
Algebraic Methods in Block
Cipher Cryptanalysis

Vom Fachbereich Informatik
der Technischen Universität Darmstadt

genehmigte

Dissertation

zur Erlangung des Grades
Dr. rer. nat. (rerum naturalium)

von

Dipl.-Inform. Ralf-Philipp Weinmann
geboren in Mannheim

Referenten: Prof. Dr. rer. nat. Dr. h.c. Johannes A. Buchmann
Prof. Dr. ir. Vincent Rijmen

Eingereicht am: 1. März 2008
Verteidigt am: 16. April 2008

Darmstadt, 2009
Hochschulkennziffer: D17

2

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit - abgesehen von den in
ihr ausdrücklich genannten Hilfen - selbständing verfaßt habe.

Wissenschaftlicher Werdegang des Verfassers in Kurz-
fassung

Oktober 1998 – August 2003 Studium der Informatik mit Nebenfach Ma-
thematik an der Technischen Universität
Darmstadt

August 2003 Diplomabschluß an der Technischen Uni-
versität Darmstadt (Diplom-Informatiker)

Oktober 2003 – Oktober 2008 Wissenschaftlicher Mitarbeiter und Dok-
torand am Fachgebiet Theoretische Infor-
matik, Fachbereich Informatik, Technische
Universität Darmstadt

Zusammenfassung

Diese Dissertation ist ein Beitrag zum Gebiet der algebraischen Kryptanaly-
se. Die folgenden Themen werden in ihr behandelt:

• Wir konstruieren und analysieren sowohl Feistel als auch SLN Chiffren
die eine fundierte Konstruktionsstrategie gegen lineare und differen-
tielle Kryptanalyse aufweisen. Der Verschlüsselungsprozess für diese
Chiffren kann als ein sehr einfaches System polynomieller Gleichun-
gen beschrieben werden. Für eine Block- und Schlüsselgröße von 128
Bits präsentieren wir Chiffren mit bis zu 12 Runden für die prakti-
sche Gröbnerbasisangriffe den gesamten Schlüssel errechnen können;
mit einer minimalen Anzahl von Klartext-/ Schlüsseltextpaaren. Wir
zeigen wie für eine Untermenge der Chiffren Gröbnerbasen mit ver-
nachlässigbarem Rechenaufwand direkt konstruiert werden können.
Diese Vorgehensweise reduziert das Problem der Schlüsselrückgewin-
nung (Key Recovery) auf das Problem, Gröbnerbasen zwischen zwei
verschiedenen Termordnungen zu konvertieren. Für FGLM, einen Al-
gorithmus zum Konvertieren von Gröbnerbasen, können wir obere
Schranken für seine Laufzeit sowie seinen Speicherplatzbedarf ange-
ben. Hierdurch sind wir in der Lage zu zeigen, dass es Blockchiffren
gibt, die resistent gegen lineare und differentielle Kryptanalyse sind,
jedoch mit Gröbnerbasisangriffen angreifbar.

Eine Einreichung zu diesem Thema wurde in Proceedings of The Cryp-
tographers’ Track at the RSA Conference 2006 (CT-RSA 2006) veröffent-
licht [21].

• Wir zeigen eine effiziente Methode zum Berechnen einer Gröbnerba-
sis für ein null-dimensionales Ideal welches das Schlüsselrückgewin-
nungsproblem für den vollen AES-128 ausgehend von einem einzigen
Klartext-/Chiffretextpaar beschreibt. Diese Gröbnerbasis ist relativ zu
einer graduiert-lexikografischen Ordnung. Wir untersuchen, welche
Auswirkungen die Existenz dieser Gröbnerbasis auf die Sicherheit von
AES hat.

Dieses Resultat wurde in Revised Selected Papers of the Fast Software
Encryption Workshop 2006 (FSE 2006) veröffentlicht [22].

3

4

• SMS4 ist eine 128-Bit Blockchiffre, die im WAPI Standard verwendet
wird um eine Vetraulichkeit der übermittelten Daten in Funknetzwer-
ken zu erreichen. Für diese Chiffre erklären wir, wie eine Einbettung in
einen Erweiterungskörper ähnlich zu BES erreicht werden kann. Wei-
terhin zeigen wir, dass die Konstruktion der Chiffre fragil ist. Varianten
der Chiffre weisen 264 schwache Schlüssel auf.

Die erzielten Ergebnisse wurden in Proceedings of Information Securi-
ty and Privacy, 12th Australasian Conference (ACISP 2007) publiziert
[77].

• Cryptomeria ist eine 64-Bit Blockchiffre mit einem 56-Bit Schlüssel,
die in dem CPPM/CPRM Standard für den Schutz von Inhalten auf
DVD Audio Medien, Video DVD-Rs sowie SD Karten Verwendung fin-
det. Die Spezifikation dieser Chiffre ist bis auf die verwendete S-Box
öffentlich. Die S-Box, die anwendungsspezifisch ist, wird als Geschäfts-
geheimnis behandelt und muss von 4C Entity, Inc. lizenziert werden.
Wir zeigen wie man für Cryptomeria und ähnlich aufgebaute Chiffren
die S-Box durch eine Kombination von differenziellen und algebrai-
schen Methoden zurück gewinnen kann, wenn man den Schlüssel so-
wie die Eingaben der Chiffre wählen kann. Dieser Angriff wurde gegen
rundenreduzierte Varianten von Cryptomeria praktisch verifiziert.

Diese Ergebnisse sind bisher unpubliziert.

• Wir betrachten Algorithmen zum Berechnen von Gröbnerbasen die auf
Methoden aus der linearen Algebrau aufbauen. Da diese Algorithmen
extrem speicherhungrig sind haben wir Strategien entwickelt, um die
reduzierte Zeilenstufenform einer Matrix effizient auf speicherverteil-
ten Systemen berechnen zu können. Wir geben einen Algorithmus an,
der dieses Problem effizient im dichtbesetzten Fall löst und diskutieren
den dünnbesetzten Fall.

