∈ Z/nZ is given by

RRSS(M) =
∑

e∈A

(
OM(e) − EA(e)

)2
.

Cryptanalysis by exhaustive key search produces a candidate decipherment Mk for
each possible key k ∈ Z/nZ. For a set D =

{
Mk1

, Mk2
, . . . , Mkr

}
of all candidate

decipherments corresponding to a ciphertext C, the smaller is the rank RRSS(Mki
)

the more likely that ki is the secret key. This key ranking method is based on the
residual sum of squares measure.

Input

• C — The ciphertext, a non-empty string. The ciphertext must be encoded
using the upper-case letters of the English alphabet.

• pdict — A dictionary of key, possible plaintext pairs. This should be the
output of brute force() with ranking="none".

Output

• A list ranking the most likely keys first. Each element of the list is a tuple of
key, possible plaintext pairs.

Examples

Use the method of squared differences to rank all possible keys and their correspond-
ing decipherment:

90 APPENDIX A. SAGE MANUAL FOR SHIFT CRYPTOSYSTEM

sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: P = S.encoding("Shi."); P
SHI
sage: K = 5
sage: C = S.enciphering(K, P)
sage: Pdict = S.brute_force(C)
sage: S.rank_by_squared_differences(C, Pdict)
<BLANKLINE>
[(19, ETU),
(9, ODE),
(20, DST),
(5, SHI),
(8, PEF),
(4, TIJ),
(25, YNO),
(21, CRS),
(6, RGH),
(10, NCD),
(12, LAB),
(23, APQ),
(24, ZOP),
(0, XMN),
(13, KZA),
(15, IXY),
(1, WLM),
(16, HWX),
(22, BQR),
(11, MBC),
(18, FUV),
(2, VKL),
(17, GVW),
(7, QFG),
(3, UJK),
(14, JYZ)]

As more ciphertext is available, the reliability of the squared differences ranking
function increases:

sage: P = S.encoding("Shift cipher."); P
SHIFTCIPHER
sage: C = S.enciphering(K, P)
sage: Pdict = S.brute_force(C)
sage: S.rank_by_squared_differences(C, Pdict)
<BLANKLINE>
[(20, DSTQENTASPC),
(5, SHIFTCIPHER),
(9, ODEBPYELDAN),
(19, ETURFOUBTQD),
(6, RGHESBHOGDQ),
(16, HWXUIRXEWTG),
(8, PEFCQZFMEBO),
(21, CRSPDMSZROB),
(22, BQROCLRYQNA),
(25, YNOLZIOVNKX),
(3, UJKHVEKRJGT),
(18, FUVSGPVCURE),
(4, TIJGUDJQIFS),
(10, NCDAOXDKCZM),
(7, QFGDRAGNFCP),
(24, ZOPMAJPWOLY),
(2, VKLIWFLSKHU),
(12, LABYMVBIAXK),
(17, GVWTHQWDVSF),
(1, WLMJXGMTLIV),
(13, KZAXLUAHZWJ),
(0, XMNKYHNUMJW),

A.3. PRIVATE METHODS 91

(15, IXYVJSYFXUH),
(14, JYZWKTZGYVI),
(11, MBCZNWCJBYL),
(23, APQNBKQXPMZ)]

Exception tests

The ciphertext cannot be an empty string:

sage: S.rank_by_squared_differences("", Pdict)
...
AttributeError: ’str’ object has no attribute ’parent’
sage: S.rank_by_squared_differences(S.encoding(""), Pdict)
...
ValueError: The ciphertext must be a non-empty string.
sage: S.rank_by_squared_differences(S.encoding(" "), Pdict)
...
ValueError: The ciphertext must be a non-empty string.

The ciphertext must be encoded using the capital letters of the English alphabet as
implemented in AlphabeticStrings():

sage: H = HexadecimalStrings()
sage: S.rank_by_squared_differences(H.encoding("shift"), Pdict)
...
TypeError: The ciphertext must be capital letters of the English
alphabet.
sage: B = BinaryStrings()
sage: S.rank_by_squared_differences(B.encoding("shift"), Pdict)
...
TypeError: The ciphertext must be capital letters of the English
alphabet.

The dictionary pdict cannot be empty:

sage: S.rank_by_squared_differences(C, {})
...
KeyError: 0

A.3 Private methods

This section documents private methods implemented in the class

sage.crypto.classical.ShiftCryptosystem

of the Sage standard library.

A.3.1 init (A)

See ShiftCryptosystem for full documentation. Create a shift cryptosystem defined
over the alphabet A.

92 APPENDIX A. SAGE MANUAL FOR SHIFT CRYPTOSYSTEM

Input

• A — a string monoid over some alphabet; this is the non-empty alphabet over
which the plaintext and ciphertext spaces are defined.

Output

• A shift cryptosystem over the alphabet A.

Examples

sage: S = ShiftCryptosystem(AlphabeticStrings()); S
Shift cryptosystem on Free alphabetic string monoid on A-Z
sage: P = S.encoding("The shift cryptosystem generalizes the Caesar cipher.")
sage: P
THESHIFTCRYPTOSYSTEMGENERALIZESTHECAESARCIPHER
sage: K = 7
sage: C = S.enciphering(K, P); C
AOLZOPMAJYFWAVZFZALTNLULYHSPGLZAOLJHLZHYJPWOLY
sage: S.deciphering(K, C)
THESHIFTCRYPTOSYSTEMGENERALIZESTHECAESARCIPHER
sage: S.deciphering(K, C) == P
True

A.3.2 call (K)

Create a shift cipher with key K.

Input

• K — a secret key; this key is used for both encryption and decryption. For the
shift cryptosystem whose plaintext and ciphertext spaces are A, a key is any
integer k such that 0 ≤ k < n where n is the size or cardinality of the set A.

Output

• A shift cipher with secret key K.

Examples

sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: P = S.encoding("Shifting sand."); P
SHIFTINGSAND
sage: K = 3
sage: E = S(K); E
Shift cipher on Free alphabetic string monoid on A-Z
sage: E(P)
VKLIWLQJVDQG
sage: D = S(S.inverse_key(K)); D
Shift cipher on Free alphabetic string monoid on A-Z
sage: D(E(P))
SHIFTINGSAND

A.3. PRIVATE METHODS 93

Exception tests

The key K must satisfy the inequality 0 ≤ K < n with n being the size of the
plaintext, ciphertext, and key spaces. For the shift cryptosystem, all these spaces
are the same alphabet. This inequality must be satisfied for each of the supported
alphabets. The capital letters of the English alphabet:

sage: S = ShiftCryptosystem(AlphabeticStrings())
sage: S(2 + S.alphabet_size())
Traceback (most recent call last):
...
ValueError: K (=28) is outside the range of acceptable values for a\
key of this shift cryptosystem.
sage: S(-2)
Traceback (most recent call last):
...
ValueError: K (=-2) is outside the range of acceptable values for a\
key of this shift cryptosystem.

The hexadecimal number system:

sage: S = ShiftCryptosystem(HexadecimalStrings())
sage: S(1 + S.alphabet_size())
Traceback (most recent call last):
...
ValueError: K (=17) is outside the range of acceptable values for a\
key of this shift cryptosystem.
sage: S(-1)
Traceback (most recent call last):
...
ValueError: K (=-1) is outside the range of acceptable values for a\
key of this shift cryptosystem.

The binary number system:

sage: S = ShiftCryptosystem(BinaryStrings())
sage: S(1 + S.alphabet_size())
Traceback (most recent call last):
...
ValueError: K (=3) is outside the range of acceptable values for a\
key of this shift cryptosystem.
sage: S(-2)
Traceback (most recent call last):
...
ValueError: K (=-2) is outside the range of acceptable values for a\
key of this shift cryptosystem.

A.3.3 repr ()

Return the string representation of this shift cryptosystem.

Examples

sage: ShiftCryptosystem(AlphabeticStrings())
Shift cryptosystem on Free alphabetic string monoid on A-Z
sage: ShiftCryptosystem(HexadecimalStrings())
Shift cryptosystem on Free hexadecimal string monoid
sage: ShiftCryptosystem(BinaryStrings())
Shift cryptosystem on Free binary string monoid

94 APPENDIX A. SAGE MANUAL FOR SHIFT CRYPTOSYSTEM

Appendix B

Sage Manual for Affine
Cryptosystem

The affine cryptosystem described in Chapter 4 is implemented in the class

sage.crypto.classical.AffineCryptosystem (B.1)

via bug tracking ticket #7124 [76]. This appendix contains the reference manual for
the class (B.1). Our implementation of the affine cryptosystem has been merged
into the Sage standard library during the development of Sage 4.2.1.alpha0.

B.1 Class documentation

Create an affine cryptosystem.
Let A = {a0, a1, a2, . . . , an−1} be a non-empty alphabet consisting of n unique

elements. Define a mapping f : A −→ Z/nZ from the alphabet A to the set Z/nZ
of integers modulo n, given by f(ai) = i. Thus we can identify each element of the
alphabet A with a unique integer 0 ≤ i < n. A key of the affine cipher is an ordered
pair of integers (a, b) ∈ Z/nZ × Z/nZ such that gcd(a, n) = 1. Therefore the key
space is Z/nZ × Z/nZ. Since we assume that A does not have repeated elements,
the mapping f : A −→ Z/nZ is bijective. Encryption and decryption functions are
both affine functions. Let (a, b) be a secret key, i.e. an element of the key space,
and let p be a plaintext character and consequently p ∈ Z/nZ. Then the ciphertext
character c corresponding to p is given by

c ≡ ap + b (mod n).

Similarly, given a ciphertext character c ∈ Z/nZ and a secret key (a, b), we can
recover the corresponding plaintext character as follows:

p ≡ a−1(c − b) (mod n)

where a−1 is the inverse of a modulo n. Use the bijection f : A −→ Z/nZ to convert
c and p back to elements of the alphabet A. Currently, only the following alphabet
is supported for the affine cipher:

• Upper-case letters of the English alphabet as implemented in the function
AlphabeticStrings().

95

96 APPENDIX B. SAGE MANUAL FOR AFFINE CRYPTOSYSTEM

B.1.1 Examples

Encryption and decryption over the capital letters of the English alphabet:

sage: A = AffineCryptosystem(AlphabeticStrings()); A
Affine cryptosystem on Free alphabetic string monoid on A-Z
sage: P = A.encoding("The affine cryptosystem generalizes the shift cipher.")
sage: P
THEAFFINECRYPTOSYSTEMGENERALIZESTHESHIFTCIPHER
sage: a, b = (9, 13)
sage: C = A.enciphering(a, b, P); C
CYXNGGHAXFKVSCJTVTCXRPXAXKNIHEXTCYXTYHGCFHSYXK
sage: A.deciphering(a, b, C)
THEAFFINECRYPTOSYSTEMGENERALIZESTHESHIFTCIPHER
sage: A.deciphering(a, b, C) == P
True

We can also use functional notation to work through the previous example:

sage: A = AffineCryptosystem(AlphabeticStrings()); A
Affine cryptosystem on Free alphabetic string monoid on A-Z
sage: P = A.encoding("The affine cryptosystem generalizes the shift cipher.")
sage: P
THEAFFINECRYPTOSYSTEMGENERALIZESTHESHIFTCIPHER
sage: a, b = (9, 13)
sage: E = A(a, b); E
Affine cipher on Free alphabetic string monoid on A-Z
sage: C = E(P); C
CYXNGGHAXFKVSCJTVTCXRPXAXKNIHEXTCYXTYHGCFHSYXK
sage: aInv, bInv = A.inverse_key(a, b)
sage: D = A(aInv, bInv); D
Affine cipher on Free alphabetic string monoid on A-Z
sage: D(C)
THEAFFINECRYPTOSYSTEMGENERALIZESTHESHIFTCIPHER
sage: D(C) == P
True
sage: D(C) == P == D(E(P))
True

Encrypting the ciphertext with the inverse key also produces the plaintext:

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: P = A.encoding("Encrypt with inverse key.")
sage: a, b = (11, 8)
sage: C = A.enciphering(a, b, P)
sage: P; C
ENCRYPTWITHINVERSEKEY
AVENMRJQSJHSVFANYAOAM
sage: aInv, bInv = A.inverse_key(a, b)
sage: A.enciphering(aInv, bInv, C)
ENCRYPTWITHINVERSEKEY
sage: A.enciphering(aInv, bInv, C) == P
True

For a secret key (a, b) ∈ Z/nZ × Z/nZ, if a = 1 then any affine cryptosystem with
key (1, b) for any b ∈ Z/nZ is a shift cryptosystem. Here is how we can create a
Caesar cipher using the affine cryptosystem:

B.1. CLASS DOCUMENTATION 97

sage: caesar = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (1, 3)
sage: P = caesar.encoding("abcdef"); P
ABCDEF
sage: C = caesar.enciphering(a, b, P); C
DEFGHI
sage: caesar.deciphering(a, b, C) == P
True

Any affine cipher with keys of the form (a, 0) ∈ Z/nZ×Z/nZ is called a decimation
cipher on the Roman alphabet, or decimation cipher for short:

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: P = A.encoding("A decimation cipher is a specialized affine cipher.")
sage: a, b = (17, 0)
sage: C = A.enciphering(a, b, P)
sage: P; C
ADECIMATIONCIPHERISASPECIALIZEDAFFINECIPHER
AZQIGWALGENIGVPQDGUAUVQIGAFGJQZAHHGNQIGVPQD
sage: A.deciphering(a, b, C) == P
True

Generate a random key for encryption and decryption:

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: P = A.encoding("An affine cipher with a random key.")
sage: a, b = A.random_key()
sage: C = A.enciphering(a, b, P)
sage: A.deciphering(a, b, C) == P
True

B.1.2 Exception tests

The binary number system is currently not a supported alphabet of this affine cryp-
tosystem:

sage: AffineCryptosystem(BinaryStrings())
...
TypeError: A (= Free binary string monoid) is not supported as a\
cipher domain of this affine cryptosystem.

Nor are the octal, hexadecimal, and radix-64 number systems supported:

sage: AffineCryptosystem(OctalStrings())
...
TypeError: A (= Free octal string monoid) is not supported as a cipher\
domain of this affine cryptosystem.
sage: AffineCryptosystem(HexadecimalStrings())
...
TypeError: A (= Free hexadecimal string monoid) is not supported as a\
cipher domain of this affine cryptosystem.
sage: AffineCryptosystem(Radix64Strings())
...
TypeError: A (= Free radix 64 string monoid) is not supported as a\
cipher domain of this affine cryptosystem.

98 APPENDIX B. SAGE MANUAL FOR AFFINE CRYPTOSYSTEM

A secret key (a, b) must be an element of Z/nZ × Z/nZ with gcd(a, n) = 1. This
rules out the case a = 0 irrespective of the value of b. For the upper-case letters of
the English alphabet, where the alphabet size is n = 26, a cannot take on any even
value:

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: A(0, 1)
...
ValueError: (a, b) = (0, 1) is outside the range of acceptable values\
for a key of this affine cryptosystem.
sage: A(2, 1)
...
ValueError: (a, b) = (2, 1) is outside the range of acceptable values\
for a key of this affine cryptosystem.

B.2 Public methods

This section documents public methods implemented in the class

sage.crypto.classical.AffineCryptosystem

of the Sage standard library.

B.2.1 brute force(C, ranking=’none’)

Attempt a brute force cryptanalysis of the ciphertext C.

Input

• C — A ciphertext over one of the supported alphabets of this affine cryptosys-
tem. See the class AffineCryptosystem for documentation on the supported
alphabets.

• ranking — (default "none") the method to use for ranking all possible keys. If
ranking="none", then do not use any ranking function. The following ranking
functions are supported:

– "chi square" — the chi-square ranking function as implemented in the
method rank by chi square().

– "squared differences" — the squared differences ranking function as
implemented in the method rank by squared differences().

Output

• All the possible plaintext sequences corresponding to the ciphertext C. This
method effectively uses all the possible keys in this affine cryptosystem to
decrypt C. The method is also referred to as exhaustive key search. The
output is a dictionary of key, candidate decipherment pairs.

B.2. PUBLIC METHODS 99

Examples

Cryptanalyze using all possible keys with the option ranking="none":

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (3, 7)
sage: P = A.encoding("Linear"); P
LINEAR
sage: C = A.enciphering(a, b, P)
sage: L = A.brute_force(C)
sage: sorted(L.items())[:26] # display 26 candidate decipherments
<BLANKLINE>
[((1, 0), OFUTHG),
((1, 1), NETSGF),
((1, 2), MDSRFE),
((1, 3), LCRQED),
((1, 4), KBQPDC),
((1, 5), JAPOCB),
((1, 6), IZONBA),
((1, 7), HYNMAZ),
((1, 8), GXMLZY),
((1, 9), FWLKYX),
((1, 10), EVKJXW),
((1, 11), DUJIWV),
((1, 12), CTIHVU),
((1, 13), BSHGUT),
((1, 14), ARGFTS),
((1, 15), ZQFESR),
((1, 16), YPEDRQ),
((1, 17), XODCQP),
((1, 18), WNCBPO),
((1, 19), VMBAON),
((1, 20), ULAZNM),
((1, 21), TKZYML),
((1, 22), SJYXLK),
((1, 23), RIXWKJ),
((1, 24), QHWVJI),
((1, 25), PGVUIH)]

Use the chi-square ranking function, i.e. ranking="chisquare":

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (3, 7)
sage: P = A.encoding("Linear functions for encrypting and decrypting."); P
LINEARFUNCTIONSFORENCRYPTINGANDDECRYPTING
sage: C = A.enciphering(a, b, P)
sage: Rank = A.brute_force(C, ranking="chisquare")
sage: Rank[:10] # display only the top 10 candidate keys
<BLANKLINE>
[((3, 7), LINEARFUNCTIONSFORENCRYPTINGANDDECRYPTING),
((23, 25), VYTCGPBMTENYSTOBSPCTEPIRNYTAGTDDCEPIRNYTA),
((1, 12), CTIHVUKDIBATLIXKLUHIBUPOATINVIEEHBUPOATIN),
((11, 15), HSRYELDAROVSWRQDWLYROLUBVSRIERTTYOLUBVSRI),
((25, 1), NWHIUVFMHOPWEHSFEVIHOVABPWHCUHLLIOVABPWHC),
((25, 7), TCNOABLSNUVCKNYLKBONUBGHVCNIANRROUBGHVCNI),
((15, 4), SHIBVOWZILEHDIJWDOBILOFYEHIRVIGGBLOFYEHIR),
((15, 23), PEFYSLTWFIBEAFGTALYFILCVBEFOSFDDYILCVBEFO),
((7, 10), IDUFHSYXUTEDNULYNSFUTSVGEDURHUMMFTSVGEDUR),
((19, 22), QVETRGABEFUVLENALGTEFGDSUVEHREMMTFGDSUVEH)]

Use the squared differences ranking function, i.e. ranking="squared differences":

100 APPENDIX B. SAGE MANUAL FOR AFFINE CRYPTOSYSTEM

sage: Rank = A.brute_force(C, ranking="squared_differences")
sage: Rank[:10] # display only the top 10 candidate keys
<BLANKLINE>
[((3, 7), LINEARFUNCTIONSFORENCRYPTINGANDDECRYPTING),
((23, 6), GJENRAMXEPYJDEZMDANEPATCYJELREOONPATCYJEL),
((23, 25), VYTCGPBMTENYSTOBSPCTEPIRNYTAGTDDCEPIRNYTA),
((19, 22), QVETRGABEFUVLENALGTEFGDSUVEHREMMTFGDSUVEH),
((19, 9), DIRGETNORSHIYRANYTGRSTQFHIRUERZZGSTQFHIRU),
((23, 18), KNIRVEQBITCNHIDQHERITEXGCNIPVISSRTEXGCNIP),
((17, 16), GHORBEIDOJMHFOVIFEROJETWMHOZBOAARJETWMHOZ),
((21, 14), AHEZRMOFEVQHTEBOTMZEVMNIQHEDREKKZVMNIQHED),
((1, 12), CTIHVUKDIBATLIXKLUHIBUPOATINVIEEHBUPOATIN),
((7, 18), SNEPRCIHEDONXEVIXCPEDCFQONEBREWWPDCFQONEB)]

Exception tests

Currently, the binary number system is not supported as an alphabet of this affine
cryptosystem:

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: BinStr = BinaryStrings()
sage: C = BinStr.encoding("abc")
sage: A.brute_force(C)
...
TypeError: Ciphertext must be encoded using one of the supported\
cipher domains of this affine cryptosystem.