Ein Extended Abstract wurde im Tagungsband der The First Internatio-
nal Conference on Symbolic Computation and Cryptography (SCC 2008)
veröffentlicht [112].

Abstract

This thesis is a contribution to the field of algebraic cryptanalysis. Specifi-
cally the following topics have been studied:

• We construct and analyze Feistel and SLN ciphers that have a sound
design strategy against linear and differential cryptanalysis. The en-
cryption process for these cipher can be described by very simple poly-
nomial equations. For a block and key size of 128 bits, we present
ciphers for which practical Gröbner Basis Attacks can recover the full
cipher key for up to 12 rounds requiring only a minimal number of
plaintext/ciphertext pairs. We show how Gröbner bases for a subset of
these ciphers can be constructed with negligible computational effort.
This reduces the key–recovery problem to a Gröbner basis conversion
problem. By bounding the running time of a Gröbner basis conver-
sion algorithm, FGLM, we demonstrate the existence of block ciphers
resistant against differential and linear cryptanalysis but vulnerable
against Gröbner basis attacks.

A paper on this subject has been published in the Proceedings of The
Cryptographers’ Track at the RSA Conference 2006 (CT-RSA 2006) [21].

• We demonstrate an efficient method for computing a Gröbner basis of
a zero-dimensional ideal describing the key-recovery problem from
a single plaintext/ciphertext pair for the full AES-128. This Gröb-
ner basis is relative to a degree-lexicographical order. We investigate
whether the existence of this Gröbner basis has any security implica-
tions for the AES.

This result has been published in the Revised Selected Papers of the Fast
Software Encryption Workshop 2006 (FSE 2006) [22].

• SMS4 is a 128-bit block cipher used in the WAPI standard for pro-
viding data confidentiality in wireless networks. For this cipher we
explain how to construct a extension field embedding similar to BES,
and demonstrate the fragility of the cipher design by giving variants
that exhibit 264 weak keys.

5

6

These results have been published in the Proceedings of Information
Security and Privacy, 12th Australasian Conference (ACISP 2007) [77].

• Cryptomeria is a 64-bit block cipher with a 56-bit key used in the
CPRM / CPPM standard for content protection on DVD Audio discs,
Video DVD-Rs and SD cards. The design of this cipher is public, the S-
Box – which is application-specific – is treated as a trade secret which
needs to be licensed from the 4C Entity, Inc. We show how for Cryp-
tomeria and similarly structured ciphers the S-Box can be recovered
in a chosen-key setting by a combination of differential and algebraic
methods. This attack has been practically validated against reduced
round versions of Cryptomeria.

This is unpublished work.

• We look into Gröbner bases algorithms which use linear algebra meth-
ods. Because these algorithms are extremely memory-hungry, we have
developed strategies for implementing the reduced row-echelon com-
putation efficiently on distributed memory systems. We give an algo-
rithm to efficiently tackle this problem in the dense case and discuss
the sparse case.

A extended abstract on this subject has been submitted to and ac-
cepted at The First International Conference on Symbolic Computation
and Cryptography (SCC 2008) [112].

Acknowledgements

I am indebted to several people whose support and inspiration has proven
invaluable during this dissertation. First of all, I would like to thank my
thesis advisor, Professor Johannes Buchmann for the generous support and
the excellent environment he provided. Next I would like to thank Professor
Vincent Rijmen for becoming the co-referee of my thesis. Thirdly, I would
like to express gratitude towards my parents for having enabled and encour-
aged me to pursue my studies. Last but not least I would like to thank my
lovely girlfriend Mirja for her support and understanding during the count-
less nights I spent instead of the computer instead of with her.

Also, I would like to thank all of my colleagues, collaborators and fellow
travellers throughout the years. John Gilmore needs to be explicitly men-
tioned: He brought the topic of DRM and proprietary encryption algorithms
in the context of SD cards at the 23rd Chaos Computer Club Congress; I
would probably never have looked into Cryptomeria myself without that
remark. Thank you!

Parts of the experiments in this thesis were carried out in MAGMA, which
has an excellent implementation of the F4 algorithm, albeit black-box.

I’m grateful to the people involved in the SAGE project for producing
such a wonderful and powerful open-source computer algebra system and
hope that parts of the Gröbner basis computation code written during the
course of this thesis will soon be in shape for them to include.

A special thanks goes to Franconian brewery Loscher for producing the
caffeinated drink “Club-Mate” which was heavily perused while writing this
document. This thesis was produced using LATEXand written in Emacs.

7

8

Contents

0 Introduction 15

1 Preliminaries 21
1.1 Notation for Data Structures 21
1.2 Polynomial Rings and Ideals 22

1.2.1 Affine Varieties . 23
1.3 Gröbner Bases . 24

1.3.1 Term Orders . 24
1.3.2 Buchberger’s Algorithm 26
1.3.3 Buchberger’s Criteria 27
1.3.4 Macaulay Matrices . 28

1.4 Block Ciphers . 29
1.4.1 Diffusion and Confusion 29
1.4.2 Attack Models . 29

1.5 The MQ-Problem . 32

2 Iterated Block Ciphers 35
2.1 High-Level Structures of Block Ciphers 35

2.1.1 Substitution Linear Networks 36
2.1.2 Feistel Networks . 36
2.1.3 Generalized Unbalanced Feistel Networks 37

2.2 Last-Round Attacks against Block Ciphers 37
2.2.1 Differential Cryptanalysis 38
2.2.2 Linear Cryptanalysis 39
2.2.3 Integral Cryptanalysis 40

2.3 Selected Standardized Block Ciphers 41
2.3.1 The Advanced Encryption Standard (AES) 41
2.3.2 SMS4 . 41
2.3.3 Cryptomeria . 44

2.4 Experimental Block Ciphers 46
2.4.1 Mini-AES . 46
2.4.2 Flurry and Curry . 51

9

10 CONTENTS

3 Efficient Gröbner Basis Algorithms 59
3.1 The FGLM Algorithm . 60
3.2 The F4 Algorithm . 61

3.2.1 The Gebauer-Moeller Installation 64
3.3 On the Complexity of Gröbner Basis Computations 65

4 Algebraic Approaches To Cryptanalysis 69
4.1 Interpolation Attacks on Block Ciphers 69
4.2 Deriving Systems of Polynomial Equations 70

4.2.1 Polynomial Representation of FLURRY and CURRY . . . 70
4.2.2 An Embedded Representation of SMS4 72

4.3 Gröbner Basis Attacks with Minimal Data Complexity 74
4.3.1 Experimental Results 75
4.3.2 Gröbner Bases without Polynomial Reductions 76

4.4 A Gröbner Basis for AES-128 81
4.4.1 The S-Box . 81
4.4.2 The Linear Transformation 82
4.4.3 The Key Schedule . 83
4.4.4 Choosing a Suitable Variable Order 84
4.4.5 Impact Analysis . 84

4.5 Secret S-Boxes and Algebraic Attacks 87
4.5.1 Constructing a Polynomial System 87
4.5.2 The Attack: Solving the Polynomial System 90
4.5.3 Results Achieved against Cryptomeria 92

5 Distributed Memory Computation of RREFs 95
5.1 Motivation . 95
5.2 A Model for Distributed Memory Computations 97
5.3 A Parallelized version of Gauss-Jordan 97
5.4 Notes on the Performance of the Algorithm 98
5.5 Properties of the Algorithm and Implementation 99
5.6 Experimental Results . 100

6 Conclusions 101

List of Tables

2.1 S-Box mappings over GF (2n) with n ∈ {8, 16, 32, 64} 55

4.1 Experimental results obtained with MAGMA (from [21]) . . . 76
4.2 Upper bounds on the complexity of breaking 128-bit FLURRY

and CURRY ciphers with FGLM 79
4.3 Equation systems for reduced round versions of Cryptomeria . 90

11

List of Figures

2.1 One round of the SMS4 Unbalanced Feistel Network 42
2.2 The Cryptomeria round function 46

4.1 Active S-Boxes in Cryptomeria (10 rounds and three p/c pairs) 91

12

List of Algorithms

1 NormalForm . 26
2 Buchberger . 26
3 MiniRijndaelEncrypt . 49
4 AddRoundKey . 49
5 SubElement . 50
6 ShiftRows . 50
7 MixColumns . 50
8 MiniRijndaelKeySchedule . 51
9 FGLM . 60
10 F4Improved . 62
11 F4Reduction . 63
12 SymbolicPreprocessing . 64
13 Simplify . 64
14 Update . 66

13

List of Acronyms

AES Advanced Encryption Standard

CPPM Content Protection for Pre-Recorded Media

CPRM Content Protection for Recordable Media

DES Data Encryption Standard

DMS Distributed Memory System

FIPS Federal Information Processing Standard

GE Gaussian Elimination

GJE Gauss-Jordan Elimination

GUFN Generalized Unbalanced Feistel Network

HPS High-Performance Switch

MPI Message-Passing Interface

NBS National Bureau of Standards

NIST National Institute of Standards

NSA National Security Agency

PRAM Parallel Random Access Machine

REF Row Echelon Form

RREF Row-Reduced Echelon Form

SLN Substitution Linear Network

SNI Switch Network Interface

SPN Substitution Permutation Network

UFN Unbalanced Feistel Network

14

Chapter 0

Introduction

Encryption has become ubiquitous. WPA2 is used to encrypt wirelessly
transmitted IEEE 802.11 packets. IPsec encrypts IP packets. SSL provides
data confidentiality for TCP connections. S/MIME and PGP are used for
encrypted email. Data at rest – stored on media of various form factors – is
routinely encrypted both file and block-wise. All of the above technologies
are in widespread use today and share a common theme: they use or allow
for the use of a block cipher for encrypting the bulk data. These ciphers
split their input into a sequence of blocks of the same size. The blocks are
then individually encrypted using a parametrized invertible function, the
encryption function of the block cipher. The parameter of this function is
the so-called cipher key. This function can be represented algebraically: as
one or more equations in which the key and the plaintext take the role of the
unknowns. Claude Shannon was the first to propose this view as a model to
assess a cipher’s security [104]:

Thus, if we could show that solving a certain system requires at
least as much work as solving a system of simultaneous equations
in a large number of unknowns, of a complex type, then we would
have a lower bound of sorts for the work characteristic.

Cryptanalysis is the study of cryptographic systems with the intention
of breaking them. A cryptanalytic attack is an attack that breaks a cipher
faster than brute-force, i.e. enumerating all possible keys. Indeed, before
Shannon published the paper from which the above quote was taken, Mar-
ian Rejewski sucessfully used algebraic methods against the Enigma [53] to
cryptanalyse it. The equations in his analysis describe permutations. This
work only saw the light of day much later.

The Data Encryption Standard or rather its publication marks a criti-
cal point in the history of modern cryptology. For the first time it allowed

15

16 CHAPTER 0. INTRODUCTION

the scientific community to see the full design of a government approved
encryption algorithm. In 1975, the National Bureau of Standards (NBS)
proposed the block cipher Data Encryption Standard (DES), which was de-
signed by IBM with input from the National Security Agency (NSA). It was
approved as federal standard in the United States of America in late 1976
and published in 1977 [88]. Previously, encryption algorithms were only
used in military settings and hence not disclosed.