Nor are the octal, hexadecimal, and radix-64 number systems supported:

sage: OctStr = OctalStrings()
sage: C = OctStr([1, 2, 3])
sage: A.brute_force(C)
...
TypeError: Ciphertext must be encoded using one of the supported\
cipher domains of this affine cryptosystem.
sage: HexStr = HexadecimalStrings()
sage: C = HexStr.encoding("abc")
sage: A.brute_force(C)
...
TypeError: Ciphertext must be encoded using one of the supported\
cipher domains of this affine cryptosystem.
sage: RadStr = Radix64Strings()
sage: C = RadStr([1, 2, 3])
sage: A.brute_force(C)
...
TypeError: Ciphertext must be encoded using one of the supported\
cipher domains of this affine cryptosystem.

Only the chi-square and squared-differences ranking functions are currently sup-
ported. The keyword ranking must take on either of the values "none", "chisquare"
or "squared differences":

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (3, 7)
sage: P = A.encoding("Linear")
sage: C = A.enciphering(a, b, P)
sage: A.brute_force(C, ranking="chi")
...
ValueError: Keyword ’ranking’ must be either ’none’, ’chisquare’, or\

B.2. PUBLIC METHODS 101

’squared_differences’.
sage: A.brute_force(C, ranking="")
...
ValueError: Keyword ’ranking’ must be either ’none’, ’chisquare’, or\
’squared_differences’.

B.2.2 deciphering(a, b, C)

Decrypt the ciphertext C with the key (a, b) using affine cipher decryption.

Input

• a, b — a secret key belonging to the key space of this affine cipher. This key
must be an element of Z/nZ×Z/nZ such that gcd(a, n) = 1 with n being the
size of the ciphertext and plaintext spaces.

• C — a string of ciphertext; possibly an empty string. Characters in this
string must be encoded using one of the supported alphabets. See the method
encoding() for more information.

Output

• The plaintext corresponding to the ciphertext C.

Examples

Decryption over the capital letters of the English alphabet:

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (5, 2)
sage: P = A.encoding("Affine functions are linear functions.")
sage: C = A.enciphering(a, b, P); C
CBBQPWBYPMTQUPOCJWFQPWCJBYPMTQUPO
sage: P == A.deciphering(a, b, C)
True

The previous example can also be worked through using functional notation:

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (5, 2)
sage: P = A.encoding("Affine functions are linear functions.")
sage: E = A(a, b); E
Affine cipher on Free alphabetic string monoid on A-Z
sage: C = E(P); C
CBBQPWBYPMTQUPOCJWFQPWCJBYPMTQUPO
sage: aInv, bInv = A.inverse_key(a, b)
sage: D = A(aInv, bInv); D
Affine cipher on Free alphabetic string monoid on A-Z
sage: D(C) == P
True

If the ciphertext is an empty string, then the plaintext is also an empty string
regardless of the value of the secret key:

102 APPENDIX B. SAGE MANUAL FOR AFFINE CRYPTOSYSTEM

sage: a, b = A.random_key()
sage: A.deciphering(a, b, A.encoding(""))
<BLANKLINE>
sage: A.deciphering(a, b, A.encoding(" "))
<BLANKLINE>

Exception tests

The key must be an ordered pair (a, b) ∈ Z/nZ×Z/nZ with n being the size of the
plaintext and ciphertext spaces. Furthermore, a must be relatively prime to n, i.e.
gcd(a, n) = 1:

sage: A.deciphering(2, 6, P)
...
ValueError: (a, b) = (2, 6) is outside the range of acceptable values\
for a key of this affine cipher.

B.2.3 enciphering(a, b, P)

Encrypt the plaintext P with the key (a, b) using affine cipher encryption.

Input

• a, b — a secret key belonging to the key space of this affine cipher. This key
must be an element of Z/nZ×Z/nZ such that gcd(a, n) = 1 with n being the
size of the ciphertext and plaintext spaces.

• P — a string of plaintext; possibly an empty string. Characters in this string
must be encoded using one of the supported alphabets. See the method
encoding() for more information.

Output

• The ciphertext corresponding to the plaintext P.

Examples

Encryption over the capital letters of the English alphabet:

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (3, 6)
sage: P = A.encoding("Affine ciphers work with linear functions.")
sage: A.enciphering(a, b, P)
GVVETSMEZBSFIUWFKUELBNETSGFVOTMLEWTI

Now work through the previous example using functional notation:

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (3, 6)
sage: P = A.encoding("Affine ciphers work with linear functions.")
sage: E = A(a, b); E
Affine cipher on Free alphabetic string monoid on A-Z
sage: E(P)
GVVETSMEZBSFIUWFKUELBNETSGFVOTMLEWTI

B.2. PUBLIC METHODS 103

If the plaintext is an empty string, then the ciphertext is also an empty string
regardless of the value of the secret key:

sage: a, b = A.random_key()
sage: A.enciphering(a, b, A.encoding(""))
<BLANKLINE>
sage: A.enciphering(a, b, A.encoding(" "))
<BLANKLINE>

Exception tests

The key must be an ordered pair (a, b) ∈ Z/nZ×Z/nZ with n being the size of the
plaintext and ciphertext spaces. Furthermore, a must be relatively prime to n, i.e.
gcd(a, n) = 1:

sage: A.enciphering(2, 6, P)
...
ValueError: (a, b) = (2, 6) is outside the range of acceptable values\
for a key of this affine cryptosystem.

B.2.4 encoding(S)

The encoding of the string S over the string monoid of this affine cipher. For example,
if the string monoid of this cryptosystem is AlphabeticStringMonoid, then the
encoding of S would be its upper-case equivalent stripped of all non-alphabetic
characters. Only the following alphabet is supported for the affine cipher:

• Upper-case letters of the English alphabet as implemented in the function
AlphabeticStrings().

Input

• S — a string, possibly empty.

Output

• The encoding of S over the string monoid of this cryptosystem. If S is an
empty string, return an empty string.

Examples

Encoding over the upper-case letters of the English alphabet:

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: A.encoding("Affine cipher over capital letters of the English alphabet.")
AFFINECIPHEROVERCAPITALLETTERSOFTHEENGLISHALPHABET

The argument S can be an empty string, in which case an empty string is returned:

sage: AffineCryptosystem(AlphabeticStrings()).encoding("")
<BLANKLINE>

104 APPENDIX B. SAGE MANUAL FOR AFFINE CRYPTOSYSTEM

B.2.5 inverse key(a, b)

The inverse key corresponding to the secret key (a,b). If p is a plaintext character
so that p ∈ Z/nZ and n is the alphabet size, then the ciphertext c corresponding to
p is

c ≡ ap + b (mod n).

As (a, b) is a key, then the multiplicative inverse a−1 exists and the original plaintext
can be recovered as follows

p ≡ a−1(c − b) (mod n)

≡ a−1c + a−1(−b) (mod n).

Therefore the ordered pair (a−1, −ba−1) is the inverse key corresponding to (a, b).

Input

• a, b — a secret key for this affine cipher. The ordered pair (a,b) must be
an element of Z/nZ × Z/nZ such that gcd(a, n) = 1.

Output

• The inverse key (a−1, −ba−1) corresponding to (a, b).

Examples

Generating inverse keys of various keys:

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (1, 2)
sage: A.inverse_key(a, b)
(1, 24)
sage: A.inverse_key(3, 2)
(9, 8)

Suppose that the plaintext and ciphertext spaces are the capital letters of the English
alphabet so that n = 26. If ϕ(n) is the Euler phi function of n, then there are ϕ(n)
integers 0 ≤ a < n that are relatively prime to n. For the capital letters of the
English alphabet, there are 12 such integers relatively prime to n:

sage: euler_phi(A.alphabet_size())
12

And here is a list of those integers:

sage: n = A.alphabet_size()
sage: L = [i for i in xrange(n) if gcd(i, n) == 1]; L
[1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25]

Then a secret key (a, b) of this shift cryptosystem is such that a is an element of
the list L in the last example. Any inverse key (A, B) corresponding to (a, b) is such
that A is also in the list L above:

B.2. PUBLIC METHODS 105

sage: a, b = (3, 9)
sage: a in L
True
sage: aInv, bInv = A.inverse_key(a, b)
sage: aInv, bInv
(9, 23)
sage: aInv in L
True

Exception tests

Any ordered pair of the form (0, b) for any integer b cannot be a secret key of this
affine cipher. Hence (0, b) does not have a corresponding inverse key:

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: A.inverse_key(0, 1)
...
ValueError: (a, b) = (0, 1) is outside the range of acceptable values\
for a key of this affine cipher.

B.2.6 random key()

Generate a random key within the key space of this affine cipher. The generated
secret key is an ordered pair (a, b) ∈ Z/nZ×Z/nZ with n being the size of the cipher
domain and gcd(a, n) = 1. Let ϕ(n) denote the Euler phi function of n. Then the
affine cipher has n · ϕ(n) possible keys.

Output

• A random key within the key space of this affine cryptosystem. The output
key is an ordered pair (a, b).

Examples

Generating a random key:

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: A.random_key() # random
(17, 25)

If (a, b) is a secret key and n is the size of the plaintext and ciphertext alphabets,
then gcd(a, n) = 1:

sage: a, b = A.random_key()
sage: n = A.alphabet_size()
sage: gcd(a, n)
1

B.2.7 rank by chi square(C, pdict)

Use the chi-square statistic to rank all possible keys. Currently, this method only
applies to the capital letters of the English alphabet.

106 APPENDIX B. SAGE MANUAL FOR AFFINE CRYPTOSYSTEM

Algorithm

Consider a non-empty alphabet A consisting of n elements, and let C be a ciphertext
encoded using elements of A. The plaintext P corresponding to C is also encoded
using elements of A. Let M be a candidate decipherment of C, i.e. M is the result of
attempting to decrypt C using a key (a, b) which is not necessarily the same key used
to encrypt P . Suppose FA(e) is the characteristic frequency probability of e ∈ A
and let FM(e) be the message frequency probability with respect to M . The charac-
teristic frequency probability distribution of an alphabet is the expected frequency
probability distribution for that alphabet. The message frequency probability dis-
tribution of M provides a distribution of the ratio of character occurrences over
message length. One can interpret the characteristic frequency probability FA(e)
as the expected probability, while the message frequency probability FM(e) is the
observed probability. If M is of length L, then the observed frequency of e ∈ A is

OM(e) = FM (e) · L

and the expected frequency of e ∈ A is

EA(e) = FA(e) · L.

The chi-square rank Rχ2(M) of M corresponding to a key (a, b) ∈ Z/nZ ×Z/nZ is
given by

Rχ2(M) =
∑

e∈A

(
OM(e) − EA(e)

)2

EA(e)
.

Cryptanalysis by exhaustive key search produces a candidate decipherment Ma,b for
each possible key (a, b). For a set D =

{
Ma1,b1, Ma2,b2 , . . . , Mak,bk

}
of all candidate

decipherments corresponding to a ciphertext C, the smaller is the rank Rχ2(Mai,bi
)

the more likely that (ai, bi) is the secret key. This key ranking method is based on
the Pearson chi-square test.

Input

• C — The ciphertext, a non-empty string. The ciphertext must be encoded
using the upper-case letters of the English alphabet.

• pdict — A dictionary of key, possible plaintext pairs. This should be the
output of brute force() with ranking="none".

Output

• A list ranking the most likely keys first. Each element of the list is a tuple of
key, possible plaintext pairs.

Examples

Use the chi-square statistic to rank all possible keys and their corresponding deci-
pherment:

B.2. PUBLIC METHODS 107

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (3, 7)
sage: P = A.encoding("Line.")
sage: C = A.enciphering(a, b, P)
sage: Plist = A.brute_force(C)
sage: Rank = A.rank_by_chi_square(C, Plist)
sage: Rank[:10] # display only the top 10 candidate keys
<BLANKLINE>
[((1, 1), NETS),
((3, 7), LINE),
((17, 20), STAD),
((5, 2), SLOT),
((5, 5), HADI),
((9, 25), TSLI),
((17, 15), DELO),
((15, 6), ETUN),
((21, 8), ELID),
((7, 17), HCTE)]

As more ciphertext is available, the reliability of the chi-square ranking function
increases:

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (11, 24)
sage: P = A.encoding("Longer message is more information for cryptanalysis.")
sage: C = A.enciphering(a, b, P)
sage: Plist = A.brute_force(C)
sage: Rank = A.rank_by_chi_square(C, Plist)
sage: Rank[:10] # display only the top 10 candidate keys
<BLANKLINE>
[((11, 24), LONGERMESSAGEISMOREINFORMATIONFORCRYPTANALYSIS),
((17, 9), INURFSBFLLHRFDLBNSFDUYNSBHEDNUYNSTSVGEHUHIVLDL),
((9, 18), RMFIUHYUOOSIUWOYMHUWFBMHYSVWMFBMHGHETVSFSREOWO),
((15, 12), VSTACPUCOOGACYOUSPCYTBSPUGNYSTBSPEPIRNGTGVIOYO),
((3, 22), PAFOYLKYGGSOYEGKALYEFTALKSBEAFTALILCVBSFSPCGEG),
((25, 3), OHSRNADNPPFRNVPDHANVSCHADFEVHSCHAJABWEFSFOBPVP),
((7, 25), GHYNVIPVRRLNVFRPHIVFYEHIPLAFHYEHIDITQALYLGTRFR),
((5, 2), NEHCIVKISSUCIWSKEVIWHFEVKUPWEHFEVOVABPUHUNASWS),
((15, 25), IFGNPCHPBBTNPLBHFCPLGOFCHTALFGOFCRCVEATGTIVBLB),
((9, 6), BWPSERIEYYCSEGYIWREGPLWRICFGWPLWRQRODFCPCBOYGY)]

Exception tests

The ciphertext cannot be an empty string:

sage: A.rank_by_chi_square("", Plist)
...
AttributeError: ’str’ object has no attribute ’parent’
sage: A.rank_by_chi_square(A.encoding(""), Plist)
...
ValueError: The ciphertext must be a non-empty string.
sage: A.rank_by_chi_square(A.encoding(" "), Plist)
...
ValueError: The ciphertext must be a non-empty string.

The ciphertext must be encoded using the capital letters of the English alphabet as
implemented in AlphabeticStrings():

108 APPENDIX B. SAGE MANUAL FOR AFFINE CRYPTOSYSTEM

sage: H = HexadecimalStrings()
sage: A.rank_by_chi_square(H.encoding("shift"), Plist)
...
TypeError: The ciphertext must be capital letters of the English alphabet.
sage: B = BinaryStrings()
sage: A.rank_by_chi_square(B.encoding("shift"), Plist)
...
TypeError: The ciphertext must be capital letters of the English alphabet.

The dictionary pdict cannot be empty:

sage: A.rank_by_chi_square(C, {})
...
KeyError: (1, 0)

B.2.8 rank by squared differences(C, pdict)

Use the squared-differences measure to rank all possible keys. Currently, this method
only applies to the capital letters of the English alphabet.

Algorithm

Consider a non-empty alphabet A consisting of n elements, and let C be a ciphertext
encoded using elements of A. The plaintext P corresponding to C is also encoded
using elements of A. Let M be a candidate decipherment of C, i.e. M is the result of
attempting to decrypt C using a key (a, b) which is not necessarily the same key used
to encrypt P . Suppose FA(e) is the characteristic frequency probability of e ∈ A
and let FM(e) be the message frequency probability with respect to M . The charac-
teristic frequency probability distribution of an alphabet is the expected frequency
probability distribution for that alphabet. The message frequency probability dis-
tribution of M provides a distribution of the ratio of character occurrences over
message length. One can interpret the characteristic frequency probability FA(e)
as the expected probability, while the message frequency probability FM(e) is the
observed probability. If M is of length L, then the observed frequency of e ∈ A is

OM(e) = FM (e) · L

and the expected frequency of e ∈ A is

EA(e) = FA(e) · L.

The squared-differences, or residual sum of squares, rank RRSS(M) of M corre-
sponding to a key (a, b) ∈ Z/nZ × Z/nZ is given by

RRSS(M) =
∑

e∈A

(
OM(e) − EA(e)

)2
.

Cryptanalysis by exhaustive key search produces a candidate decipherment Ma,b for
each possible key (a, b). For a set D =

{
Ma1,b1, Ma2,b2 , . . . , Mak,bk

}
of all candidate

decipherments corresponding to a ciphertext C, the smaller is the rank RRSS(Mai,bi
)

the more likely that (ai, bi) is the secret key. This key ranking method is based on
the residual sum of squares measure.

B.2. PUBLIC METHODS 109

Input

• C — The ciphertext, a non-empty string. The ciphertext must be encoded
using the upper-case letters of the English alphabet.

• pdict — A dictionary of key, possible plaintext pairs. This should be the
output of brute force() with ranking="none".

Output

• A list ranking the most likely keys first. Each element of the list is a tuple of
key, possible plaintext pairs.

Examples

Use the method of squared differences to rank all possible keys and their correspond-
ing decipherment:

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (3, 7)
sage: P = A.encoding("Line.")
sage: C = A.enciphering(a, b, P)
sage: Plist = A.brute_force(C)
sage: Rank = A.rank_by_squared_differences(C, Plist)
sage: Rank[:10] # display only the top 10 candidate keys
<BLANKLINE>
[((1, 1), NETS),
((15, 6), ETUN),
((7, 17), HCTE),
((3, 7), LINE),
((17, 15), DELO),
((9, 4), EDWT),
((9, 9), POHE),
((21, 8), ELID),
((17, 20), STAD),
((7, 18), SNEP)]

As more ciphertext is available, the reliability of the squared-differences ranking
function increases:

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: a, b = (11, 24)
sage: P = A.encoding("Longer message is more information for cryptanalysis.")
sage: C = A.enciphering(a, b, P)
sage: Plist = A.brute_force(C)
sage: Rank = A.rank_by_squared_differences(C, Plist)
sage: Rank[:10] # display only the top 10 candidate keys
<BLANKLINE>
[((11, 24), LONGERMESSAGEISMOREINFORMATIONFORCRYPTANALYSIS),
((9, 14), DYRUGTKGAAEUGIAKYTGIRNYTKEHIYRNYTSTQFHEREDQAIA),
((23, 24), DSNEUHIUMMAEUOMISHUONZSHIAROSNZSHKHQXRANADQMOM),
((23, 1), ETOFVIJVNNBFVPNJTIVPOATIJBSPTOATILIRYSBOBERNPN),
((21, 16), VEBGANYAQQOGAMQYENAMBDENYOTMEBDENUNIHTOBOVIQMQ),
((7, 12), TULAIVCIEEYAISECUVISLRUVCYNSULRUVQVGDNYLYTGESE),
((5, 20), ZQTOUHWUEEGOUIEWQHUITRQHWGBIQTRQHAHMNBGTGZMEIE),
((21, 8), JSPUOBMOEECUOAEMSBOAPRSBMCHASPRSBIBWVHCPCJWEAE),
((25, 7), SLWVREHRTTJVRZTHLERZWGLEHJIZLWGLENEFAIJWJSFTZT),
((25, 15), ATEDZMPZBBRDZHBPTMZHEOTMPRQHTEOTMVMNIQRERANBHB)]

110 APPENDIX B. SAGE MANUAL FOR AFFINE CRYPTOSYSTEM

Exception tests

The ciphertext cannot be an empty string:

sage: A.rank_by_squared_differences("", Plist)
...
AttributeError: ’str’ object has no attribute ’parent’
sage: A.rank_by_squared_differences(A.encoding(""), Plist)
...
ValueError: The ciphertext must be a non-empty string.
sage: A.rank_by_squared_differences(A.encoding(" "), Plist)
...
ValueError: The ciphertext must be a non-empty string.