Statistical cryptanalytic attacks are standard attacks against modern
block ciphers. The best known attacks against the DES – linear and differ-
ential cryptanalysis, which were only discovered in the early 1990s – are
of this type and require a large number of plaintext/ciphertext pairs. As
the cryptographic community began understanding the power of differential
and linear cryptanalysis they found criteria that allowed for the construction
of block ciphers immune to these attacks. As general purpose computers be-
came cheaper, a further paradigm change resulted from shifting the focus
from hardware implementations to software implementations. In software,
bit permutations – used extensively in the DES – often are extremely costly,
as most off-the-shelf CPUs do not provide for instructions for this purpose.
However, byte and word-sized operations are cheap.

The Advanced Encryption Standard reflects these changes in block ci-
pher design. In 1997, 20 years after the publication of DES, the National
Institute of Standards (NIST) – the successor of the NBS – issued a call for
a successor, the Advanced Encryption Standard (AES). This was a tremen-
dous opportunity for the academic cryptologic community. As it was an
open selection process, fierce competition resulted in significant advances
being made in both block cipher design and cryptanalysis. Although the
set of functional, security and efficiency requirements for this block cipher
were fixed by the NIST, it was the cryptographic community that evaluated
the performance and security of the submitted ciphers in a three-round pro-
cess. It is noteworthy that this contest was not limited to U.S. citizens. The
winner of this competition was Rijndael [38], an entry by two Belgian cryp-
tographers, Vincent Rijmen and Joan Daemen. Not only in the U.S., but
world-wide the AES has since become the new standard block cipher.

Algebraic approaches to secret-key analysis did not receive much at-
tention in the world of open cryptologic research until the end of the 20th
century. Although there were some initial attempts of attacking the DES
through a polynomial bit-level representation [60], these were not success-
ful and soon discarded. In the 1990s, block cipher designers began propos-
ing algebraically structured components [90, 91, 10] in order to make their
ciphers resistant against linear and differential cryptanalysis; it was a logical

17

next step to look into exploiting that algebraic structure. The first algebraic
attack in this context was Jakobsen and Knudsen’s interpolation attack [64]
against SHARK [100], a predecessor of Rijndael. Later, after Rijndael [38]
had been chosen as the Advanced Encryption Standard, suspicion because
of its high algebraic structure arose [50]. In 2002, Courtois and Pieprzyk
published a then highly controversial paper on attacking block ciphers by
solving systems of polynomials equations using a specialized method which
they called XSL (Extended Sparse Linearization) [32]. This method as well
as their complexity analysis was later debunked by Cid and Leurent [24].
Although XSL has died, the idea of attacking block ciphers using algebraic
methods has stayed alive.

Stream ciphers were easier prey for algebraic attacks than block ciphers.
The designs attacked were regularly clocked LFSR-based ciphers such as
combiners and filter generators [2, 45]. The structure of the equation sys-
tems for these stream ciphers is inherently different from the structure en-
countered in the case of block ciphers: Independent of the number of clocks,
the linear evolution of the internal state causes the output bits to be ex-
pressible as a polynomial of fixed degree in the variables representing the
bits of the initial internal state. This is different from the case of block
ciphers where each round adds a layer of non-linearity to the system of
equations, requiring either to introduce variables for representing the inter-
mediate state after a round transformation or obtaining a system in which
the degree grows with the number of rounds of the cipher.

Multivariate systems of polynomial equations not only occur in secret-
key cryptography. There are also public-key encryption and signature schemes
built on the difficulty of solving these systems [94, 71]. Most of these sys-
tems have been broken however [47, 52].

Several methods can be used for solving. This thesis will only explore
Gröbner basis algorithms as they have a solid mathematical foundation. The
XL [31] algorithm sometimes is proposed as an alternative to Gröbner ba-
sis algorithms. It was shown however that XL is merely a Gröbner basis
algorithm in disguise, and a very inefficient one at that [3].

Other methods include resultant-based methods, SAT solvers and an
algorithm proposed by Raddum and Semaev [98]. Whether SAT solvers
should be considered algebraic solvers is a philosophical question. The DPLL
algorithm, the backbone of SAT-solvers, is a backtracking-based procedure
for deciding the satisfiability of formulae in propositional logic. Therefore,
this approach in the past has been called “logical cryptanalysis”. SAT solvers
were recently revisited by Mironov and Zhang for the case of hash func-
tions [86]. Related to this is the work of Courtois, Bard and Wagner [33],
who cryptanalysed the block cipher KeeLoq, an NLFSR-based block cipher

18 CHAPTER 0. INTRODUCTION

used in the automotive industry with a 32-bit state and 64-bit keys. Using a
combination of slide attacks and SAT solvers, they were able to successfully
attack this cipher.

19

Outline of this thesis

The thesis is organized as follows:

• Chapter 1 introduces the mathematical and cryptologic basics needed
for this thesis. Gröbner bases, block ciphers and attack models are
explained. Buchberger’s algorithm as well as the Buchberger criteria
are presented.

• Chapter 2 deals with the construction and statistical cryptanalysis of
block ciphers. We give an overview of the construction principles of
iterated block ciphers and the briefly survey a number of statistical
attacks that modern block ciphers have been made immune against.
We then describe a selection of deployed ciphers that are of further
interest for the thesis as well as experimental ciphers that are suitable
for experimentation with algebraic attacks. For one of the deployed
ciphers presented, we argue that its design is fragile by showing weak
keys in a variant.

• Chapter 3 contains algorithmic and textual descriptions of efficient
Gröbner basis algorithms which make use of linear algebra routines
for polynomial reduction. These algorithms have been implemented
by the author.

• Chapter 4 demonstrates how algebraic approaches can be used in the
cryptanalysis of block ciphers. Interpolation attacks are briefly de-
scribed. For FLURRY and CURRY we give explicit polynomial repre-
sentations. We demonstrate that the bit-level operations of the cipher
SMS4 can be embedded into a larger field such that the whole cipher
can be represented in a structurally “clean” way. Furthermore we ex-
plain the general approach of Gröbner basis attacks and show that in
certain instances Gröbner bases can be constructed for ciphers with-
out performing a single polynomial reduction. For a number of FLURRY

and CURRY instances we give experimental results for Gröbner basis
attacks requiring a single plaintext/ciphertext pair. For other cipher
instances with a larger number of rounds we are able to give upper
bounds on the complexity of a Gröbner basis attack. For AES-128 we
present an explicit and practical way to construct a zero-dimensional
Gröbner basis. The impact of this result is then analysed. We show
that algebraic attacks can be fruitful against block ciphers with un-
known S-Boxes if we allow for a chosen-key, chosen-text model. This
is demonstrated by attacks against reduced-round variants of Cryp-
tomeria, a block cipher with a secret S-Box used in digital restriction
management schemes.

• Chapter 5 presents a parallelized version of the Gauss-Jordan elim-
ination to tackle the computation of reduced row-echelon forms on

20 CHAPTER 0. INTRODUCTION

distributed memory systems efficiently. This algorithm requires only
unidirectional communication from the master node to the slave nodes
and has low communication overhead. Furthermore, inter-node la-
tency becomes almost irrelevant, allowing the computation to be car-
ried out on loosely coupled networks where the machines are physi-
cally distributed.

• Chapter 6 concludes this thesis and give an overview of open research
problems.

Chapter 1

Preliminaries

In this chapter we lay the groundwork that is needed to understand the
rest of the thesis: First we will clarify some notational issues. We then will
state a number of basic facts about polynomial rings, explain the concept of
Gröbner bases and give a basic algorithm to compute them. The material
we present on this subject is narrowly focused on our needs, we kindly refer
reader yearning for a more thorough introduction to [7] and [34]. In almost
all cases proofs will be omitted.

Secondly we give an abstract description of the concept of block ciphers
and define attack models against this class of secret-key primitives.

We close this chapter with a section on the reduction of 3SAT to the
solving of multivariate quadratic of equations over GF (2).

1.1 Notation for Data Structures

In the course of this thesis, at times we will need data structures such as lists
and tuples with well-defined operations on them. In the following we will
define the list data structure:

A list L is an ordered sequence of elements of a type T ; specifically, all
elements of L must be of the same type. An empty list is denoted by the
constant value (). The following operations are defined on lists:

cons(m, L) prepends an element m ∈ T to the list L

cons(L, m) appends an element m ∈ T to the list L

head(L) returns the first element of the list L or () if the list is empty.

tail(L) returns a lists that consists of all elements of L except for
the first element.

We assume the existence of a fast method for deciding whether an el-
ement exists in the list or not. This is usually not given for a typical list

21

22 CHAPTER 1. PRELIMINARIES

structure but can be obtained by emulating a list through a binary tree.
Closely related to lists, alas with a more rigidly typed signature are n-tuples.
For a tuple t = (t1, t2) we define the functions first(t) and second(t) to return
t1 and t2 respectively.

1.2 Polynomial Rings and Ideals

The only fields we are interested in are finite fields; some results and algo-
rithms presented here may not be applicable for fields with characteristic 0.
Let F be a finite field, X := {x1, . . . , xn} a set of variables and R := F[X] a
polynomial ring in these variables. Elements of the ring R then are called
polynomials, products of the form t =

∏n
i=1 x

ei
i with ei ∈ N0 for 1 ≤ i 6= n

are called terms, and for c ∈ F, c 6= 0, products of the form c · t are called
monomials.

The total degree of a term t ∈ R shall be denoted by deg(t), the set of
all terms of the ring R by T (R) and the set of terms that have a total degree
≤ d by Td(R). For a polynomial p ∈ R, the support supp(p) is defined to be
the set of all terms occurring in p with non-zero coefficient. Analogously for
a term t, its support supp(t) is defined to be the set of all variables occuring
in t that have a non-zero exponent.

Definition 1.2.1. Let p ∈ F[X] be p =
∑k

i=0 citi with ci ∈ F, ti ∈ T (R).
We then call the polynomial homogeneous if there exists d ∈ N such that
deg(ti) = d for all 1 ≤ i ≤ k. A polynomial is called inhomogeneous if it is
not homogeneous.

One of the main objects in the course of this thesis will be polynomial
ideals and their representations. An ideal is defined as follows:

Definition 1.2.2. An ideal I ⊂ R is a set of elements that forms an additive
group and has the additional property of being closed under multiplication
with elements of R. This means that for every x ∈ R, y ∈ I, both xy ∈ I and
yx ∈ I.

Emmy Noether first discovered the following finiteness property of poly-
nomial rings:

Definition 1.2.3. For a ring R, an ascending chain of ideals I1 ⊂ . . . ⊂
I2 . . . ⊂ R is said to become stationary if there exists an n such that In = Im
for all m > n. If every ascending chain of ideals becomes stationary, the ring
R is called Noetherian.

Since polynomial rings are Noetherian rings, Hilbert’s basis theorem
holds.

Theorem 1.2.1 (Hilbert’s basis theorem). Every ideal I ∈ F[X] is finitely
generated, i.e ∃g1, . . . , gm ∈ F[X] such that I = 〈g1, . . . , gm〉.

1.2. POLYNOMIAL RINGS AND IDEALS 23

1.2.1 Affine Varieties

Generally, algebraic varieties are defined over algebraically closed fields.

Definition 1.2.4. An algebraic variety V ∈ Fn is a set of points fulfilling a
set of polynomial equations:

p1 = 0
...