The ciphertext must be encoded using the capital letters of the English alphabet as
implemented in AlphabeticStrings():

sage: H = HexadecimalStrings()
sage: A.rank_by_squared_differences(H.encoding("line"), Plist)
...
TypeError: The ciphertext must be capital letters of the English
alphabet.
sage: B = BinaryStrings()
sage: A.rank_by_squared_differences(B.encoding("line"), Plist)
...
TypeError: The ciphertext must be capital letters of the English
alphabet.

The dictionary pdict cannot be empty:

sage: A.rank_by_squared_differences(C, {})
...
KeyError: (1, 0)

B.3 Private methods

This section documents private methods implemented in the class

sage.crypto.classical.AffineCryptosystem

of the Sage standard library.

B.3.1 init (A)

Construct an AffineCryptosystem object. See AffineCryptosystem for full doc-
umentation.

Input

• A — a string monoid over some alphabet; this is the non-empty alphabet over
which the plaintext and ciphertext spaces are defined.

B.3. PRIVATE METHODS 111

Output

• An affine cryptosystem over the alphabet A.

Examples

Testing of dumping and loading objects:

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: A == loads(dumps(A))
True

B.3.2 call (a, b)

Create an affine cipher with secret key (a, b).

Input

• (a, b) — a secret key; this key is used for both encryption and decryption.
For the affine cryptosystem whose plaintext and ciphertext spaces are A, a key
is an ordered pair (a, b) ∈ Z/nZ × Z/nZ where n is the size or cardinality of
the set A and gcd(a, n) = 1.

Output

• An affine cipher with secret key (a,b).

Examples

Creating an AffineCryptosystem object and perform cryptographic operations us-
ing it:

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: P = A.encoding("Fine here, fine there."); P
FINEHEREFINETHERE
sage: a, b = (17, 3)
sage: E = A(a, b); E
Affine cipher on Free alphabetic string monoid on A-Z
sage: E(P)
KJQTSTGTKJQTOSTGT
sage: C = E(P)
sage: C
KJQTSTGTKJQTOSTGT
sage: aInv, bInv = A.inverse_key(a, b)
sage: D = A(aInv, bInv); D
Affine cipher on Free alphabetic string monoid on A-Z
sage: P == D(C)
True
sage: D(E(P))
FINEHEREFINETHERE

112 APPENDIX B. SAGE MANUAL FOR AFFINE CRYPTOSYSTEM

Exception tests

The key must be an ordered pair (a, b) ∈ Z/nZ×Z/nZ with n being the size of the
plaintext and ciphertext spaces. Furthermore, a must be relatively prime to n, i.e.
gcd(a, n) = 1:

sage: A = AffineCryptosystem(AlphabeticStrings())
sage: A(2, 3)
Traceback (most recent call last):
...
ValueError: (a, b) = (2, 3) is outside the range of acceptable values\
for a key of this affine cryptosystem.

B.3.3 repr ()

Return a string representation of this affine cryptosystem.

Examples

sage: A = AffineCryptosystem(AlphabeticStrings()); A
Affine cryptosystem on Free alphabetic string monoid on A-Z

Appendix C

Sage Manual for Simplified DES

The S-DES symmetric-key cryptosystem described in Chapter 5 is implemented in
the class

sage.crypto.block cipher.sdes.SimplifiedDES (C.1)

via bug tracking ticket #6461 [83]. This appendix provides the reference manual for
the Sage class (C.1). The bug tracking ticket #6461 has been merged in the Sage
standard library during the development of Sage version 4.1.2.alpha0. The source
code of the class (C.1) is available with the latest source release of Sage, which as
of this writing is Sage version 4.2.1.

C.1 Class documentation

This class implements the Simplified Data Encryption Standard (S-DES) described
in [102]. Schaefer’s S-DES is for educational purposes only and is not secure for
practical purposes. S-DES is a version of the DES with all parameters significantly
reduced, but at the same time preserving the structure of DES. The goal of S-DES
is to allow a beginner to understand the structure of DES, thus laying a foundation
for a thorough study of DES. Its goal is as a teaching tool in the same spirit as
Phan’s Mini-AES [93].

C.1.1 Examples

Encrypt a random block of 8-bit plaintext using a random key, decrypt the cipher-
text, and compare the result with the original plaintext:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES(); sdes
Simplified DES block cipher with 10-bit keys
sage: bin = BinaryStrings()
sage: P = [bin(str(randint(0, 1))) for i in xrange(8)]
sage: K = sdes.random_key()
sage: C = sdes.encrypt(P, K)
sage: plaintxt = sdes.decrypt(C, K)
sage: plaintxt == P
True

We can also encrypt binary strings that are larger than 8 bits in length. However,
the number of bits in that binary string must be positive and a multiple of 8:

113

114 APPENDIX C. SAGE MANUAL FOR SIMPLIFIED DES

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: bin = BinaryStrings()
sage: P = bin.encoding("Encrypt this using S-DES!")
sage: Mod(len(P), 8) == 0
True
sage: K = sdes.list_to_string(sdes.random_key())
sage: C = sdes(P, K, algorithm="encrypt")
sage: plaintxt = sdes(C, K, algorithm="decrypt")
sage: plaintxt == P
True

C.2 Public methods

This section documents public methods of the class

sage.crypto.block cipher.sdes.SimplifiedDES

in the Sage standard library.

C.2.1 block length()

Return the block length of Schaefer’s S-DES block cipher. A key in Schaefer’s S-DES
is a block of 10 bits.

Output

• The block (or key) length in number of bits.

Examples

The block length of S-DES:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: sdes.block_length()
10

C.2.2 encrypt(P, K)

Return an 8-bit ciphertext corresponding to the plaintext P, using S-DES encryp-
tion with key K. The encryption process of S-DES is as follows. Let P be the initial
permutation function, P−1 the corresponding inverse permutation, ΠF the permu-
tation/substitution function, and σ the switch function. The plaintext block P first
goes through P , the output of which goes through ΠF using the first subkey. Then
we apply the switch function to the output of the last function, and the result is
then fed into ΠF using the second subkey. Finally, run the output through P−1 to
get the ciphertext.

C.2. PUBLIC METHODS 115

Input

• P — an 8-bit plaintext; a block of 8 bits.

• K — a 10-bit key; a block of 10 bits.

Output

• The 8-bit ciphertext corresponding to P, obtained using the key K.

Examples

Encrypt an 8-bit plaintext block:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: P = [0, 1, 0, 1, 0, 1, 0, 1]
sage: K = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0]
sage: sdes.encrypt(P, K)
[1, 1, 0, 0, 0, 0, 0, 1]

We can also work with strings of bits:

sage: P = "01010101"
sage: K = "1010000010"
sage: sdes.encrypt(sdes.string_to_list(P), sdes.string_to_list(K))
[1, 1, 0, 0, 0, 0, 0, 1]

Exception tests

The plaintext must be a block of 8 bits:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: sdes.encrypt("P", "K")
...
TypeError: plaintext must be a list of 8 bits
sage: sdes.encrypt([], "K")
...
ValueError: plaintext must be a list of 8 bits
sage: sdes.encrypt([1, 2, 3, 4], "K")
...
ValueError: plaintext must be a list of 8 bits

The key must be a block of 10 bits:

sage: sdes.encrypt([1, 0, 1, 0, 1, 1, 0, 1], "K")
...
TypeError: the key must be a list of 10 bits
sage: sdes.encrypt([1, 0, 1, 0, 1, 1, 0, 1], [])
...
TypeError: the key must be a list of 10 bits
sage: sdes.encrypt([1, 0, 1, 0, 1, 1, 0, 1], [1, 2, 3, 4, 5])
...
TypeError: the key must be a list of 10 bits

116 APPENDIX C. SAGE MANUAL FOR SIMPLIFIED DES

The value of each element of P or K must be either 0 or 1:

sage: P = [1, 2, 3, 4, 5, 6, 7, 8]
sage: K = [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
sage: sdes.encrypt(P, K)
...
TypeError: Argument x (= 2) is not a valid string.
sage: P = [0, 1, 0, 0, 1, 1, 1, 0]
sage: K = [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
sage: sdes.encrypt(P, K)
...
TypeError: Argument x (= 13) is not a valid string.

C.2.3 decrypt(C, K)

Return an 8-bit plaintext corresponding to the ciphertext C, using S-DES decryp-
tion with key K. The decryption process of S-DES is as follows. Let P be the initial
permutation function, P−1 the corresponding inverse permutation, ΠF the permu-
tation/substitution function, and σ the switch function. The ciphertext block C
first goes through P , the output of which goes through ΠF using the second subkey.
Then we apply the switch function to the output of the last function, and the result
is then fed into ΠF using the first subkey. Finally, run the output through P−1 to
get the plaintext.

Input

• C — an 8-bit ciphertext; a block of 8 bits.

• K — a 10-bit key; a block of 10 bits.

Output

• The 8-bit plaintext corresponding to C, obtained using the key K.

Examples

Decrypt an 8-bit ciphertext block:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: C = [0, 1, 0, 1, 0, 1, 0, 1]
sage: K = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0]
sage: sdes.decrypt(C, K)
[0, 0, 0, 1, 0, 1, 0, 1]

We can also work with strings of bits:

sage: C = "01010101"
sage: K = "1010000010"
sage: sdes.decrypt(sdes.string_to_list(C), sdes.string_to_list(K))
[0, 0, 0, 1, 0, 1, 0, 1]

C.2. PUBLIC METHODS 117

Exception tests

The ciphertext must be a block of 8 bits:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: sdes.decrypt("C", "K")
...
TypeError: ciphertext must be a list of 8 bits
sage: sdes.decrypt([], "K")
...
ValueError: ciphertext must be a list of 8 bits
sage: sdes.decrypt([1, 2, 3, 4], "K")
...
ValueError: ciphertext must be a list of 8 bits

The key must be a block of 10 bits:

sage: sdes.decrypt([1, 0, 1, 0, 1, 1, 0, 1], "K")
...
TypeError: the key must be a list of 10 bits
sage: sdes.decrypt([1, 0, 1, 0, 1, 1, 0, 1], [])
...
TypeError: the key must be a list of 10 bits
sage: sdes.decrypt([1, 0, 1, 0, 1, 1, 0, 1], [1, 2, 3, 4, 5])
...
TypeError: the key must be a list of 10 bits

The value of each element of C or K must be either 0 or 1:

sage: C = [1, 2, 3, 4, 5, 6, 7, 8]
sage: K = [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
sage: sdes.decrypt(C, K)
...
TypeError: Argument x (= 2) is not a valid string.
sage: C = [0, 1, 0, 0, 1, 1, 1, 0]
sage: K = [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
sage: sdes.decrypt(C, K)
...
TypeError: Argument x (= 13) is not a valid string.

C.2.4 initial permutation(B, inverse=False)

Return the initial permutation of B. Denote the initial permutation function by P
and let (b0, b1, b2, . . . , b7) be a vector of 8 bits, where each bi ∈ {0, 1}. Then

P (b0, b1, b2, b3, b4, b5, b6, b7) = (b1, b5, b2, b0, b3, b7, b4, b6).

The inverse permutation is P−1:

P−1(b0, b1, b2, b3, b4, b5, b6, b7) = (b3, b0, b2, b4, b6, b1, b7, b5).

Input

• B — list; a block of 8 bits.

• inverse — (default: False) if True then use the inverse permutation P−1; if
False then use the initial permutation P.

118 APPENDIX C. SAGE MANUAL FOR SIMPLIFIED DES

Output

• The initial permutation of B if inverse=False, or the inverse permutation of
B if inverse=True.

Examples

The initial permutation of a list of 8 bits:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: B = [1, 0, 1, 1, 0, 1, 0, 0]
sage: P = sdes.initial_permutation(B); P
[0, 1, 1, 1, 1, 0, 0, 0]

Recovering the original list of 8 bits from the permutation:

sage: Pinv = sdes.initial_permutation(P, inverse=True)
sage: Pinv; B
[1, 0, 1, 1, 0, 1, 0, 0]
[1, 0, 1, 1, 0, 1, 0, 0]

We can also work with a string of bits:

sage: S = "10110100"
sage: L = sdes.string_to_list(S)
sage: P = sdes.initial_permutation(L); P
[0, 1, 1, 1, 1, 0, 0, 0]
sage: sdes.initial_permutation(sdes.string_to_list("01111000"), inverse=True)
[1, 0, 1, 1, 0, 1, 0, 0]

Exception tests

The input block must be a list:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: sdes.initial_permutation("B")
...
TypeError: input block must be a list of 8 bits
sage: sdes.initial_permutation(())
...
TypeError: input block must be a list of 8 bits

The input block must be a list of 8 bits:

sage: sdes.initial_permutation([])
...
ValueError: input block must be a list of 8 bits
sage: sdes.initial_permutation([1, 2, 3, 4, 5, 6, 7, 8, 9])
...
ValueError: input block must be a list of 8 bits

The value of each element of the list must be either 0 or 1:

sage: sdes.initial_permutation([1, 2, 3, 4, 5, 6, 7, 8])
...
TypeError: Argument x (= 2) is not a valid string.

C.2. PUBLIC METHODS 119

C.2.5 left shift(B, n=1)

Return a circular left shift of B by n positions. Let B = (b0, b1, b2, b3, b4, b5, b6, b7, b8, b9)
be a vector of 10 bits. Then the left shift operation Ln is performed on the first 5
bits and the last 5 bits of B separately. That is, if the number of shift positions is
n = 1, then L1 is defined as

L1(b0, b1, b2, b3, b4, b5, b6, b7, b8, b9) = (b1, b2, b3, b4, b0, b6, b7, b8, b9, b5).

If the number of shift positions is n = 2, then L2 is given by

L2(b0, b1, b2, b3, b4, b5, b6, b7, b8, b9) = (b2, b3, b4, b0, b1, b7, b8, b9, b5, b6).

Input

• B — a list of 10 bits.

• n — (default: 1) if n=1 then perform left shift by 1 position; if n=2 then
perform left shift by 2 positions. The valid values for n are 1 and 2, since only
up to 2 positions are defined for this circular left shift operation.

Output

• The circular left shift of each half of B.

Examples

Circular left shift by 1 position of a 10-bit string:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: B = [1, 0, 0, 0, 0, 0, 1, 1, 0, 0]
sage: sdes.left_shift(B)
[0, 0, 0, 0, 1, 1, 1, 0, 0, 0]
sage: sdes.left_shift([1, 0, 1, 0, 0, 0, 0, 0, 1, 0])
[0, 1, 0, 0, 1, 0, 0, 1, 0, 0]

Circular left shift by 2 positions of a 10-bit string:

sage: B = [0, 0, 0, 0, 1, 1, 1, 0, 0, 0]
sage: sdes.left_shift(B, n=2)
[0, 0, 1, 0, 0, 0, 0, 0, 1, 1]

Here we work with a string of bits:

sage: S = "1000001100"
sage: L = sdes.string_to_list(S)
sage: sdes.left_shift(L)
[0, 0, 0, 0, 1, 1, 1, 0, 0, 0]
sage: sdes.left_shift(sdes.string_to_list("1010000010"), n=2)
[1, 0, 0, 1, 0, 0, 1, 0, 0, 0]

120 APPENDIX C. SAGE MANUAL FOR SIMPLIFIED DES

Exception tests

The input block must be a list:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: sdes.left_shift("B")
...
TypeError: input block must be a list of 10 bits
sage: sdes.left_shift(())
...
TypeError: input block must be a list of 10 bits

The input block must be a list of 10 bits:

sage: sdes.left_shift([])
...
ValueError: input block must be a list of 10 bits
sage: sdes.left_shift([1, 2, 3, 4, 5])
...
ValueError: input block must be a list of 10 bits

The value of each element of the list must be either 0 or 1:

sage: sdes.left_shift([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
...
TypeError: Argument x (= 2) is not a valid string.

The number of shift positions must be either 1 or 2:

sage: B = [0, 0, 0, 0, 1, 1, 1, 0, 0, 0]
sage: sdes.left_shift(B, n=-1)
...
ValueError: input n must be either 1 or 2
sage: sdes.left_shift(B, n=3)
...
ValueError: input n must be either 1 or 2

C.2.6 list to string(B)

Return a binary string representation of the list B.

Input

• B — a non-empty list of bits.

Output

• The binary string representation of B.

C.2. PUBLIC METHODS 121

Examples

A binary string representation of a list of bits:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: L = [0, 0, 0, 0, 1, 1, 0, 1, 0, 0]
sage: sdes.list_to_string(L)
0000110100

Exception tests

Input B must be a non-empty list:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: sdes.list_to_string("L")
...
TypeError: input B must be a non-empty list of bits
sage: sdes.list_to_string([])
...
ValueError: input B must be a non-empty list of bits

Input must be a non-empty list of bits:

sage: sdes.list_to_string([0, 1, 2])
...
IndexError: tuple index out of range

C.2.7 permutation10(B)

Return a permutation of a 10-bit string. This is the permutation function P10 and is
specified as follows. Let (b0, b1, b2, b3, b4, b5, b6, b7, b8, b9) be a vector of 10 bits where
each bi ∈ {0, 1}. Then P10 is given by

P10(b0, b1, b2, b3, b4, b5, b6, b7, b8, b9) = (b2, b4, b1, b6, b3, b9, b0, b8, b7, b5).

Input

• B — a block of 10-bit string.

Output

• A permutation of B using P10.

Examples

Permute a 10-bit string:

122 APPENDIX C. SAGE MANUAL FOR SIMPLIFIED DES

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: B = [1, 1, 0, 0, 1, 0, 0, 1, 0, 1]
sage: sdes.permutation10(B)
[0, 1, 1, 0, 0, 1, 1, 0, 1, 0]
sage: sdes.permutation10([0, 1, 1, 0, 1, 0, 0, 1, 0, 1])
[1, 1, 1, 0, 0, 1, 0, 0, 1, 0]
sage: sdes.permutation10([1, 0, 1, 0, 0, 0, 0, 0, 1, 0])
[1, 0, 0, 0, 0, 0, 1, 1, 0, 0]

Here we work with a string of bits:

sage: S = "1100100101"
sage: L = sdes.string_to_list(S)
sage: sdes.permutation10(L)
[0, 1, 1, 0, 0, 1, 1, 0, 1, 0]
sage: sdes.permutation10(sdes.string_to_list("0110100101"))
[1, 1, 1, 0, 0, 1, 0, 0, 1, 0]

Exception tests

The input block must be a list:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: sdes.permutation10("B")
...
TypeError: input block must be a list of 10 bits
sage: sdes.permutation10(())
...
TypeError: input block must be a list of 10 bits

The input block must be a list of 10 bits:

sage: sdes.permutation10([])
...
ValueError: input block must be a list of 10 bits
sage: sdes.permutation10([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
...
ValueError: input block must be a list of 10 bits

The value of each element of the list must be either 0 or 1:

sage: sdes.permutation10([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
...
TypeError: Argument x (= 3) is not a valid string.

C.2.8 permutation4(B)

Return a permutation of a 4-bit string. This is the permutation P4 and is specified
as follows. Let (b0, b1, b2, b3) be a vector of 4 bits where each bi ∈ {0, 1}. Then P4 is
defined by

P4(b0, b1, b2, b3) = (b1, b3, b2, b0).

C.2. PUBLIC METHODS 123

Input

• B — a block of 4-bit string.

Output

• A permutation of B using P4.

Examples

Permute a 4-bit string:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: B = [1, 1, 0, 0]
sage: sdes.permutation4(B)
[1, 0, 0, 1]
sage: sdes.permutation4([0, 1, 0, 1])
[1, 1, 0, 0]

We can also work with a string of bits:

sage: S = "1100"
sage: L = sdes.string_to_list(S)
sage: sdes.permutation4(L)
[1, 0, 0, 1]
sage: sdes.permutation4(sdes.string_to_list("0101"))
[1, 1, 0, 0]

Exception tests

The input block must be a list:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: sdes.permutation4("B")
...
TypeError: input block must be a list of 4 bits
sage: sdes.permutation4(())
...
TypeError: input block must be a list of 4 bits

The input block must be a list of 4 bits:

sage: sdes.permutation4([])
...
ValueError: input block must be a list of 4 bits
sage: sdes.permutation4([1, 2, 3, 4, 5])
...
ValueError: input block must be a list of 4 bits

The value of each element of the list must be either 0 or 1:

sage: sdes.permutation4([1, 2, 3, 4])
...
TypeError: Argument x (= 2) is not a valid string.

124 APPENDIX C. SAGE MANUAL FOR SIMPLIFIED DES

C.2.9 permutation8(B)

Return a permutation of an 8-bit string. This is the permutation P8 and is specified
as follows. Let (b0, b1, b2, b3, b4, b5, b6, b7, b8, b9) be a vector of 10 bits where each
bi ∈ {0, 1}. Then P8 picks out 8 of those 10 bits and permutes those 8 bits:

P8(b0, b1, b2, b3, b4, b5, b6, b7, b8, b9) = (b5, b2, b6, b3, b7, b4, b9, b8).

Input

• B — a block of 10-bit string.

Output

• Pick out 8 of the 10 bits of B and permute those 8 bits.

Examples

Permute a 10-bit string:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: B = [1, 1, 0, 0, 1, 0, 0, 1, 0, 1]
sage: sdes.permutation8(B)
[0, 0, 0, 0, 1, 1, 1, 0]
sage: sdes.permutation8([0, 1, 1, 0, 1, 0, 0, 1, 0, 1])
[0, 1, 0, 0, 1, 1, 1, 0]
sage: sdes.permutation8([0, 0, 0, 0, 1, 1, 1, 0, 0, 0])
[1, 0, 1, 0, 0, 1, 0, 0]

We can also work with a string of bits:

sage: S = "1100100101"
sage: L = sdes.string_to_list(S)
sage: sdes.permutation8(L)
[0, 0, 0, 0, 1, 1, 1, 0]
sage: sdes.permutation8(sdes.string_to_list("0110100101"))
[0, 1, 0, 0, 1, 1, 1, 0]

Exception tests

The input block must be a list:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: sdes.permutation8("B")
...
TypeError: input block must be a list of 10 bits
sage: sdes.permutation8(())
...
TypeError: input block must be a list of 10 bits

The input block must be a list of 10 bits:

C.2. PUBLIC METHODS 125

sage: sdes.permutation8([])
...
ValueError: input block must be a list of 10 bits
sage: sdes.permutation8([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
...
ValueError: input block must be a list of 10 bits

The value of each element of the list must be either 0 or 1:

sage: sdes.permutation8([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
...
TypeError: Argument x (= 6) is not a valid string.

C.2.10 permute substitute(B, key)

Apply the Feistel function ΠF on the block B using subkey key. Let

(b0, b1, b2, b3, b4, b5, b6, b7)

be a vector of 8 bits where each bi ∈ {0, 1}, let L and R be the leftmost 4 bits and
rightmost 4 bits of B respectively, and let F be a function mapping 4-bit strings to
4-bit strings. Then

ΠF (L, R) = (L ⊕ F (R, S), R)

where S is a subkey and ⊕ denotes the bit-wise exclusive-OR function.
The function F can be described as follows. Its 4-bit input block (n0, n1, n2, n3)

is first expanded into an 8-bit block to become (n3, n0, n1, n2, n1, n2, n3, n0). This is
usually represented as follows

n3 n0 n1 n2

n1 n2 n3 n0
.

Let K = (k0, k1, k2, k3, k4, k5, k6, k7) be an 8-bit subkey. Then K is added to the
above expanded input block using exclusive-OR to produce

n3 + k0 n0 + k1 n1 + k2 n2 + k3

n1 + k4 n2 + k5 n3 + k6 n0 + k7
=

p0,0 p0,1 p0,2 p0,3

p1,0 p1,1 p1,2 p1,3
.

Now read the first row as the 4-bit string p0,0p0,3p0,1p0,2 and input this 4-bit string
through S-box S0 to get a 2-bit output.

S0 =

Input Output Input Output
0000 01 1000 00
0001 00 1001 10
0010 11 1010 01
0011 10 1011 11
0100 11 1100 11
0101 10 1101 01
0110 01 1110 11
0111 00 1111 10

126 APPENDIX C. SAGE MANUAL FOR SIMPLIFIED DES

Next read the second row as the 4-bit string p1,0p1,3p1,1p1,2 and input this 4-bit string
through S-box S1 to get another 2-bit output.

S1 =

Input Output Input Output
0000 00 1000 11
0001 01 1001 00
0010 10 1010 01
0011 11 1011 00
0100 10 1100 10
0101 00 1101 01
0110 01 1110 00
0111 11 1111 11

Denote the 4 bits produced by S0 and S1 as b0b1b2b3. This 4-bit string undergoes
another permutation called P4 as follows:

P4(b0, b1, b2, b3) = (b1, b3, b2, b0).

The output of P4 is the output of the function F .

Input

• B — a list of 8 bits.

• key — an 8-bit subkey.

Output

• The result of applying the function ΠF to B with subkey key.

Examples

Applying the function ΠF to an 8-bit block and an 8-bit subkey:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: B = [1, 0, 1, 1, 1, 1, 0, 1]
sage: K = [1, 1, 0, 1, 0, 1, 0, 1]
sage: sdes.permute_substitute(B, K)
[1, 0, 1, 0, 1, 1, 0, 1]

We can also work with strings of bits:

sage: B = "10111101"
sage: K = "11010101"
sage: B = sdes.string_to_list(B); K = sdes.string_to_list(K)
sage: sdes.permute_substitute(B, K)
[1, 0, 1, 0, 1, 1, 0, 1]

C.2. PUBLIC METHODS 127

Exception tests

The input B must be a block of 8 bits:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: sdes.permute_substitute("B", "K")
...
TypeError: input B must be an 8-bit string
sage: sdes.permute_substitute([], "K")
...
ValueError: input B must be an 8-bit string

The input key must be an 8-bit subkey:

sage: sdes.permute_substitute([0, 1, 0, 0, 1, 1, 1, 0], "K")
...
TypeError: input key must be an 8-bit subkey
sage: sdes.permute_substitute([0, 1, 0, 0, 1, 1, 1, 0], [])
...
ValueError: input key must be an 8-bit subkey

The value of each element of B or key must be either 0 or 1:

sage: B = [1, 2, 3, 4, 5, 6, 7, 8]
sage: K = [0, 1, 2, 3, 4, 5, 6, 7]
sage: sdes.permute_substitute(B, K)
...
TypeError: Argument x (= 2) is not a valid string.
sage: B = [0, 1, 0, 0, 1, 1, 1, 0]
sage: K = [1, 2, 3, 4, 5, 6, 7, 8]
sage: sdes.permute_substitute(B, K)
...
TypeError: Argument x (= 2) is not a valid string.

C.2.11 random key()

Return a random 10-bit key.

Examples

The size of each key is the same as the block size:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: key = sdes.random_key()
sage: len(key) == sdes.block_length()
True

C.2.12 sbox()

Return the S-boxes of simplified DES.

128 APPENDIX C. SAGE MANUAL FOR SIMPLIFIED DES

Examples

The S-boxes of S-DES:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: sbox = sdes.sbox()
sage: sbox[0]; sbox[1]
(1, 0, 3, 2, 3, 2, 1, 0, 0, 2, 1, 3, 3, 1, 3, 2)
(0, 1, 2, 3, 2, 0, 1, 3, 3, 0, 1, 0, 2, 1, 0, 3)

C.2.13 string to list(S)

Return a list representation of the binary string S.

Input

• S — a string of bits.

Output

• A list representation of the string S.

Examples

A list representation of a string of bits:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: S = "0101010110"
sage: sdes.string_to_list(S)
[0, 1, 0, 1, 0, 1, 0, 1, 1, 0]

Exception tests

Input must be a non-empty string:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: sdes.string_to_list("")
...
ValueError: input S must be a non-empty string of bits
sage: sdes.string_to_list(1)
...
TypeError: input S must be a non-empty string of bits

Input must be a non-empty string of bits:

sage: sdes.string_to_list("0123")
...
TypeError: Argument x (= 2) is not a valid string.

C.2. PUBLIC METHODS 129

C.2.14 subkey(K, n=1)

Return the n-th subkey based on the key K.

Input

• K — a 10-bit secret key of this simplified DES.

• n — (default: 1) if n=1 then return the first subkey based on K; if n=2 then
return the second subkey. The valid values for n are 1 and 2, since only two
subkeys are defined for each secret key in Schaefer’s S-DES.

Output

• The n-th subkey based on the secret key K.

Examples

Obtain the first subkey from a secret key:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: key = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0]
sage: sdes.subkey(key, n=1)
[1, 0, 1, 0, 0, 1, 0, 0]

Obtain the second subkey from a secret key:

sage: key = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0]
sage: sdes.subkey(key, n=2)
[0, 1, 0, 0, 0, 0, 1, 1]

We can also work with strings of bits:

sage: K = "1010010010"
sage: L = sdes.string_to_list(K)
sage: sdes.subkey(L, n=1)
[1, 0, 1, 0, 0, 1, 0, 1]
sage: sdes.subkey(sdes.string_to_list("0010010011"), n=2)
[0, 1, 1, 0, 1, 0, 1, 0]

Exception tests

Input K must be a 10-bit key:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: sdes.subkey("K")
...
TypeError: input K must be a 10-bit key
sage: sdes.subkey([])
...
ValueError: input K must be a 10-bit key

130 APPENDIX C. SAGE MANUAL FOR SIMPLIFIED DES

There are only two subkeys:

sage: key = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0]
sage: sdes.subkey(key, n=0)
...
ValueError: input n must be either 1 or 2
sage: sdes.subkey(key, n=3)
...
ValueError: input n must be either 1 or 2

C.2.15 switch(B)

Interchange the first 4 bits with the last 4 bits in the list B of 8 bits. Let

(b0, b1, b2, b3, b4, b5, b6, b7)

be a vector of 8 bits, where each bi ∈ {0, 1}. Then the switch function σ is given by

σ(b0, b1, b2, b3, b4, b5, b6, b7) = (b4, b5, b6, b7, b0, b1, b2, b3).

Input

• B — list; a block of 8 bits.

Output

• A block of the same dimension, but in which the first 4 bits from B has been
switched for the last 4 bits in B.

Examples

Interchange the first 4 bits with the last 4 bits:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: B = [1, 1, 1, 0, 1, 0, 0, 0]
sage: sdes.switch(B)
[1, 0, 0, 0, 1, 1, 1, 0]
sage: sdes.switch([1, 1, 1, 1, 0, 0, 0, 0])
[0, 0, 0, 0, 1, 1, 1, 1]

We can also work with a string of bits:

sage: S = "11101000"
sage: L = sdes.string_to_list(S)
sage: sdes.switch(L)
[1, 0, 0, 0, 1, 1, 1, 0]
sage: sdes.switch(sdes.string_to_list("11110000"))
[0, 0, 0, 0, 1, 1, 1, 1]

C.3. PRIVATE METHODS 131

Exception tests

The input block must be a list:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: sdes.switch("B")
...
TypeError: input block must be a list of 8 bits
sage: sdes.switch(())
...
TypeError: input block must be a list of 8 bits

The input block must be a list of 8 bits:

sage: sdes.switch([])
...
ValueError: input block must be a list of 8 bits
sage: sdes.switch([1, 2, 3, 4, 5, 6, 7, 8, 9])
...
ValueError: input block must be a list of 8 bits

The value of each element of the list must be either 0 or 1:

sage: sdes.switch([1, 2, 3, 4, 5, 6, 7, 8])
...
TypeError: Argument x (= 5) is not a valid string.

C.3 Private methods

This section documents private methods of the class

sage.crypto.block cipher.sdes.SimplifiedDES

in the Sage standard library.

C.3.1 init ()

Construct a simplified variant of the Data Encryption Standard (DES).

Examples

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES(); sdes
Simplified DES block cipher with 10-bit keys
sage: B = BinaryStrings()
sage: P = [B(str(randint(0, 1))) for i in xrange(8)]
sage: K = sdes.random_key()
sage: C = sdes.encrypt(P, K)
sage: plaintxt = sdes.decrypt(C, K)
sage: plaintxt == P
True

132 APPENDIX C. SAGE MANUAL FOR SIMPLIFIED DES

C.3.2 call (B, K, algorithm="encrypt")

Apply S-DES encryption or decryption on the binary string B using the key K. The
flag algorithm controls what action is to be performed on B.

Input

• B — a binary string, where the number of bits is positive and a multiple of 8.

• K — a secret key; this must be a 10-bit binary string.

• algorithm — (default: "encrypt") a string; a flag to signify whether encryp-
tion or decryption is to be applied to the binary string B. The encryption flag
is "encrypt" and the decryption flag is "decrypt".

Output

• The ciphertext (respectively plaintext) corresponding to the binary string B.

Examples

Encrypt a plaintext, decrypt the ciphertext, and compare the result with the original
plaintext:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: bin = BinaryStrings()
sage: P = bin.encoding("Encrypt this using DES!")
sage: K = sdes.random_key()
sage: K = sdes.list_to_string(K)
sage: C = sdes(P, K, algorithm="encrypt")
sage: plaintxt = sdes(C, K, algorithm="decrypt")
sage: plaintxt == P
True

Exception tests

The binary string B must be non-empty and the number of bits must be a multiple
of 8:

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: sdes = SimplifiedDES()
sage: sdes("B", "K")
Traceback (most recent call last):
...
TypeError: input B must be a non-empty binary string with number of\
bits a multiple of 8
sage: bin = BinaryStrings()
sage: B = bin("101")
sage: sdes(B, "K")
Traceback (most recent call last):
...
ValueError: the number of bits in the binary string B must be positive\
and a multiple of 8

The secret key K must be a block of 10 bits:

C.3. PRIVATE METHODS 133

sage: B = bin.encoding("abc")
sage: sdes(B, "K")
Traceback (most recent call last):
...
TypeError: secret key must be a 10-bit binary string
sage: K = bin("1010")
sage: sdes(B, K)
Traceback (most recent call last):
...
ValueError: secret key must be a 10-bit binary string

The value for algorithm must be either "encrypt" or "decrypt":

sage: B = bin.encoding("abc")
sage: K = sdes.list_to_string(sdes.random_key())
sage: sdes(B, K, algorithm="e")
Traceback (most recent call last):
...
ValueError: algorithm must be either ’encrypt’ or ’decrypt’
sage: sdes(B, K, algorithm="d")
Traceback (most recent call last):
...
ValueError: algorithm must be either ’encrypt’ or ’decrypt’
sage: sdes(B, K, algorithm="abc")
Traceback (most recent call last):
...
ValueError: algorithm must be either ’encrypt’ or ’decrypt’

C.3.3 eq (other)

Compare whether or not this S-DES object is the same as the object in other.

Examples

Simplified DES objects are the same if they have the same key size and S-boxes.

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: s = SimplifiedDES()
sage: s == loads(dumps(s))
True

C.3.4 repr ()

A string representation of this simplified DES.

Examples

sage: from sage.crypto.block_cipher.sdes import SimplifiedDES
sage: SimplifiedDES()
Simplified DES block cipher with 10-bit keys

134 APPENDIX C. SAGE MANUAL FOR SIMPLIFIED DES

Appendix D

Sage Manual for Mini-AES

The Mini-AES symmetric-key cryptosystem described in Chapter 6 is implemented
in the class

sage.crypto.block cipher.miniaes.MiniAES (D.1)

via bug tracking ticket #6164 [80]. In this appendix, we provide the reference manual
for the Sage class (D.1). The bug tracking ticket #6164 has been merged in the Sage
standard library during the development of Sage version 4.1.alpha2. The source
code of the class (D.1) is available with the latest source release of Sage, which as
of this writing is Sage version 4.2.1.

D.1 Class documentation

This class implements the Mini Advanced Encryption Standard (Mini-AES) de-
scribed in [93]. Note that Phan’s Mini-AES is for educational purposes only and is
not secure for practical purposes. Mini-AES is a version of the AES with all param-
eters significantly reduced, but at the same time preserving the structure of AES.
The goal of Mini-AES is to allow a beginner to understand the structure of AES,
thus laying a foundation for a thorough study of AES. Its goal is as a teaching tool
and is different from the SR small scale variants of the AES. SR defines a family of
parameterizable variants of the AES suitable as a framework for comparing different
cryptanalytic techniques that can be brought to bear on the AES.