...

pm = 0

i.e. if we regard each of the polynomials in P := {p1, . . . , pm} as an n-valued
function, the result of evaluating any p ∈ P at any point v ∈ V results in 0
for all of p ∈ P .

We’re now in a position to relate the ideals to their corresponding vari-
eties. This can be done by employing Hilbert’s Nullstellensatz:

Theorem 1.2.2 (Hilbert’s Nullstellensatz). Let R = F[x1, . . . , xn] and I and
ideal of R such that I 6= R and I 6= 0. Then there exists an x ∈ Fn such that

f(x1, . . . , xn) = 0

for all f ∈ I.

The Hilbert Nullstellensatz of course also gives us a relation between
polynomial systems of equations and their corresponding ideals in polyno-
mial rings.

Due to the topic we are dealing with – cryptanalysis – we are not very
much interested in points at infinity of algebraic varieties. We therefore
introduce the concept of so-called field polynomials which are used to restrict
the points in the algebraic varieties and hence the solutions we are dealing
with to points, respectively solutions such that each component respectively
variable is an element of the field.

Definition 1.2.5. Let X be a set of variables, Fq be a finite field of or-
der q and Fq[X] a polynomial ring. Then polynomials contained in the set
F(Fq[X]) = {xq + q | x ∈ X} are called field polynomials. Equations of the
form xq = x or xq − x = 0 with x ∈ X are called field equations.

It then makes sense to compute in the quotient ring of the polynomial
ring factored by the set of field polynomials. For q = 2, this ring is called the
ring of Boolean functions.

Theorem 1.2.3. The quotient ring Fq[X]/〈F(Fq[X])〉 contains only a finite
number of elements.

This should be seen in contrast to the polynomial ring, which contains
an infinite number of elements.

24 CHAPTER 1. PRELIMINARIES

1.3 Gröbner Bases

Gröbner bases are standard bases of polynomial ideals. In order to precisely
define the notion of a Gröbner basis we first need to introduce some con-
cepts, namely term orders, normal forms and polynomial reduction in the
multivariate case.

1.3.1 Term Orders

Contrary to the univariate case where we can simply order all terms by their
degree, an answer to the question of how to order terms in the multivariate
case is not immediately obvious. In fact, there are multiple ways to order
the terms of a multivariate polynomial ring]. To make these options precise,
we need to define the notion of a term order.

Definition 1.3.1. A linear order (also called total order) is a binary relation
≤ on a set X such that the following holds:

• if (a ≤ b) ∧ (b ≤ a) then a = b (anti-symmetry)

• if (a ≤ b) ∧ (b ≤ c) then a ≤ c (transitivity)

• ∀a, b ∈ X : (a ≤ b) ∨ (b ≤ a) (totality)

Definition 1.3.2. A term order ≤ is a linear order on the set of terms T (R)
such that

1. 1 ≤ t for all terms t ∈ T (R)

2. for all terms s, t1, t2 ∈ T (R) whenever t1 ≤ t2 then st1 ≤ st2

The following example shows some of the most commonly used term
orders:

Example 1.3.1. Let ε : T (F[X]) → Nn be a map that takes a term t =∏n
i=1 x

ei
i to its exponent tuple e = (e1, . . . , en). We can now define term or-

ders by showing how terms t1, t2 ∈ T (F[X]) can be compared by comparing
their corresponding exponent tuples e := ε(t1) and d := ε(t2).

The lexicographical order (lex): t1 ≤lex t2 iff

(d1, . . . , dn) = (e1, . . . , en)

or if there exists 1 ≤ i ≤ n with dj = ej for 1 ≤ j ≤ (i− 1) and di < ei.

The reverse lexicographical order (revlex): t1 ≤revlex t2 iff

(d1, . . . , dn) = (e1, . . . , en)

or if there exists 1 ≤ i ≤ n with dj = ej for i+ 1 ≤ j ≤ n and di < ei.

1.3. GRÖBNER BASES 25

The graded lexicographical order (deglex): t1 ≤glex t2 iff

deg(t1) < deg(t2)

or if deg(t1) = deg(t2) and t1 ≤lex t2.

The graded reverse lexicographical order (degrevlex) t1 ≤grevlex t2 iff

deg(t1) < deg(t2)

or if deg(t1) = deg(t2) and t1 ≤revlex t2.

Once a term order has been fixed, we define HT(f) to be the greatest
term occuring in the polynomial f ∈ R according to this order – this is
the so-called head term. Other names used in the literature are initial term
or leading term. Correspondingly HM(f) is the head monomial, i.e. the
head term of f multiplied with the matching coefficient which is denoted by
HC(f), the head coefficient. Please note that there can be some confusion
arising from the fact that parts of the literature use the notions term and
monomial in a fashion that is interchanged from our definitions (see [34]
for an example).

Definition 1.3.3 (Syzygy polynomial). Let f, g ∈ F[X]. The syzygy polyno-
mial of f and g is defined as

spol(f, g) =
lcm(HM(f),HM(g))

HM(f)
f − lcm(HM(f),HM(g))

HM(g)
g

Proposition 1.3.1. A subset of polynomials G ⊂fin F[X] with G 6= 0 is a
Gröbner basis if 〈HT(g) : g ∈ G〉 = 〈G〉

A zero-dimensional ideal is an ideal that has a finite number of solu-
tions over the closure of the field. It is advantageous to have this property
for Gröbner basis computations, because usually Gröbner bases for these
cases can be computed faster. Using Corollary 6.56 of [7] we can determine
whether an ideal I is zero-dimensional. Below we state a reduced version
of this corollary:

Lemma 1.3.2. Let I be a proper ideal of F [x1, . . . , xn]. Then the following
assertions are equivalent:

• dim(I) = 0

• There exists a term order ≤ such that for each 1 ≤ i ≤ n there is gi ∈ I
with HT(gi) = xνi

i for some 0 ≤ νi ∈ N.