D.1.1 Examples

Encrypt a plaintext:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: P = MS([K("x^3 + x"), K("x^2 + 1"), K("x^2 + x"), K("x^3 + x^2")]); P
<BLANKLINE>
[x^3 + x x^2 + 1]
[x^2 + x x^3 + x^2]
sage: key = MS([K("x^3 + x^2"), K("x^3 + x"), K("x^3 + x^2 + x"), K("x^2 + x + 1")]); key
<BLANKLINE>
[x^3 + x^2 x^3 + x]
[x^3 + x^2 + x x^2 + x + 1]
sage: C = maes.encrypt(P, key); C

135

136 APPENDIX D. SAGE MANUAL FOR MINI-AES

<BLANKLINE>
[x x^2 + x]
[x^3 + x^2 + x x^3 + x]

Decrypt the result:

sage: plaintxt = maes.decrypt(C, key)
sage: plaintxt; P
<BLANKLINE>
[x^3 + x x^2 + 1]
[x^2 + x x^3 + x^2]
<BLANKLINE>
[x^3 + x x^2 + 1]
[x^2 + x x^3 + x^2]
sage: plaintxt == P
True

We can also work directly with binary strings:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: bin = BinaryStrings()
sage: key = bin.encoding("KE"); key
0100101101000101
sage: P = bin.encoding("Encrypt this secret message!"); P
010001010110111001100011011100100111100101110000011101000010000001110100011\
010000110100101110011001000000111001101100101011000110111001001100101011101\
00001000000110110101100101011100110111001101100001011001110110010100100001
sage: C = maes(P, key, algorithm="encrypt"); C
100010001010011011110000011110000100110011101101010001110110110101010010111\
011111010110011100111001000111011001010101000101001111101100110010100010001\
11011011010010000011000110001100000111000011100110101111000000001110001001
sage: plaintxt = maes(C, key, algorithm="decrypt")
sage: plaintxt == P
True

Now we work with integers n such that 0 ≤ n ≤ 15:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: P = [n for n in xrange(16)]; P
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
sage: key = [2, 3, 11, 0]; key
[2, 3, 11, 0]
sage: P = maes.integer_to_binary(P); P
0000000100100011010001010110011110001001101010111100110111101111
sage: key = maes.integer_to_binary(key); key
0010001110110000
sage: C = maes(P, key, algorithm="encrypt"); C
1100100000100011111001010101010101011011100111110001000011100001
sage: plaintxt = maes(C, key, algorithm="decrypt")
sage: plaintxt == P
True

Generate some random plaintext and a random secret key. Encrypt the plaintext
using that secret key and decrypt the result. Then compare the decrypted plaintext
with the original plaintext:

D.2. PUBLIC METHODS 137

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: MS = MatrixSpace(FiniteField(16, "x"), 2, 2)
sage: P = MS.random_element()
sage: key = maes.random_key()
sage: C = maes.encrypt(P, key)
sage: plaintxt = maes.decrypt(C, key)
sage: plaintxt == P
True

D.2 Public methods

This section documents public methods in the class

sage.crypto.block cipher.miniaes.MiniAES

of the Sage standard library.

D.2.1 add key(block, rkey)

Return the matrix addition of block and rkey. Both block and rkey are 2 × 2
matrices over the finite field F24 [x]/(x4+x3+1). This method just return the matrix
addition of these two matrices.

Input

• block — a 2 × 2 matrix with entries over F24 [x]/(x4 + x3 + 1).

• rkey — a round key; a 2 × 2 matrix with entries over F24 [x]/(x4 + x3 + 1).

Output

• The matrix addition of block and rkey.

Examples

We can work with elements of F24 [x]/(x4 + x3 + 1):

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: D = MS([[K("x^3 + x^2 + x + 1"), K("x^3 + x")], [K("0"), K("x^3 + x^2")]]); D
<BLANKLINE>
[x^3 + x^2 + x + 1 x^3 + x]
[0 x^3 + x^2]
sage: k = MS([[K("x^2 + 1"), K("x^3 + x^2 + x + 1")], [K("x + 1"), K("0")]]); k
<BLANKLINE>
[x^2 + 1 x^3 + x^2 + x + 1]
[x + 1 0]
sage: maes.add_key(D, k)
<BLANKLINE>
[x^3 + x x^2 + 1]
[x + 1 x^3 + x^2]

138 APPENDIX D. SAGE MANUAL FOR MINI-AES

Or work with binary strings:

sage: bin = BinaryStrings()
sage: B = bin.encoding("We"); B
0101011101100101
sage: B = MS(maes.binary_to_GF(B)); B
<BLANKLINE>
[x^2 + 1 x^2 + x + 1]
[x^2 + x x^2 + 1]
sage: key = bin.encoding("KY"); key
0100101101011001
sage: key = MS(maes.binary_to_GF(key)); key
<BLANKLINE>
[x^2 x^3 + x + 1]
[x^2 + 1 x^3 + 1]
sage: maes.add_key(B, key)
<BLANKLINE>
[1 x^3 + x^2]
[x + 1 x^3 + x^2]

We can also work with integers n such that 0 ≤ n ≤ 15:

sage: N = [2, 3, 5, 7]; N
[2, 3, 5, 7]
sage: key = [9, 11, 13, 15]; key
[9, 11, 13, 15]
sage: N = MS(maes.integer_to_GF(N)); N
<BLANKLINE>
[x x + 1]
[x^2 + 1 x^2 + x + 1]
sage: key = MS(maes.integer_to_GF(key)); key
<BLANKLINE>
[x^3 + 1 x^3 + x + 1]
[x^3 + x^2 + 1 x^3 + x^2 + x + 1]
sage: maes.add_key(N, key)
<BLANKLINE>
[x^3 + x + 1 x^3]
[x^3 x^3]

Exception tests

The input block and key must each be a matrix:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MSB = MatrixSpace(K, 2, 2)
sage: B = MSB([[K("x^3 + 1"), K("x^2 + x")], [K("x^3 + x^2"), K("x + 1")]])
sage: maes.add_key(B, "key")
...
TypeError: round key must be a 2 x 2 matrix over GF(16)
sage: maes.add_key("block", "key")
...
TypeError: input block must be a 2 x 2 matrix over GF(16)

In addition, the dimensions of the input matrices must each be 2 × 2:

D.2. PUBLIC METHODS 139

sage: MSB = MatrixSpace(K, 1, 2)
sage: B = MSB([[K("x^3 + 1"), K("x^2 + x")]])
sage: maes.add_key(B, "key")
...
TypeError: input block must be a 2 x 2 matrix over GF(16)
sage: MSB = MatrixSpace(K, 2, 2)
sage: B = MSB([[K("x^3 + 1"), K("x^2 + x")], [K("x^3 + x^2"), K("x + 1")]])
sage: MSK = MatrixSpace(K, 1, 2)
sage: key = MSK([[K("x^3 + x^2"), K("x^3 + x^2 + x + 1")]])
sage: maes.add_key(B, key)
...
TypeError: round key must be a 2 x 2 matrix over GF(16)

D.2.2 binary to GF(B)

Return a list of elements of F24 [x]/(x4 + x3 + 1) that represents the binary string B.
The number of bits in B must be greater than zero and a multiple of 4. Each nibble
(or 4-bit string) is uniquely associated with an element of F24 [x]/(x4 + x3 + 1) as
specified by the following table:

4-bit string finite field element 4-bit string finite field element
0000 0 1000 x3

0001 1 1001 x3 + 1
0010 x 1010 x3 + x
0011 x + 1 1011 x3 + x + 1
0100 x2 1100 x3 + x2

0101 x2 + 1 1101 x3 + x2 + 1
0110 x2 + x 1110 x3 + x2 + x
0111 x2 + x + 1 1111 x3 + x2 + x + 1

Input

• B — a binary string, where the number of bits is positive and a multiple of 4.

Output

• A list of elements of the finite field F24 [x]/(x4 + x3 + 1) that represent the
binary string B.

Examples

Obtain all the elements of the finite field F24 [x]/(x4 + x3 + 1):

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: bin = BinaryStrings()
sage: B = bin("0000000100100011010001010110011110001001101010111100110111101111")
sage: maes.binary_to_GF(B)
<BLANKLINE>
[0,
1,
x,
x + 1,
x^2,
x^2 + 1,
x^2 + x,

140 APPENDIX D. SAGE MANUAL FOR MINI-AES

x^2 + x + 1,
x^3,
x^3 + 1,
x^3 + x,
x^3 + x + 1,
x^3 + x^2,
x^3 + x^2 + 1,
x^3 + x^2 + x,
x^3 + x^2 + x + 1]

Exception tests

The input B must be a non-empty binary string, where the number of bits is a
multiple of 4:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: maes.binary_to_GF("")
...
ValueError: the number of bits in the binary string B must be positive\
and a multiple of 4
sage: maes.binary_to_GF("101")
...
ValueError: the number of bits in the binary string B must be positive\
and a multiple of 4

D.2.3 binary to integer(B)

Return a list of integers representing the binary string B. The number of bits in
B must be greater than zero and a multiple of 4. Each nibble (or 4-bit string) is
uniquely associated with an integer as specified by the following table:

4-bit string integer 4-bit string integer
0000 0 1000 8
0001 1 1001 9
0010 2 1010 10
0011 3 1011 11
0100 4 1100 12
0101 5 1101 13
0110 6 1110 14
0111 7 1111 15

Input

• B — a binary string, where the number of bits is positive and a multiple of 4.

Output

• A list of integers that represent the binary string B.

D.2. PUBLIC METHODS 141

Examples

Obtain the integer representation of every 4-bit string:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: bin = BinaryStrings()
sage: B = bin("0000000100100011010001010110011110001001101010111100110111101111")
sage: maes.binary_to_integer(B)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

Exception tests

The input B must be a non-empty binary string, where the number of bits is a
multiple of 4:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: maes.binary_to_integer("")
...
ValueError: the number of bits in the binary string B must be positive\
and a multiple of 4
sage: maes.binary_to_integer("101")
...
ValueError: the number of bits in the binary string B must be positive\
and a multiple of 4

D.2.4 block length()

Return the block length of Phan’s Mini-AES block cipher. A key in Phan’s Mini-
AES is a block of 16 bits. Each nibble of a key can be considered as an element of
the finite field F24 [x]/(x4 +x3 +1). Therefore the key consists of four elements from
F24 [x]/(x4 + x3 + 1).

Output

• The block (or key) length in number of bits.

Examples

Obtaining the block length of Mini-AES:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: maes.block_length()
16

142 APPENDIX D. SAGE MANUAL FOR MINI-AES

D.2.5 encrypt(P, key)

Use Phan’s Mini-AES to encrypt the plaintext P with the secret key key. Both P and
key must be 2×2 matrices over the finite field F24 [x]/(x4 +x3 +1). Let γ denote the
operation of nibble-sub, π denote shift-row, θ denote mix-column, and σKi

denote
add-key with the round key Ki. Then encryption E using Phan’s Mini-AES is the
function composition

E = σK2
◦ π ◦ γ ◦ σK1

◦ θ ◦ π ◦ γ ◦ σK0

where the order of execution is from right to left. Note that γ is the nibble-sub
operation that uses the S-box for encryption.

Input

• P — a plaintext block; must be a 2×2 matrix over the finite field F24 [x]/(x4 +
x3 + 1).

• key — a secret key for this Mini-AES block cipher; must be a 2 × 2 matrix
over the finite field F24 [x]/(x4 + x3 + 1).

Output

• The ciphertext corresponding to P.

Examples

Here we work with elements of F24 [x]/(x4 + x3 + 1):

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: P = MS([[K("x^3 + 1"), K("x^2 + x")], [K("x^3 + x^2"), K("x + 1")]]); P
<BLANKLINE>
[x^3 + 1 x^2 + x]
[x^3 + x^2 x + 1]
sage: key = MS([[K("x^3 + x^2"), K("x^3 + x^2 + x + 1")], [K("x + 1"), K("0")]]); key
<BLANKLINE>
[x^3 + x^2 x^3 + x^2 + x + 1]
[x + 1 0]
sage: maes.encrypt(P, key)
<BLANKLINE>
[x^2 + x + 1 x^3 + x^2]
[x x^2 + x]

But we can also work with binary strings:

sage: bin = BinaryStrings()
sage: P = bin.encoding("de"); P
0110010001100101
sage: P = MS(maes.binary_to_GF(P)); P
<BLANKLINE>
[x^2 + x x^2]
[x^2 + x x^2 + 1]
sage: key = bin.encoding("ke"); key
0110101101100101

D.2. PUBLIC METHODS 143

sage: key = MS(maes.binary_to_GF(key)); key
<BLANKLINE>
[x^2 + x x^3 + x + 1]
[x^2 + x x^2 + 1]
sage: C = maes.encrypt(P, key)
sage: plaintxt = maes.decrypt(C, key)
sage: plaintxt == P
True

Now we work with integers n such that 0 ≤ n ≤ 15:

sage: P = [1, 5, 8, 12]; P
[1, 5, 8, 12]
sage: key = [5, 9, 15, 0]; key
[5, 9, 15, 0]
sage: P = MS(maes.integer_to_GF(P)); P
<BLANKLINE>
[1 x^2 + 1]
[x^3 x^3 + x^2]
sage: key = MS(maes.integer_to_GF(key)); key
<BLANKLINE>
[x^2 + 1 x^3 + 1]
[x^3 + x^2 + x + 1 0]
sage: C = maes.encrypt(P, key)
sage: plaintxt = maes.decrypt(C, key)
sage: plaintxt == P
True

Exception tests

The input block must be a matrix:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: key = MS([[K("x^3 + x^2"), K("x^3 + x^2 + x + 1")], [K("x + 1"), K("0")]])
sage: maes.encrypt("P", key)
...
TypeError: plaintext block must be a 2 x 2 matrix over GF(16)
sage: P = MS([[K("x^3 + 1"), K("x^2 + x")], [K("x^3 + x^2"), K("x + 1")]])
sage: maes.encrypt(P, "key")
...
TypeError: secret key must be a 2 x 2 matrix over GF(16)

In addition, the dimensions of the input matrices must be 2 × 2:

sage: MS = MatrixSpace(K, 1, 2)
sage: P = MS([[K("x^3 + 1"), K("x^2 + x")]])
sage: maes.encrypt(P, "key")
...
TypeError: plaintext block must be a 2 x 2 matrix over GF(16)
sage: MSP = MatrixSpace(K, 2, 2)
sage: P = MSP([[K("x^3 + 1"), K("x^2 + x")], [K("x^3 + x^2"), K("x + 1")]])
sage: MSK = MatrixSpace(K, 1, 2)
sage: key = MSK([[K("x^3 + x^2"), K("x^3 + x^2 + x + 1")]])
sage: maes.encrypt(P, key)
...
TypeError: secret key must be a 2 x 2 matrix over GF(16)

144 APPENDIX D. SAGE MANUAL FOR MINI-AES

D.2.6 decrypt(C, key)

Use Phan’s Mini-AES to decrypt the ciphertext C with the secret key key. Both
C and key must be 2 × 2 matrices over the finite field F24 [x]/(x4 + x3 + 1). Let
γ denote the operation of nibble-sub, π denote shift-row, θ denote mix-column,
and σKi

denote add-key with the round key Ki. Then decryption D using Phan’s
Mini-AES is the function composition

D = σK0
◦ γ−1 ◦ π ◦ θ ◦ σK1

◦ γ−1 ◦ π ◦ σK2

where γ−1 is the nibble-sub operation that uses the S-box for decryption, and the
order of execution is from right to left.

Input

• C — a ciphertext block; must be a 2×2 matrix over the finite field F24 [x]/(x4+
x3 + 1).

• key — a secret key for this Mini-AES block cipher; must be a 2 × 2 matrix
over the finite field F24 [x]/(x4 + x3 + 1).

Output

• The plaintext corresponding to C.

Examples

We encrypt a plaintext, decrypt the ciphertext, then compare the decrypted plain-
text with the original plaintext. Here we work with elements of F24 [x]/(x4 +x3 +1):

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: P = MS([[K("x^3 + 1"), K("x^2 + x")], [K("x^3 + x^2"), K("x + 1")]]); P
<BLANKLINE>
[x^3 + 1 x^2 + x]
[x^3 + x^2 x + 1]
sage: key = MS([[K("x^3 + x^2"), K("x^3 + x^2 + x + 1")], [K("x + 1"), K("0")]]); key
<BLANKLINE>
[x^3 + x^2 x^3 + x^2 + x + 1]
[x + 1 0]
sage: C = maes.encrypt(P, key); C
<BLANKLINE>
[x^2 + x + 1 x^3 + x^2]
[x x^2 + x]
sage: plaintxt = maes.decrypt(C, key)
sage: plaintxt; P
<BLANKLINE>
[x^3 + 1 x^2 + x]
[x^3 + x^2 x + 1]
<BLANKLINE>
[x^3 + 1 x^2 + x]
[x^3 + x^2 x + 1]
sage: plaintxt == P
True

But we can also work with binary strings:

D.2. PUBLIC METHODS 145

sage: bin = BinaryStrings()
sage: P = bin.encoding("de"); P
0110010001100101
sage: P = MS(maes.binary_to_GF(P)); P
<BLANKLINE>
[x^2 + x x^2]
[x^2 + x x^2 + 1]
sage: key = bin.encoding("ke"); key
0110101101100101
sage: key = MS(maes.binary_to_GF(key)); key
<BLANKLINE>
[x^2 + x x^3 + x + 1]
[x^2 + x x^2 + 1]
sage: C = maes.encrypt(P, key)
sage: plaintxt = maes.decrypt(C, key)
sage: plaintxt == P
True

Here we work with integers n such that 0 ≤ n ≤ 15:

sage: P = [3, 5, 7, 14]; P
[3, 5, 7, 14]
sage: key = [2, 6, 7, 8]; key
[2, 6, 7, 8]
sage: P = MS(maes.integer_to_GF(P)); P
<BLANKLINE>
[x + 1 x^2 + 1]
[x^2 + x + 1 x^3 + x^2 + x]
sage: key = MS(maes.integer_to_GF(key)); key
<BLANKLINE>
[x x^2 + x]
[x^2 + x + 1 x^3]
sage: C = maes.encrypt(P, key)
sage: plaintxt = maes.decrypt(C, key)
sage: plaintxt == P
True

Exception tests

The input block must be a matrix:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: key = MS([[K("x^3 + x^2"), K("x^3 + x^2 + x + 1")], [K("x + 1"), K("0")]])
sage: maes.decrypt("C", key)
...
TypeError: ciphertext block must be a 2 x 2 matrix over GF(16)
sage: C = MS([[K("x^3 + 1"), K("x^2 + x")], [K("x^3 + x^2"), K("x + 1")]])
sage: maes.decrypt(C, "key")
...
TypeError: secret key must be a 2 x 2 matrix over GF(16)

In addition, the dimensions of the input matrices must be 2 × 2:

sage: MS = MatrixSpace(K, 1, 2)
sage: C = MS([[K("x^3 + 1"), K("x^2 + x")]])
sage: maes.decrypt(C, "key")
...

146 APPENDIX D. SAGE MANUAL FOR MINI-AES

TypeError: ciphertext block must be a 2 x 2 matrix over GF(16)
sage: MSC = MatrixSpace(K, 2, 2)
sage: C = MSC([[K("x^3 + 1"), K("x^2 + x")], [K("x^3 + x^2"), K("x + 1")]])
sage: MSK = MatrixSpace(K, 1, 2)
sage: key = MSK([[K("x^3 + x^2"), K("x^3 + x^2 + x + 1")]])
sage: maes.decrypt(C, key)
...
TypeError: secret key must be a 2 x 2 matrix over GF(16)

D.2.7 GF to binary(G)

Return the binary representation of G. If G is an element of the finite field F24 [x]/(x4+
x3+1), then obtain the binary representation of G. If G is a list of elements belonging
to F24 [x]/(x4 + x3 + 1), obtain the 4-bit representation of each element of the list,
then concatenate the resulting 4-bit strings into a binary string. If G is a matrix
with entries over F24 [x]/(x4+x3+1), convert each matrix entry to its 4-bit represen-
tation, then concatenate the 4-bit strings. The concatenation is performed starting
from the top-left corner of the matrix, working across left to right, top to bottom.
Each element of F24 [x]/(x4 + x3 + 1) can be associated with a unique 4-bit string
according to the following table:

4-bit string finite field element 4-bit string finite field element
0000 0 1000 x3

0001 1 1001 x3 + 1
0010 x 1010 x3 + x
0011 x + 1 1011 x3 + x + 1
0100 x2 1100 x3 + x2

0101 x2 + 1 1101 x3 + x2 + 1
0110 x2 + x 1110 x3 + x2 + x
0111 x2 + x + 1 1111 x3 + x2 + x + 1

Input

• G — an element of F24 [x]/(x4+x3+1), a list of elements of F24 [x]/(x4+x3+1),
or a matrix over F24 [x]/(x4 + x3 + 1).