Definition 1.3.4. A polynomial f ∈ R is in normal form respective to G
(or reduced by G) if there exists no g ∈ G with HT (g)|T (f). We say that
Gröbner basis G is reduced if all its elements are in normal form and the
head coefficient of each element is 1.

26 CHAPTER 1. PRELIMINARIES

Algorithm 1 can be used for computing normal forms of polynomials
respective to a set of polynomials. Please note that normal forms are not
canonical. In the univariate setting, this algorithm reduces to the computa-
tion of a GCD of the polynomials; in the multivariate setting the algorithm
degrades to Gaussian elimination if the total degree of all polynomials is
< 2.

Algorithm 1 NormalForm
Input: P = (p1, . . . , pm) ⊂ F [x1, . . . , xn], f ∈ F [x1, . . . , xn]
Output: g – a normal form of f respective to P

g ← f
while IsReducible(g, P) do

select p ∈ P such that g is reducible modulo p.
determine a monomial m with g →p g −mp
g ← g −mp

end while

1.3.2 Buchberger’s Algorithm

In his Ph.D. thesis [19], Bruno Buchberger proposed the following algorithm
for computing the standard basis of an ideal and hence for solving the ideal
membership problem. The function SelectPair used in this algorithm can

Algorithm 2 Buchberger
Require: (p1, . . . , pm) ⊂ F [x1, . . . , xn]

G← {p1, . . . , pm}
B ← {{g1, g2} | g1, g2 ∈ G with g1 6= g2}
while B 6= ∅ do
{g1, g2} ← SelectPair(B)
B ← B \ {g1, g2}
h← spol(g1, g2)
h0 ← NormalForm(h,G)
if h0 6= 0 then

{add critical pair to B}
B ← B ∪ {{g, h0} | g ∈ G}
G← G ∪ {h0}

end if
end while

1.3. GRÖBNER BASES 27

be any function that selects an element from a set of unordered polynomial
tuples and returns them. How to select these pairs is what is referred to as
the “strategy” of the Gröbner basis algorithm. Different strategies exist, for
the one most commonly used see below (Section 1.3.3).

Because of the properties of the normal form computation, this algo-
rithm degenerates to Gaussian Elimination if we input a set of linear equa-
tions and to the computation of a greatest common divisor of the polynomi-
als if the polynomials p1, . . . , pm are univariate.

1.3.3 Buchberger’s Criteria

During the computation of a Gröbner basis many “reductions to zero” can
be observed when computing normal forms. These computations do not
contribute anything towards finding the Gröbner basis and henceforth are
considered useless. By reducing the amount of reductions to zero, the com-
putation of the Gröbner basis can be significantly sped up. In 1979, Buch-
berger [20] presented two criteria that can be used for exactly that purpose,
the so-called first and second Buchberger criterion.

Proposition 1.3.3 (Buchberger’s 1st criterion). Let f, g ∈ F[X] with

gcd(HT(f),HT(g)) = 1.

Then
spol(f, g) ∗−→

{f,g}
0.

The first Buchberger criterion tells us that we can discard all pairs whose
head terms are pairwise prime in the Buchberger algorithm. To state the sec-
ond Buchberger criterion, we need to introduce a rather technical concept,
namely the concept of t-representations:

Definition 1.3.5. Let t ∈ T (F[X]), f ∈ F[X] with f 6= 0 and P ⊂fin F[X]. If
f can be represented as follows

f =
k∑
i=1

mipi (1.1)

with non-zero monomials pi ∈ P not necessarily being pairwise different for
1 ≤ i ≤ k and

max {HT(mipi | 1 ≤ i ≤ k} ≤ t

we say that the right-hand side of equation 1.1 is a t-representation of f
w.r.t. P.

Proposition 1.3.4 (Buchberger’s 2nd criterion). Let F ⊂fin F[X] and g1, g2, p ∈
F[X]. Furthermore, assume both of the following conditions hold:

28 CHAPTER 1. PRELIMINARIES

• HT(p) | lcm(HT(g1),HT(g2)) and

• spol(gi, p) has a ti-representation w.r.t. F with

ti < lcm(HT(gi),HT(p))

for i ∈ {1, 2}.

Then it follows that there exists a t < lcm(HT(g1),HT(g2)) such that spol(g1, g2)
has a t-representation w.r.t. F .

Making use of both of Buchberger’s criteria allows to skip so-called “re-
ductions to zero” in the Buchberger algorithm. Avoiding these useless re-
duction steps does not change the theoretical complexity but results in a
tremendous speed-up of the algorithm from a practical side.

If we make use of the Buchberger criteria, it is advantageous to use the
so-called “normal strategy”: This means that SelectPair always selects a pair
{f, g} such that lcm(HT(f),HT(g)) is minimal under the chosen term order.

1.3.4 Macaulay Matrices

In the early 20th century, Francis Sowerby Macaulay wrote a groundbreak-
ing paper that had significant impact on the field of algebraic geometry [79].
Among other things, he describes a novel method to check whether a poly-
nomial system of more than two equations can be solved using resultants.
This method was later refined in a book of his [80].

The matrices occuring in this technique establish a link between polyno-
mial systems and linear systems. They were later called Macaulay matrices
in his honor1. The homogenization of the polynomial system that is de-
scribed in the paper is not required for these type of matrices – and will not
be required by us, when we speak of Macaulay matrices. The technique of
forming the Macaulay matrix of polynomial system is called linearization.