Output

• A binary string representation of G.

Examples

Obtain the binary representation of all elements of F24 [x]/(x4 + x3 + 1):

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: S = Set(K); len(S) # GF(2^4) has this many elements
16
sage: [maes.GF_to_binary(S[i]) for i in xrange(len(S))]
<BLANKLINE>
[0000,
0001,
0010,

D.2. PUBLIC METHODS 147

0011,
0100,
0101,
0110,
0111,
1000,
1001,
1010,
1011,
1100,
1101,
1110,
1111]

The binary representation of a list of elements belonging to F24 [x]/(x4 + x3 + 1):

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: G = [K("x^2 + x + 1"), K("x^3 + x^2"), K("x"),\
K("x^3 + x + 1"), K("x^3 + x^2 + x + 1"), K("x^2 + x"),\
K("1"), K("x^2 + x + 1")]

sage: maes.GF_to_binary(G)
01111100001010111111011000010111

The binary representation of a matrix over F24 [x]/(x4 + x3 + 1):

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: G = MS([K("x^3 + x^2"), K("x + 1"), K("x^2 + x + 1"), K("x^3 + x^2 + x")]); G
<BLANKLINE>
[x^3 + x^2 x + 1]
[x^2 + x + 1 x^3 + x^2 + x]
sage: maes.GF_to_binary(G)
1100001101111110
sage: MS = MatrixSpace(K, 2, 4)
sage: G = MS([K("x^2 + x + 1"), K("x^3 + x^2"), K("x"),\
K("x^3 + x + 1"), K("x^3 + x^2 + x + 1"), K("x^2 + x"),\
K("1"), K("x^2 + x + 1")]); G

<BLANKLINE>
[x^2 + x + 1 x^3 + x^2 x x^3 + x + 1]
[x^3 + x^2 + x + 1 x^2 + x 1 x^2 + x + 1]
sage: maes.GF_to_binary(G)
01111100001010111111011000010111

Exception tests

Input must be an element of F24 [x]/(x4 + x3 + 1):

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(8, "x")
sage: G = K.random_element()
sage: maes.GF_to_binary(G)
...
TypeError: input G must be an element of GF(16), a list of elements of\
GF(16), or a matrix over GF(16)

148 APPENDIX D. SAGE MANUAL FOR MINI-AES

A list of elements belonging to F24 [x]/(x4 + x3 + 1):

sage: maes.GF_to_binary([])
...
ValueError: input G must be an element of GF(16), a list of elements\
of GF(16), or a matrix over GF(16)
sage: G = [K.random_element() for i in xrange(5)]
sage: maes.GF_to_binary(G)
...
KeyError:...

A matrix over F24 [x]/(x4 + x3 + 1):

sage: MS = MatrixSpace(FiniteField(7, "x"), 4, 5)
sage: maes.GF_to_binary(MS.random_element())
...
TypeError: input G must be an element of GF(16), a list of elements of\
GF(16), or a matrix over GF(16)

D.2.8 GF to integer(G)

Return the integer representation of the finite field element G. If G is an element
of the finite field F24 [x]/(x4 + x3 + 1), then obtain the integer representation of
G. If G is a list of elements belonging to F24 [x]/(x4 + x3 + 1), obtain the integer
representation of each element of the list, and return the result as a list of integers.
If G is a matrix with entries over F24 [x]/(x4 + x3 + 1), convert each matrix entry to
its integer representation, and return the result as a list of integers. The resulting
list is obtained by starting from the top-left corner of the matrix, working across
left to right, top to bottom. Each element of F24 [x]/(x4 + x3 + 1) can be associated
with a unique integer according to the following table:

integer finite field element integer finite field element
0 0 8 x3

1 1 9 x3 + 1
2 x 10 x3 + x
3 x + 1 11 x3 + x + 1
4 x2 12 x3 + x2

5 x2 + 1 13 x3 + x2 + 1
6 x2 + x 14 x3 + x2 + x
7 x2 + x + 1 15 x3 + x2 + x + 1

Input

• G — an element of F24 [x]/(x4 + x3 + 1), a list of elements belonging to
F24 [x]/(x4 + x3 + 1), or a matrix over F24 [x]/(x4 + x3 + 1).

Output

• The integer representation of G.

D.2. PUBLIC METHODS 149

Examples

Obtain the integer representation of all elements of F24 [x]/(x4 + x3 + 1):

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: S = Set(K); len(S) # GF(2^4) has this many elements
16
sage: [maes.GF_to_integer(S[i]) for i in xrange(len(S))]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

The integer representation of a list of elements belonging to F24 [x]/(x4 + x3 + 1):

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: G = [K("x^2 + x + 1"), K("x^3 + x^2"), K("x"),\
K("x^3 + x + 1"), K("x^3 + x^2 + x + 1"), K("x^2 + x"),\
K("1"), K("x^2 + x + 1")]

sage: maes.GF_to_integer(G)
[7, 12, 2, 11, 15, 6, 1, 7]

The integer representation of a matrix over F24 [x]/(x4 + x3 + 1):

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: G = MS([K("x^3 + x^2"), K("x + 1"), K("x^2 + x + 1"), K("x^3 + x^2 + x")]); G
<BLANKLINE>
[x^3 + x^2 x + 1]
[x^2 + x + 1 x^3 + x^2 + x]
sage: maes.GF_to_integer(G)
[12, 3, 7, 14]
sage: MS = MatrixSpace(K, 2, 4)
sage: G = MS([K("x^2 + x + 1"), K("x^3 + x^2"), K("x"),\
K("x^3 + x + 1"), K("x^3 + x^2 + x + 1"), K("x^2 + x"),\
K("1"), K("x^2 + x + 1")]); G

<BLANKLINE>
[x^2 + x + 1 x^3 + x^2 x x^3 + x + 1]
[x^3 + x^2 + x + 1 x^2 + x 1 x^2 + x + 1]
sage: maes.GF_to_integer(G)
[7, 12, 2, 11, 15, 6, 1, 7]

Exception tests

Input must be an element of F24 [x]/(x4 + x3 + 1):

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(7, "x")
sage: G = K.random_element()
sage: maes.GF_to_integer(G)
...
TypeError: input G must be an element of GF(16), a list of elements of\
GF(16), or a matrix over GF(16)

150 APPENDIX D. SAGE MANUAL FOR MINI-AES

A list of elements belonging to F24 [x]/(x4 + x3 + 1):

sage: maes.GF_to_integer([])
...
ValueError: input G must be an element of GF(16), a list of elements\
of GF(16), or a matrix over GF(16)
sage: G = [K.random_element() for i in xrange(5)]
sage: maes.GF_to_integer(G)
...
KeyError:...

A matrix over F24 [x]/(x4 + x3 + 1):

sage: MS = MatrixSpace(FiniteField(7, "x"), 4, 5)
sage: maes.GF_to_integer(MS.random_element())
...
TypeError: input G must be an element of GF(16), a list of elements of\
GF(16), or a matrix over GF(16)

D.2.9 integer to binary(N)

Return the binary representation of N. If N is an integer such that 0 ≤ N ≤ 15,
return the binary representation of N. If N is a list of integers each of which is ≥ 0
and ≤ 15, then obtain the binary representation of each integer, and concatenate the
individual binary representations into a single binary string. Each integer between
0 and 15, inclusive, can be associated with a unique 4-bit string according to the
following table:

4-bit string integer 4-bit string integer
0000 0 1000 8
0001 1 1001 9
0010 2 1010 10
0011 3 1011 11
0100 4 1100 12
0101 5 1101 13
0110 6 1110 14
0111 7 1111 15

Input

• N — a non-negative integer less than or equal to 15, or a list of such integers.

Output

• A binary string representing N.

Examples

The binary representations of all integers between 0 and 15, inclusive:

D.2. PUBLIC METHODS 151

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: lst = [n for n in xrange(16)]; lst
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
sage: maes.integer_to_binary(lst)
0000000100100011010001010110011110001001101010111100110111101111

The binary representation of an integer between 0 and 15, inclusive:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: maes.integer_to_binary(3)
0011
sage: maes.integer_to_binary(5)
0101
sage: maes.integer_to_binary(7)
0111

Exception tests

The input N can be an integer, but must be bounded such that 0 ≤ N ≤ 15:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: maes.integer_to_binary(-1)
...
KeyError:...
sage: maes.integer_to_binary("1")
...
TypeError: N must be an integer 0 <= N <= 15 or a list of such integers
sage: maes.integer_to_binary(")
...
TypeError: N must be an integer 0 <= N <= 15 or a list of such integers

The input N can be a list of integers, but each integer n of the list must be 0 ≤ n ≤ 15:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: maes.integer_to_binary([])
...
ValueError: N must be an integer 0 <= N <= 15 or a list of such
integers
sage: maes.integer_to_binary([""])
...
KeyError:...
sage: maes.integer_to_binary([0, 1, 2, 16])
...
KeyError:...

D.2.10 integer to GF(N)

Return the finite field representation of N. If N is an integer such that 0 ≤ N ≤ 15,
return the element of F24 [x]/(x4 + x3 + 1) that represents N. If N is a list of integers
each of which is ≥ 0 and ≤ 15, then obtain the element of F24 [x]/(x4 + x3 + 1) that
represents each such integer, and return a list of such finite field representations.
Each integer between 0 and 15, inclusive, can be associated with a unique element
of F24 [x]/(x4 + x3 + 1) according to the following table:

152 APPENDIX D. SAGE MANUAL FOR MINI-AES

integer finite field element integer finite field element
0 0 8 x3

1 1 9 x3 + 1
2 x 10 x3 + x
3 x + 1 11 x3 + x + 1
4 x2 12 x3 + x2

5 x2 + 1 13 x3 + x2 + 1
6 x2 + x 14 x3 + x2 + x
7 x2 + x + 1 15 x3 + x2 + x + 1

Input

• N — a non-negative integer less than or equal to 15, or a list of such integers.

Output

• Elements of the finite field F24 [x]/(x4 + x3 + 1).

Examples

Obtain the element of F24 [x]/(x4 +x3 +1) representing an integer n, where 0 ≤ n ≤
15:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: maes.integer_to_GF(0)
0
sage: maes.integer_to_GF(2)
x
sage: maes.integer_to_GF(7)
x^2 + x + 1

Obtain the finite field elements corresponding to all non-negative integers less than
or equal to 15:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: lst = [n for n in xrange(16)]; lst
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
sage: maes.integer_to_GF(lst)
<BLANKLINE>
[0,
1,
x,
x + 1,
x^2,
x^2 + 1,
x^2 + x,
x^2 + x + 1,
x^3,
x^3 + 1,
x^3 + x,
x^3 + x + 1,
x^3 + x^2,
x^3 + x^2 + 1,
x^3 + x^2 + x,
x^3 + x^2 + x + 1]

D.2. PUBLIC METHODS 153

Exception tests

The input N can be an integer, but it must be such that 0 ≤ N ≤ 15:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: maes.integer_to_GF(-1)
...
KeyError:...
sage: maes.integer_to_GF(16)
...
KeyError:...
sage: maes.integer_to_GF("2")
...
TypeError: N must be an integer 0 <= N <= 15 or a list of such integers

The input N can be a list of integers, but each integer n in the list must be bounded
such that 0 ≤ n ≤ 15:

sage: maes.integer_to_GF([])
...
ValueError: N must be an integer 0 <= N <= 15 or a list of such integers
sage: maes.integer_to_GF(["])
...
KeyError:...
sage: maes.integer_to_GF([0, 2, 3, "4"])
...
KeyError:...
sage: maes.integer_to_GF([0, 2, 3, 16])
...
KeyError:...

D.2.11 mix column(block)

Return the matrix multiplication of block with the matrix

[
x + 1 x

x x + 1

]

.

If the input block is [
c0 c2

c1 c3

]

then the output block is

[
d0 d2

d1 d3

]

=

[
x + 1 x

x x + 1

] [
c0 c2

c1 c3

]

.

Input

• block — a 2 × 2 matrix with entries over F24 [x]/(x4 + x3 + 1).

Output

• A 2 × 2 matrix resulting from multiplying the above matrix with the input
matrix block.

154 APPENDIX D. SAGE MANUAL FOR MINI-AES

Examples

Here we work with elements of F24 [x]/(x4 + x3 + 1):

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: mat = MS([[K("x^2 + x + 1"), K("x^3 + x^2 + 1")], [K("x^3"), K("x")]])
sage: maes.mix_column(mat)
<BLANKLINE>
[x^3 + x 0]
[x^2 + 1 x^3 + x^2 + x + 1]

Multiplying by the identity matrix should leave the fixed matrix unchanged:

sage: eye = MS([[K("1"), K("0")], [K("0"), K("1")]])
sage: maes.mix_column(eye)
<BLANKLINE>
[x + 1 x]
[x x + 1]

We can also work with binary strings:

sage: bin = BinaryStrings()
sage: B = bin.encoding("rT"); B
0111001001010100
sage: B = MS(maes.binary_to_GF(B)); B
<BLANKLINE>
[x^2 + x + 1 x]
[x^2 + 1 x^2]
sage: maes.mix_column(B)
<BLANKLINE>
[x + 1 x^3 + x^2 + x]
[1 x^3]

We can also work with integers n such that 0 ≤ n ≤ 15:

sage: P = [10, 5, 2, 7]; P
[10, 5, 2, 7]
sage: P = MS(maes.integer_to_GF(P)); P
<BLANKLINE>
[x^3 + x x^2 + 1]
[x x^2 + x + 1]
sage: maes.mix_column(P)
<BLANKLINE>
[x^3 + 1 1]
[1 x + 1]

Exception tests

The input block must be a matrix:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: maes.mix_column("mat")
...
TypeError: input block must be a 2 x 2 matrix over GF(16)

D.2. PUBLIC METHODS 155

In addition, the dimensions of the input matrix must be 2 × 2:

sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 1, 2)
sage: mat = MS([[K("x^3 + x^2 + x + 1"), K("0")]])
sage: maes.mix_column(mat)
...
TypeError: input block must be a 2 x 2 matrix over GF(16)

D.2.12 nibble sub(block, algorithm=’encrypt’)

Substitute a nibble (or a block of 4 bits) using the S-box for encryption or decryption.

Input

• block — a 2 × 2 matrix with entries over F24 [x]/(x4 + x3 + 1).

• algorithm — (default: "encrypt") a string; a flag to signify whether this
nibble-sub operation is used for encryption or decryption. The encryption flag
is "encrypt" and the decryption flag is "decrypt".

Output

• A 2×2 matrix resulting from applying an S-box on entries of the 2×2 matrix
block.

Examples

Here we work with elements of the finite field F24 [x]/(x4 + x3 + 1):

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: mat = MS([[K("x^3 + x^2 + x + 1"), K("0")], [K("x^2 + x + 1"), K("x^3 + x")]])
sage: maes.nibble_sub(mat, algorithm=’’encrypt’’)
<BLANKLINE>
[x^2 + x + 1 x^3 + x^2 + x]
[x^3 x^2 + x]

But we can also work with binary strings:

sage: bin = BinaryStrings()
sage: B = bin.encoding("bi"); B
0110001001101001
sage: B = MS(maes.binary_to_GF(B)); B
<BLANKLINE>
[x^2 + x x]
[x^2 + x x^3 + 1]
sage: maes.nibble_sub(B, algorithm="encrypt")
<BLANKLINE>
[x^3 + x + 1 x^3 + x^2 + 1]
[x^3 + x + 1 x^3 + x]
sage: maes.nibble_sub(B, algorithm="decrypt")
<BLANKLINE>
[x^3 + x x^2]
[x^3 + x x^3 + x^2 + 1]

156 APPENDIX D. SAGE MANUAL FOR MINI-AES

Here we work with integers n such that 0 ≤ n ≤ 15:

sage: P = [2, 6, 8, 14]; P
[2, 6, 8, 14]
sage: P = MS(maes.integer_to_GF(P)); P
<BLANKLINE>
[x x^2 + x]
[x^3 x^3 + x^2 + x]
sage: maes.nibble_sub(P, algorithm="encrypt")
<BLANKLINE>
[x^3 + x^2 + 1 x^3 + x + 1]
[x + 1 0]
sage: maes.nibble_sub(P, algorithm="decrypt")
<BLANKLINE>
[x^2 x^3 + x]
[x^2 + x + 1 0]

Exception tests

The input block must be a matrix:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: maes.nibble_sub("mat")
...
TypeError: input block must be a 2 x 2 matrix over GF(16)

In addition, the dimensions of the input matrix must be 2 × 2:

sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 1, 2)
sage: mat = MS([[K("x^3 + x^2 + x + 1"), K("0")]])
sage: maes.nibble_sub(mat)
...
TypeError: input block must be a 2 x 2 matrix over GF(16)

The value for the option algorithm must be either the string "encrypt" or "decrypt":

sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: mat = MS([[K("x^3 + x^2 + x + 1"), K("0")], [K("x^2 + x + 1"), K("x^3 + x")]])
sage: maes.nibble_sub(mat, algorithm="abc")
...
ValueError: the algorithm for nibble-sub must be either ’encrypt’ or ’decrypt’
sage: maes.nibble_sub(mat, algorithm=’’e’’)
...
ValueError: the algorithm for nibble-sub must be either ’encrypt’ or ’decrypt’
sage: maes.nibble_sub(mat, algorithm=’’d’’)
...
ValueError: the algorithm for nibble-sub must be either ’encrypt’ or ’decrypt’

D.2.13 random key()

A random key within the key space of this Mini-AES block cipher. Like the AES,
Phan’s Mini-AES is a symmetric-key block cipher. A Mini-AES key is a block of 16
bits, or a 2 × 2 matrix with entries over the finite field F24 [x]/(x4 + x3 + 1). Thus
the number of possible keys is 216 = 164.

D.2. PUBLIC METHODS 157

Output

• A 2 × 2 matrix over the finite field F24 [x]/(x4 + x3 + 1), used as a secret key
for this Mini-AES block cipher.

Examples

Each nibble of a key is an element of the finite field F24 [x]/(x4 + x3 + 1):

sage: K = FiniteField(16, "x")
sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: key = maes.random_key()
sage: [key[i][j] in K for i in xrange(key.nrows()) for j in xrange(key.ncols())]
[True, True, True, True]

Generate a random key, then perform encryption and decryption using that key:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: key = maes.random_key()
sage: P = MS.random_element()
sage: C = maes.encrypt(P, key)
sage: plaintxt = maes.decrypt(C, key)
sage: plaintxt == P
True

D.2.14 round key(key, n)

Return the round key for round n. Phan’s Mini-AES is defined to have two rounds.
The round key K0 is generated and used prior to the first round, with round keys
K1 and K2 being used in rounds 1 and 2 respectively. In total, there are three round
keys, each generated from the secret key key.

Input

• key — the secret key.

• n — non-negative integer; the round number.

Output

• The n-th round key.

Examples

Obtaining the round keys from the secret key:

158 APPENDIX D. SAGE MANUAL FOR MINI-AES

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: key = MS([[K("x^3 + x^2"), K("x^3 + x^2 + x + 1")], [K("x + 1"), K("0")]])
sage: maes.round_key(key, 0)
<BLANKLINE>
[x^3 + x^2 x^3 + x^2 + x + 1]
[x + 1 0]
sage: key
<BLANKLINE>
[x^3 + x^2 x^3 + x^2 + x + 1]
[x + 1 0]
sage: maes.round_key(key, 1)
<BLANKLINE>
[x + 1 x^3 + x^2 + x + 1]
[0 x^3 + x^2 + x + 1]
sage: maes.round_key(key, 2)
<BLANKLINE>
[x^2 + x x^3 + 1]
[x^2 + x x^2 + x]

Exception tests

Only two rounds are defined for this AES variant:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: key = MS([[K("x^3 + x^2"), K("x^3 + x^2 + x + 1")], [K("x + 1"), K("0")]])
sage: maes.round_key(key, -1)
...
ValueError: Mini-AES only defines two rounds
sage: maes.round_key(key, 3)
...
ValueError: Mini-AES only defines two rounds

The input key must be a matrix:

sage: maes.round_key("key", 0)
...
TypeError: secret key must be a 2 x 2 matrix over GF(16)

In addition, the dimensions of the key matrix must be 2 × 2:

sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 1, 2)
sage: key = MS([[K("x^3 + x^2 + x + 1"), K("0")]])
sage: maes.round_key(key, 2)
...
TypeError: secret key must be a 2 x 2 matrix over GF(16)

D.2.15 sbox()

Return the S-box of Mini-AES.

D.2. PUBLIC METHODS 159

Examples

Obtain the S-box of Mini-AES:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: maes.sbox()
(14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7)

D.2.16 shift row(block)

Rotate each row of block to the left by different nibble amounts. The first or zero-th
row is left unchanged, while the second or row one is rotated left by one nibble. This
has the effect of only interchanging the nibbles in the second row. Let b0, b1, b2, b3

be four nibbles arranged as the following 2 × 2 matrix

[
b0 b2

b1 b3

]

.

Then the operation of shift-row is the mapping

[
b0 b2

b1 b3

]

7−→

[
b0 b2

b3 b1

]

.

Input

• block — a 2 × 2 matrix with entries over F24 [x]/(x4 + x3 + 1).

Output

• A 2 × 2 matrix resulting from applying shift-row on block.

Examples

Here we work with elements of the finite field F24 [x]/(x4 + x3 + 1):

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 2, 2)
sage: mat = MS([[K("x^3 + x^2 + x + 1"), K("0")], [K("x^2 + x + 1"), K("x^3 + x")]])
sage: maes.shift_row(mat)
<BLANKLINE>
[x^3 + x^2 + x + 1 0]
[x^3 + x x^2 + x + 1]
sage: mat
<BLANKLINE>
[x^3 + x^2 + x + 1 0]
[x^2 + x + 1 x^3 + x]

But we can also work with binary strings:

160 APPENDIX D. SAGE MANUAL FOR MINI-AES

sage: bin = BinaryStrings()
sage: B = bin.encoding("Qt"); B
0101000101110100
sage: B = MS(maes.binary_to_GF(B)); B
<BLANKLINE>
[x^2 + 1 1]
[x^2 + x + 1 x^2]
sage: maes.shift_row(B)
<BLANKLINE>
[x^2 + 1 1]
[x^2 x^2 + x + 1]

Here we work with integers n such that 0 ≤ n ≤ 15:

sage: P = [3, 6, 9, 12]; P
[3, 6, 9, 12]
sage: P = MS(maes.integer_to_GF(P)); P
<BLANKLINE>
[x + 1 x^2 + x]
[x^3 + 1 x^3 + x^2]
sage: maes.shift_row(P)
<BLANKLINE>
[x + 1 x^2 + x]
[x^3 + x^2 x^3 + 1]

Exception tests

The input block must be a matrix:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: maes.shift_row("block")
...
TypeError: input block must be a 2 x 2 matrix over GF(16)

In addition, the dimensions of the input matrix must be 2 × 2:

sage: K = FiniteField(16, "x")
sage: MS = MatrixSpace(K, 1, 2)
sage: mat = MS([[K("x^3 + x^2 + x + 1"), K("0")]])
sage: maes.shift_row(mat)
...
TypeError: input block must be a 2 x 2 matrix over GF(16)

D.3 Private methods

This section documents private methods of the class

sage.crypto.block cipher.miniaes.MiniAES

in the Sage standard library.

D.3.1 init ()

A simplified variant of the Advanced Encryption Standard (AES).

D.3. PRIVATE METHODS 161

Examples

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES(); maes
Mini-AES block cipher with 16-bit keys
sage: MS = MatrixSpace(FiniteField(16, "x"), 2, 2)
sage: P = MS.random_element()
sage: key = maes.random_key()
sage: C = maes.encrypt(P, key)
sage: plaintxt = maes.decrypt(C, key)
sage: plaintxt == P
True

D.3.2 call (B, key, algorithm="encrypt")

Apply Mini-AES encryption or decryption on the binary string B using the key key.
The flag algorithm controls what action is to be performed on B.

Input

• B — a binary string, where the number of bits is positive and a multiple of 16.
The number of 16 bits is evenly divided into four nibbles. Hence 16 bits can be
conveniently represented as a 2× 2 matrix block for encryption or decryption.

• key — a secret key; this must be a 16-bit binary string.

• algorithm — (default: "encrypt") a string; a flag to signify whether encryp-
tion or decryption is to be applied to the binary string B. The encryption flag
is "encrypt" and the decryption flag is "decrypt".

Output

• The ciphertext (respectively plaintext) corresponding to the binary string B.

Examples

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: bin = BinaryStrings()
sage: key = bin.encoding("KE"); key
0100101101000101
sage: P = bin.encoding("Encrypt this secret message!"); P
010001010110111001100011011100100111100101110000011101000010000001110100011\
010000110100101110011001000000111001101100101011000110111001001100101011101\
00001000000110110101100101011100110111001101100001011001110110010100100001
sage: C = maes(P, key, algorithm="encrypt"); C
100010001010011011110000011110000100110011101101010001110110110101010010111\
011111010110011100111001000111011001010101000101001111101100110010100010001\
11011011010010000011000110001100000111000011100110101111000000001110001001
sage: plaintxt = maes(C, key, algorithm="decrypt")
sage: plaintxt == P
True

162 APPENDIX D. SAGE MANUAL FOR MINI-AES

Exception tests

The binary string B must be non-empty and the number of bits must be a multiple
of 16:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: maes = MiniAES()
sage: maes("B", "key")
Traceback (most recent call last):
...
TypeError: input B must be a non-empty binary string with number of\
bits a multiple of 16
sage: bin = BinaryStrings()
sage: B = bin.encoding("A")
sage: maes(B, "key")
Traceback (most recent call last):
...
ValueError: the number of bits in the binary string B must be positive\
and a multiple of 16

The secret key key must be a 16-bit binary string:

sage: B = bin.encoding("ABCD")
sage: maes(B, "key")
Traceback (most recent call last):
...
TypeError: secret key must be a 16-bit binary string
sage: key = bin.encoding("K")
sage: maes(B, key)
Traceback (most recent call last):
...
ValueError: secret key must be a 16-bit binary string

The value for algorithm must be either "encrypt" or "decrypt":

sage: B = bin.encoding("ABCD")
sage: key = bin.encoding("KE")
sage: maes(B, key, algorithm="ABC")
Traceback (most recent call last):
...
ValueError: algorithm must be either ’encrypt’ or ’decrypt’
sage: maes(B, key, algorithm="e")
Traceback (most recent call last):
...
ValueError: algorithm must be either ’encrypt’ or ’decrypt’
sage: maes(B, key, algorithm="d")
Traceback (most recent call last):
...
ValueError: algorithm must be either ’encrypt’ or ’decrypt’

D.3.3 eq ()

Compare this Mini-AES cryptosystem object with the object represented by other.

Examples

Mini-AES objects are the same if they have the same key size and the same S-boxes:

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: m = MiniAES()
sage: m == loads(dumps(m))
True

D.3. PRIVATE METHODS 163

D.3.4 repr ()

Return the string representation of this Mini-AES cryptosystem.

Examples

sage: from sage.crypto.block_cipher.miniaes import MiniAES
sage: m = MiniAES(); m
Mini-AES block cipher with 16-bit keys

164 APPENDIX D. SAGE MANUAL FOR MINI-AES

Appendix E

Sage Manual for Super-Increasing
Sequences

Some basic functionalities for working with super-increasing sequences are imple-
mented in the class

sage.numerical.knapsack.Superincreasing (E.1)

via bug tracking tickets #6176 [81], #5827 [79], and #6222 [85]. This appendix
provides the reference manual for the class (E.1). The three bug tracking tickets
#6176, #5827, and #6222 have been merged in the Sage standard library during
the development of Sage versions 4.0.1.rc1 for the first two tickets, and version
4.0.2.alpha0 for the third ticket. The source code of the class (E.1) is available with
the latest stable release of Sage, which as of this writing is Sage version 4.2.1.

E.1 Class documentation

A class for super-increasing sequences.
Let L = (a1, a2, a3, . . . , an) be a non-empty sequence of non-negative integers.

Then L is said to be super-increasing if each ai is strictly greater than the sum of all
previous values. That is, for each ai ∈ L the sequence L must satisfy the property

ai >

i−1∑

k=1

ak

in order to be called a super-increasing sequence, where |L| ≥ 2. If L has only one
element, it is also defined to be a super-increasing sequence.

If seq is None, then construct an empty sequence. By definition, this empty
sequence is not super-increasing.

Input

• seq — (default: None) a non-empty sequence.

E.1.1 Example usage

Create a super-increasing sequence and perform some basic operations on it:

165

166 APPENDIX E. SAGE MANUAL FOR SUPER-INCREASING SEQUENCES

sage: from sage.numerical.knapsack import Superincreasing
sage: L = [1, 2, 5, 21, 69, 189, 376, 919]
sage: Superincreasing(L).is_superincreasing()
True
sage: Superincreasing().is_superincreasing([1,3,5,7])
False
sage: seq = Superincreasing(); seq
An empty sequence.
sage: seq = Superincreasing([1, 3, 6]); seq
Super-increasing sequence of length 3
sage: seq = Superincreasing(list([1, 2, 5, 21, 69, 189, 376, 919])); seq
Super-increasing sequence of length 8

E.2 Public methods

This section documents public methods in the class

sage.numerical.knapsack.Superincreasing

of the Sage standard library.

E.2.1 is superincreasing(seq=None)

Determine whether or not seq is super-increasing.
If seq=None then determine whether or not self is super-increasing.
Let L = (a1, a2, a3, . . . , an) be a non-empty sequence of non-negative integers.

Then L is said to be super-increasing if each ai is strictly greater than the sum of all
previous values. That is, for each ai ∈ L the sequence L must satisfy the property

ai >

i−1∑

k=1

ak

in order to be called a super-increasing sequence, where |L| ≥ 2. If L has exactly
one element, then it is also defined to be a super-increasing sequence.

Input

• seq — (default: None) a sequence to test.

Output

• If seq is None, then test self to determine whether or not it is super-increasing.
In that case, return True if self is super-increasing; False otherwise.

• If seq is not None, then test seq to determine whether or not it is super-
increasing. Return True if seq is super-increasing; False otherwise.

Examples

By definition, an empty sequence is not super-increasing:

E.2. PUBLIC METHODS 167

sage: from sage.numerical.knapsack import Superincreasing
sage: Superincreasing().is_superincreasing([])
False
sage: Superincreasing().is_superincreasing()
False
sage: Superincreasing().is_superincreasing(tuple())
False
sage: Superincreasing().is_superincreasing(())
False

But here is an example of a super-increasing sequence:

sage: L = [1, 2, 5, 21, 69, 189, 376, 919]
sage: Superincreasing(L).is_superincreasing()
True
sage: L = (1, 2, 5, 21, 69, 189, 376, 919)
sage: Superincreasing(L).is_superincreasing()
True

A super-increasing sequence can have zero as one of its elements:

sage: L = [0, 1, 2, 4]
sage: Superincreasing(L).is_superincreasing()
True

A super-increasing sequence can be of length 1:

sage: Superincreasing([randint(0, 100)]).is_superincreasing()
True

Exception tests

The sequence must contain only integers:

sage: from sage.numerical.knapsack import Superincreasing
sage: L = [1.0, 2.1, pi, 21, 69, 189, 376, 919]
sage: Superincreasing(L).is_superincreasing()
...
TypeError: Element e (= 1.00000000000000) of seq must be a non-negative integer.
sage: L = [1, 2.1, pi, 21, 69, 189, 376, 919]
sage: Superincreasing(L).is_superincreasing()
...
TypeError: Element e (= 2.10000000000000) of seq must be a non-negative integer.

E.2.2 largest less than(N)

Return the largest integer in the sequence self that is less than or equal to N.
This function narrows down the candidate solution using a binary trim, similar

to the way binary search halves the sequence at each iteration.

Input

• N — integer; the target value to search for.

168 APPENDIX E. SAGE MANUAL FOR SUPER-INCREASING SEQUENCES

Output

• The largest integer in self that is less than or equal to N. If no solution exists,
then return None.

Examples

When a solution is found, return it:

sage: from sage.numerical.knapsack import Superincreasing
sage: L = [2, 3, 7, 25, 67, 179, 356, 819]
sage: Superincreasing(L).largest_less_than(207)
179
sage: L = (2, 3, 7, 25, 67, 179, 356, 819)
sage: Superincreasing(L).largest_less_than(2)
2

But if no solution exists, return None:

sage: L = [2, 3, 7, 25, 67, 179, 356, 819]
sage: Superincreasing(L).largest_less_than(-1) == None
True

Exception tests

The target N must be an integer:

sage: from sage.numerical.knapsack import Superincreasing
sage: L = [2, 3, 7, 25, 67, 179, 356, 819]
sage: Superincreasing(L).largest_less_than(2.30)
...
TypeError: N (= 2.30000000000000) must be an integer.

The sequence that self represents must also be non-empty:

sage: Superincreasing([]).largest_less_than(2)
...
ValueError: seq must be a super-increasing sequence
sage: Superincreasing(list()).largest_less_than(2)
...
ValueError: seq must be a super-increasing sequence

E.2.3 subset sum(N)

Solving the subset sum problem for a super-increasing sequence.
Let S = (s1, s2, s3, . . . , sn) be a non-empty sequence of non-negative integers,

and let N ∈ Z be non-negative. The subset sum problem asks for a subset A ⊆ S
all of whose elements sum to N . This method specializes the subset sum problem
to the case of super-increasing sequences. If a solution exists, then it is also a
super-increasing sequence.

E.2. PUBLIC METHODS 169

Note

This method only solves the subset sum problem for super-increasing sequences. In
general, solving the subset sum problem for an arbitrary sequence is known to be
computationally hard.

Input

• N — a non-negative integer.

Output

• A non-empty subset of self whose elements sum to N. This subset is also a
super-increasing sequence. If no such subset exists, then return the empty list.

Algorithm

The algorithm used is adapted from page 355 of Hoffstein et al. [48].

Examples

Solving the subset sum problem for a super-increasing sequence and target sum:

sage: from sage.numerical.knapsack import Superincreasing
sage: L = [1, 2, 5, 21, 69, 189, 376, 919]
sage: Superincreasing(L).subset_sum(98)
[69, 21, 5, 2, 1]

Exception tests

The target N must be a non-negative integer:

sage: from sage.numerical.knapsack import Superincreasing
sage: L = [0, 1, 2, 4]
sage: Superincreasing(L).subset_sum(-6)
...
TypeError: N (= -6) must be a non-negative integer.
sage: Superincreasing(L).subset_sum(-6.2)
...
TypeError: N (= -6.20000000000000) must be a non-negative integer.

The sequence that self represents must only contain non-negative integers:

sage: L = [-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1]
sage: Superincreasing(L).subset_sum(1)
...
TypeError: Element e (= -10) of seq must be a non-negative integer.

170 APPENDIX E. SAGE MANUAL FOR SUPER-INCREASING SEQUENCES

E.3 Private methods

This section documents private methods implemented in the class

sage.numerical.knapsack.Superincreasing

of the Sage standard library.

E.3.1 init (seq=None)

Constructing a super-increasing sequence object from seq.
If seq is None, then construct an empty sequence. By definition, this empty

sequence is not super-increasing.

Input

• seq — (default: None) a non-empty sequence.

Examples

sage: from sage.numerical.knapsack import Superincreasing
sage: L = [1, 2, 5, 21, 69, 189, 376, 919]
sage: Superincreasing(L).is_superincreasing()
True
sage: Superincreasing().is_superincreasing([1,3,5,7])
False

E.3.2 cmp (other)

Comparing this super-increasing sequence object to that represented by other.

Exception tests

sage: from sage.numerical.knapsack import Superincreasing
sage: L = [1, 2, 5, 21, 69, 189, 376, 919]
sage: seq = Superincreasing(L)
sage: seq == loads(dumps(seq))
True

E.3.3 repr ()

Return a string representation of this super-increasing sequence object.

Examples

sage: from sage.numerical.knapsack import Superincreasing
sage: seq = Superincreasing(); seq
An empty sequence.
sage: seq = Superincreasing([1, 3, 6]); seq
Super-increasing sequence of length 3
sage: seq = Superincreasing(list([1, 2, 5, 21, 69, 189, 376, 919])); seq
Super-increasing sequence of length 8

E.3. PRIVATE METHODS 171

E.3.4 latex ()

Return LATEX representation of this super-increasing sequence object.

Examples

sage: from sage.numerical.knapsack import Superincreasing
sage: latex(Superincreasing())
\left[\right]
sage: seq = Superincreasing([1, 2, 5, 21, 69, 189, 376, 919])
sage: latex(seq)
<BLANKLINE>
\left[1,
2,
5,
21,
69,
189,
376,
919\right]

172 APPENDIX E. SAGE MANUAL FOR SUPER-INCREASING SEQUENCES

References

[1] Data Encryption Standard (DES). Federal Information Processing Standard Publi-
cation 46, 1977.

[2] Data Encryption Standard (DES). Federal Information Processing Standard Publi-
cation 46-3, 1999.

[3] Advanced Encryption Standard (AES). Federal Information Processing Standard
Publication 197, 2001.

[4] ACM SIGCSE. Overview of the CS body of knowledge, 02nd November 2009.
http://www.sigcse.org/resources/cs-2001/al#AL-Cryptography.

[5] M. Albrecht. Algebraic attacks on the Courtois toy cipher. Master’s thesis, Depart-
ment of Computer Science, Universität Bremen, Germany, 2006.

[6] M. Albrecht. Algebraic attacks on the Courtois toy cipher. Cryptologia, 32(3):220–
276, 2008.

[7] M. Albrecht and C. Cid. Algebraic techniques in differential cryptanalysis. In
O. Dunkelman, editor, FSE 2009: Proceedings of the 16th International Workshop
on Fast Software Encryption, volume 5665 of Lecture Notes in Computer Science,
pages 193–208. Springer, 2009.

[8] M. Albrecht, C. Gentry, S. Halevi, and J. Katz. Attacking cryptographic schemes
based on “perturbation polynomials”. Cryptology ePrint Archive, Report 2009/098,
2009. http://eprint.iacr.org.

[9] A. A. Aly and S. Akhtar. Cryptography and security protocols course for under-
graduate IT students. SIGCSE Bulletin, 36(2):44–47, 2004.

[10] Y. Aner. Securing the Sage Notebook. Master’s thesis, Royal Holloway, University
of London, 2009.

[11] A. Baliga and S. Boztas. Cryptography in the classroom using Maple. In W. Yang,
S. Chu, Z. Karian, and G. Fitz-Gerald, editors, Proceedings of the Sixth Asian
Technology Conference in Mathematics, pages 343–350, 2001.

[12] G. V. Bard. Algorithms for Solving Linear and Polynomial Systems of Equations
over Finite Fields with Applications to Cryptanalysis. PhD thesis, Department of
Mathematics, University of Maryland, 2007.

[13] T. H. Barr. Invitation to Cryptology. Prentice Hall, 2002.

[14] R. A. Beezer. Sage (version 3.4). SIAM Review, 51(4):785–807, 2009.

[15] H. Beker and F. Piper. Cipher Systems: The Protection of Communications. John
Wiley and Sons, 1982.

[16] D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters. Twisted Edwards
curves. In S. Vaudenay, editor, AFRICACRYPT 2008: First International Confer-
ence on Cryptology in Africa, volume 5023 of Lecture Notes in Computer Science,
pages 389–405. Springer, 2008.

[17] D. J. Bernstein, T. Lange, and R. R. Farashahi. Binary Edwards curves. In E. Os-
wald and P. Rohatgi, editors, CHES ’08: Proceedings of the 10th International
Workshop on Cryptographic Hardware and Embedded Systems, volume 5154 of Lec-
ture Notes in Computer Science, pages 244–265. Springer, 2008.

173

174 REFERENCES

[18] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Keccak Sponge Function Fam-
ily: Main Document, Version 2.0, 24th October 2009. http://keccak.noekeon.

org/Keccak-main-2.0.pdf.
[19] D. Bishop. Introduction to Cryptography with Java Applets. Jones and Bartlett

Publishers, 2003.
[20] D. Boneh, C. Gentry, and M. Hamburg. Space-efficient identity based encryption

without pairings. In FOCS ’07: Proceedings of the 48th Annual IEEE Symposium
on Foundations of Computer Science, pages 647–657. IEEE Computer Society, 2007.

[21] W. Bosma, J. Cannon, and C. Playoust. The MAGMA algebra system I: the user
language. Journal of Symbolic Computation, 24(3-4):235–265, 1997.

[22] B. Buchanan. Math 478 - cryptography, 04th November 2009. http://banach.

millersville.edu/~bob/math478/.
[23] B. Buchberger. Should students learn integration rules? ACM SIGSAM Bulletin,

24(1):10–17, 1990.
[24] B. Buchberger. Computer algebra: The end of mathematics? ACM SIGSAM

Bulletin, 36(1):3–9, 2002.
[25] K. W. Campbell and M. J. Wiener. DES is not a group. In E. F. Brickell, editor,

CRYPTO ’92—Proceedings of the 12th Annual International Cryptology Conference,
volume 740 of Lecture Notes in Computer Science, pages 512–520. Springer, 1992.

[26] S. K. Chong, G. Farr, L. Frost, and S. Hawley. On pedagogically sound examples
in public-key cryptography. In V. Estivill-Castro and G. Dobbie, editors, Twenty-
Nineth Australasian Computer Science Conference (ACSC2006), volume 48 of CR-
PIT, pages 63–68. Australian Computer Society, 2006.

[27] C. Cid, S. Murphy, and M. Robshaw. Algebraic Aspects of the Advanced Encryption
Standard. Springer, 2006.

[28] C. Cid, S. Murphy, and M. J. B. Robshaw. Small scale variants of the AES. In
H. Gilbert and H. Handschuh, editors, Proceedings of the 12th International Work-
shop on Fast Software Encryption, volume 3557 of Lecture Notes in Computer Sci-
ence, pages 145–162. Springer, 2005.

[29] H. Cohen et al. Pari/GP Computer Algebra System (Version 2.3.3). The PARI
Group, 24th October 2009. http://pari.math.u-bordeaux.fr.

[30] J. Cosgrave. Number theory and cryptography (using Maple). In D. Joyner, editor,
Coding Theory and Cryptography: From Enigma to Geheimschreiber to Quantum
Theory, pages 124–143. Springer, 2000.

[31] N. T. Courtois. How fast can be algebraic attacks on block ciphers? In E. Bi-
ham, H. Handschuh, S. Lucks, and V. Rijmen, editors, Symmetric Cryptography,
number 07021 in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

[32] M. Curtin. Brute Force: Cracking The Data Encryption Standard. Copernicus
Books, 2005.

[33] J. Daemen and V. Rijmen. The Design of Rijndael: AES — The Advanced Encryp-
tion Standard. Springer, 2002.

[34] P. N. de Souza, R. J. Fateman, J. Moses, and C. Yapp. The Maxima
book, 30th October 2009. http://maxima.sourceforge.net/docs/maximabook/

maximabook-19-Sept-2004.pdf.
[35] M. Eisenberg. Hill ciphers: A linear algebra project with Mathematica. In G. Good-

ell, editor, Proceedings of the Twelfth Annual International Conference on Technol-
ogy in Collegiate Mathematics, pages 100–104. Addison-Wesley, 2001.

[36] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, IT-31(4):469–472, 1985.

[37] B. Esslinger et al. CrypTool: Cryptography Educational Tool (Version 1.4.21). The
CrypTool Development Team, 24th October 2009. http://www.cryptool.org.

REFERENCES 175

[38] N. Ferguson and B. Schneier. Practical Cryptography. Wiley Publishing, 2003.
[39] Free Software Foundation. GNU General Public License Version 2, 04th November

2009. http://www.gnu.org/licenses/old-licenses/gpl-2.0.html.
[40] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.4.12,

2008. http://www.gap-system.org.
[41] S. Garera and J. Vasconcelos. Challenges in teaching a graduate course in applied

cryptography. SIGCSE Bulletin, 41(2):103–107, 2009.
[42] T. Gautier, J.-L. Roch, G. Villard, J.-G. Dumas, P. Giorgi, and C. Pernet. Givaro:

C++ library for arithmetic and algebraic computations, 05th November 2009. http:
//ljk.imag.fr/CASYS/LOGICIELS/givaro.

[43] M. Gray. Sage: A new mathematics software system. Computing in Science &
Engineering, 10(6):72–75, Nov.-Dec. 2008.

[44] W. B. Hart et al. MPIR: Multiple Precision Integers and Rationals, 05th November
2009. http://www.mpir.org.

[45] A. C. Hearn. REDUCE: A portable general-purpose computer algebra system,
02nd November 2009. http://reduce-algebra.sourceforge.net.

[46] L. S. Hill. Cryptography in an algebraic alphabet. The American Mathematical
Monthly, 36(6):306–312, 1929.

[47] L. S. Hill. Concerning certain linear transformation apparatus of cryptography. The
American Mathematical Monthly, 38(3):135–154, 1931.

[48] J. Hoffstein, J. Pipher, and J. H. Silverman. An Introduction to Mathematical
Cryptography. Springer, 2008.

[49] T. W. Hungerford. Abstract Algebra: An Introduction. Thomson Learning, 2nd
edition, 1997.

[50] D. Joyner. Open source computer algebra systems: Maxima. ACM Communications
in Computer Algebra, 40(3):92–96, 2006.

[51] D. Joyner and W. Stein. Open source mathematical software. Notices of the Amer-
ican Mathematical Society, 54(10):1279, 2007.

[52] R. E. Klima, N. P. Sigmon, and E. L. Stitzinger. Applications of Abstract Algebra
with Maple and Matlab. Chapman & Hall/CRC, 2nd edition, 2007.

[53] N. Koblitz. Algebraic Aspects of Cryptography. Springer, 2004.
[54] W. Koepf. Mathematics with DERIVE as didactical tool. The DERIVE-Newsletter,

38:23–35, 2000.
[55] D. R. Kohel. Cryptography, 05th November 2009. http://echidna.maths.usyd.

edu.au/~kohel/tch/Crypto/crypto.pdf.
[56] A. M. Kuchling. Python Cryptography Toolkit (Version 2.0.1), 04th December 2009.

http://www.amk.ca/python/code/crypto.
[57] R. E. Lewand. Cryptological Mathematics. The Mathematical Association of Amer-

ica, 2000.
[58] R. Lidl and H. Niederreiter. Finite Fields. Cambridge University Press, 2nd edition,

1997.
[59] S. Maitra and S. Sarkar. A new class of weak encryption exponents in RSA. In D. R.

Chowdhury, V. Rijmen, and A. Das, editors, Progress in Cryptology – INDOCRYPT
2008, 9th International Conference on Cryptology, volume 5365 of Lecture Notes in
Computer Science, pages 337–349. Springer, 2008.

[60] S. Maitra and S. Sarkar. Revisiting Wiener’s attack — new weak keys in RSA. In
Tzong-ChenWu, C.-L. Lei, V. Rijmen, and D.-T. Lee, editors, ISC ’08: Proceed-
ings of the 11th International Conference on Information Security, volume 5222 of
Lecture Notes in Computer Science, pages 228–243. Springer, 2008.

[61] W. A. Martin and R. J. Fateman. The MACSYMA system. In SYMSAC ’71:
Proceedings of the second ACM symposium on Symbolic and algebraic manipulation,
pages 59–75. ACM, 1971.

176 REFERENCES

[62] Maxima.sourceforge.net. Maxima, a Computer Algebra System, Version 5.19.1,
02nd November 2009. http://maxima.sourceforge.net.

[63] M. May. Maple worksheets for cryptography, 27th October 2009. http://euler.

slu.edu/courseware/CryptoSubmissionSet/Cryptography.html.
[64] M. May. Using Maple worksheets to enable student explorations of cryptography.

Cryptologia, 33(2):151–157, 2009.
[65] A. McAndrew. Computer algebra systems: An introductory view. Technical Report

18MATH2, Victoria University of Technology, January 1992.
[66] A. McAndrew. Teaching cryptography with open-source software. In J. D.

Dougherty, S. H. Rodger, S. Fitzgerald, and M. Guzdial, editors, SIGCSE 2008:
Proceedings of the 39th SIGCSE Technical Symposium on Computer Science Edu-
cation, pages 325–329. Association for Computing Machinery, 2008.

[67] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

[68] R. A. Mollin. An Introduction to Cryptography. Chapman & Hall/CRC, 2nd edition,
2007.

[69] M. B. Monagan. 2D and 3D graphical routines for teaching linear algebra. Proceed-
ings of the 2002 Maple Summer Workshop, 2002.

[70] G. Moody. Rebel Code: Linux and the Open Source Revolution. Basic Books, 2001.
[71] V. Muñoz and U. Persson. Interviews with three Fields medalists. Notices of the

American Mathematical Society, 54(3):405–410, 2007.
[72] M. A. Musa, E. F. Schaefer, and S. Wedig. A simplified AES algorithm and its

linear and differential cryptanalysis. Cryptologia, 27(2):148–177, 2003.
[73] L. Naismith and C. J. Sangwin. Computer algebra based assessment of mathemat-

ics online. In Proceedings of the 8th Computer-Assisted Assessment Conference,
Loughborough, UK, 2004. Loughborough University.

[74] J. Neubüser. An invitation to computational group theory. In C. M. Campbell,
T. C. Hurley, E. F. Robertson, S. J. Tobin, and J. J. Ward, editors, Groups ’93
Galway/St. Andrews, Volume 2, volume 212 of London Mathematical Society Lecture
Note Series, pages 457–475. Cambridge University Press, 1995.

[75] W. Neun. REDUCE is free software as of January 2009. ACM Communications in
Computer Algebra, 43(1):15–16, 2009.

[76] M. V. Nguyen. Affine cipher and its cryptanalysis, 2009. http://trac.sagemath.
org/sage_trac/ticket/7124.

[77] M. V. Nguyen. Bring documentation of classical.py to 100%, 2009. http://trac.

sagemath.org/sage_trac/ticket/5529.
[78] M. V. Nguyen. Cryptanalysis of the shift cipher, 2009. http://trac.sagemath.

org/sage_trac/ticket/7123.
[79] M. V. Nguyen. Knapsack: subset sum problem for super-increasing sequences, 2009.

http://trac.sagemath.org/sage_trac/ticket/5827.
[80] M. V. Nguyen. Phan’s mini-aes for educational purposes, 2009. http://trac.

sagemath.org/sage_trac/ticket/6164.
[81] M. V. Nguyen. Restify modules in sage/numerical and put them in reference manual,

2009. http://trac.sagemath.org/sage_trac/ticket/6176.
[82] M. V. Nguyen. Sanity check key value of the shift cryptosystem, 2009. http:

//trac.sagemath.org/sage_trac/ticket/7010.
[83] M. V. Nguyen. Schaefer’s simplified data encryption standard for educational pur-

poses, 2009. http://trac.sagemath.org/sage_trac/ticket/6461.
[84] M. V. Nguyen. The shift cryptosystem, 2009. http://trac.sagemath.org/sage_

trac/ticket/6841.
[85] M. V. Nguyen. Typos in super-increasing code, 2009. http://trac.sagemath.org/

sage_trac/ticket/6222.

REFERENCES 177

[86] NIST. Announcing approval of the withdrawal of federal information processing
standard (FIPS) 46-3, data encryption standard (DES); FIPS 74, guidelines for
implementing and using the NBS data encryption standard; and FIPS 81, DES
modes of operation. Federal Register, 70(96):28907–28908, 2005.

[87] NIST. Announcing request for candidate algorithm nominations for a new cryp-
tographic hash algorithm (SHA-3) family. Federal Register, 72(212):62212–62220,
2007.

[88] A. Nitaj. Another generalization of Wiener’s attack on RSA. In S. Vaudenay,
editor, AFRICACRYPT 2008: Proceedings of the First International Conference
on Cryptology in Africa, volume 5023 of Lecture Notes in Computer Science, pages
174–190. Springer, 2008.

[89] S. Ockman, M. Stone, and C. Dibona, editors. Open Sources: Voices from the Open
Source Revolution. O’Reilly Media, 1999.

[90] OSI. Open Source Initiative, 02nd November 2009. http://www.opensource.org.
[91] P. D. Palma, C. Frank, S. E. Gladfelter, and J. Holden. Cryptography and computer

security for undergraduates. In D. Joyce, D. Knox, W. Dann, and T. L. Naps,
editors, Proceedings of the 35th SIGCSE Technical Symposium on Computer Science
Education, pages 94–95. Association for Computing Machinery, 2004.

[92] W. Patterson. Mathematical Cryptology for Computer Scientists and Mathemati-
cians. Rowman & Littlefield, 1987.

[93] R. C.-W. Phan. Mini advanced encryption standard (Mini-AES): A testbed for
cryptanalysis students. Cryptologia, 26(4):283–306, 2002.

[94] A. Z. Pinkus and S. Winitzki. YACAS: A do-it-yourself symbolic algebra environ-
ment. In J. Calmet, B. Benhamou, O. Caprotti, L. Henocque, and V. Sorge, editors,
AISC 2002: Proceedings of the Joint International Conferences on Artificial Intel-
ligence, Automated Reasoning, and Symbolic Computation, volume 2385 of Lecture
Notes in Computer Science, pages 332–336. Springer, 2002.

[95] B. Pletsch. Computer algebra in mathematics education. In M. J. Wester, editor,
Computer Algebra Systems: A Practical Guide, pages 285–322. John Wiley & Sons,
1999.

[96] M. O. Rabin. Digitized signatures and public-key functions as intractable as fac-
torization. Technical Report LCS/TR-212, Massachusetts Institute of Technology,
1979.

[97] E. S. Raymond. The Cathedral & the Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary. O’Reilly Media, 2001.

[98] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[99] K. H. Rosen. Discrete Mathematics and Its Applications. WCB/McGraw-Hill, 4th
edition, 1999.

[100] A. D. Rubin. An experience teaching a graduate course in cryptography. Cryptologia,
21(2):97–109, 1997.

[101] sage.math. The sage.math compute node, 18th October 2009. http://sage.math.
washington.edu.

[102] E. F. Schaefer. A simplified data encryption standard algorithm. Cryptologia,
20(1):77–84, 1996.

[103] R. Schlesinger. A cryptography course for non-mathematicians. In InfoSecCD ’04:
Proceedings of the 1st annual conference on Information security curriculum devel-
opment, pages 94–98. Association for Computing Machinery, 2004.

[104] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C.
John Wiley & Sons, 2nd edition, 1996.

[105] B. Schneier. Secrets & Lies: Digital Security in a Networked World. Wiley Pub-
lishing, 2000.

178 REFERENCES

[106] V. Shoup. A Computational Introduction to Number Theory and Algebra. Cambridge
University Press, 2nd edition, 2009.

[107] V. Shoup. NTL: A Library for doing Number Theory, 05th November 2009. http:
//www.shoup.net/ntl.

[108] R. Spillman. A software tool for teaching classical & contemporary cryptology.
Journal of Computing Sciences in Colleges, 20(2):114–124, 2004.

[109] R. M. Stallman, L. Lessig, and J. Gay. Free Software, Free Society: Selected Essays
of Richard M. Stallman. Free Software Foundation, 2002.

[110] W. Stein. Can we create a viable free open source alternative to Magma, Maple,
Mathematica and Matlab? In J. R. Sendra and L. González-Vega, editors, IS-
SAC 2008: Proceedings of the International Symposium on Symbolic and Algebraic
Computation, pages 5–6. Association for Computing Machinery, 2008.

[111] W. Stein et al. Sage Mathematics Software (Version 4.2.1). The Sage Development
Team, 14th November 2009. http://www.sagemath.org.

[112] W. Stein and D. Joyner. SAGE: System for algebra and geometry experimentation.
ACM SIGSAM Bulletin, 39(2):61–64, 2005.

[113] D. R. Stinson. Cryptography: Theory and Practice. Chapman & Hall/CRC, 3rd
edition, 2006.

[114] W. Trappe and L. C. Washington. Introduction to Cryptography with Coding Theory.
Prentice Hall, 2nd edition, 2006.

[115] W. Trappe and L. C. Washington. Introduction to cryptography with coding theory,
2nd edition, book website, 26th October 2009. http://www-users.math.umd.edu/

~lcw/book.html.
[116] V. Velichkov, V. Rijmen, and B. Preneel. Algebraic cryptanalysis of a small-scale

version of stream cipher LEX. In Proceedings of the 30th Symposium on Information
Theory in the Benelux, 2009.

[117] J. E. Villate. Teaching dynamical systems with Maxima. In ACA 2007: Proceed-
ings of the 2007 International Conference on Applications of Computer Algebra,
Rochester, MI, USA, 2007. Oakland University.

[118] R.-P. Weinmann. Algebraic Methods in Block Cipher Cryptanalysis. PhD thesis,
Department of Computer Science, Technischen Universität Darmstadt, Germany,
2009.

[119] M. J. Wiener. Cryptanalysis of short RSA secret exponents. IEEE Transactions on
Information Theory, 36(3):553–558, 1990.

[120] S. Williams. Free as in Freedom: Richard Stallman’s Crusade for Free Software.
O’Reilly Media, 2002.

[121] S. Y. Yan. Number Theory for Computing. Springer, 2nd edition, 2002.