Let P = {p1, . . . , pm} ⊂ F [x1, . . . , xn] be a set of polynomials. To form
a Macaulay matrix of P we first collect all terms T (P) =

⋃
p∈P supp(p)

occuring in the polynomials of P and order them using a term order. Let
m be the total number of terms occurring. The Macaulay matrix is an n ×
m matrix over the field F . Each line of the Macaulay matrix represents
a polynomial. For this line each entry is set to the coefficient of the term
corresponding to the column in question. Entries of the line in a column
position corresponding to a term not occuring in the polynomial are set to
0.

Example 1.3.2. Let P := {x1x2 + x3, 2x2 + 1, x1x3 + 2} ∈ F3[x1, . . . , x3].
Then T (P) = {1, x2, x3, x1x2, x1x3}. The corresponding Macaulay matrix

1Sometimes they are simply called the coefficient matrix of the polynomial system.

1.4. BLOCK CIPHERS 29

reads as follows:
x1x3 x1x2 x2 x3 1

0 1 0 1 0
0 0 2 0 1
1 0 0 0 2

1.4 Block Ciphers

Definition 1.4.1. A block cipher is a family of functions Ek : P → C, each
of which maps an element of the plaintext space P to an element of the
ciphertext space C. The elements k ∈ K are the keys of the block cipher. For
each function Ek a corresponding function Dk exists such that Dk(Ek(x)) =
x for all x ∈ P. This corresponding function is called decryption function
and must be efficiently computable given the key k.

Remark. For most block ciphers in symmetric-key cryptography P = C =
GF (2)n, with n being a multiple of 8. Of course, public-key encryption
schemes such as RSA can also be modelled as block ciphers. This however
is seldomly done.

For a more detailed description of how modern block ciphers are built,
please see Chapter 2.

1.4.1 Diffusion and Confusion

In [104], Shannon describes an “algebra of secrecy systems”. Specifically,
he comes up with the concept of “product ciphers”, namely ciphers are com-
posed of different components.

In the same paper, Shannon introduces the notions of confusion and dif-
fusion. These are not rigorously defined: Confusion is meant to make it
difficult for an eavesdropper to come up with a simple relation between the
statistical properties of the intercepted messages and the actual keys that
were used. Diffusion on the other hand is to “dissipate” the statistical struc-
ture of the original message into “long range statistics”, meaning that the
locality of statistical properties of the messages is removed.

Modern block ciphers all build on the concept of alternating multiple lay-
ers of confusion and diffusion operations, which will be described in Section
2.1.1 in more detail.

1.4.2 Attack Models

Auguste Kerckhoffs2 stated six principles that (military) ciphers should fulfill
in his article La cryptographie militaire [70]; the second of these principles

2Scanned and OCRed versions of Kerckhoffs’ seminal articles have been made available
by Fabien A.P. Petitcolas: http://www.petitcolas.net/fabien/kerckhoffs

http://www.petitcolas.net/fabien/kerckhoffs

30 CHAPTER 1. PRELIMINARIES

has become known as Kerckhoffs’ principle:

Il faut qu’il n’exige pas le secret, et qu’il puisse sans inconvénient
tomber entre les mains de l’ennemi.

Claude Shannon later reformulated the above as ”the enemy knows the
system”; in this form it is known as Shannon’s maxim.

Taking this as a given, namely that the design of the cipher is publicly
known, however the key is not, the most obvious way to recover the key is to
search through the whole key space. This is known as brute force. The worst
case time complexity for an attack by brute force obviously is #K encryption
operations, the expected time complexity is #K/2 encryption operations.

The following attack scenarios against ciphers are known in the litera-
ture:

ciphertext only attacks Ciphertext-only attacks can be considered to be
the most powerful attacks against any cipher. The attacker is able
to deduce (parts of) the key merely by knowing a certain amount of
ciphertext encrypted under the given key.

known plaintext attacks Known plaintext attacks are scenarios in which
the attacker has access to a number of plaintexts toghether with their
corresponding ciphertexts.

chosen text attacks Chosen text attacks assume the attacker to have a higher
level of access. Namely, it is assumed that the attacker has one-time
access to an oracle and may submit a batch of either chosen plain-
text or chosen ciphertexts which the oracle then encrypts respectively
decrypts. The attacker has access to the output of the oracle for the
submitted values after all values have been submitted.

adaptive chosen text attacks This attack is similar to the chosen text at-
tack but instead of having one time access to the oracle the adversary
may interactively change his queries to the oracle during the attack
depending on the responses received. Sometimes it is assumed that
the attacker only has access to an encryption oracle, sometimes to the
decryption oracle at other times he has access to both.

The above attacks are carried out with the aim of key recovery. Sometimes,
the aim of an attacker may be different however:

chosen key attacks This scenario is relevant in cases where Kerckhoffs’ prin-
ciple is violated, for example if components of a cipher such as S-Boxes
are kept secret (see for instance [93], [1]). The attacker has full access
to an encryption and/or decryption oracle that he can key. Chosen key
attacks need not be adaptive chosen text attacks but can be combined
with them.

1.4. BLOCK CIPHERS 31

distinguishing attacks Distinguishing attacks can be seen as the weakest
class of attacks. A distinguishing attack merely allows an attacker
to distinguish ciphertext output of a cipher A either from a (pseudo)
random sequence of data or from the ciphertext output of another B
with a probability > 0.5.

Please note that these two scenarios are completely orthogonal to the previ-
ous types of attacks listed.

In a cases where Kerckhoffs’ principle does not apply, it can also be con-
sidered valid for an attacker to use chosen-key, chosen-text attacks to dis-
cover the structure or the inner workings of a block cipher. In this case it
is assumed that the adversary has full access to an implementation of the
cipher that he may freely key. The first chosen-key attack in the literature
is an against the GOST 28147-89 block cipher [93], a Russian design de-
veloped in the 1970s with domain-specific, secret S-Boxes. For this cipher
Markku-Juhani Saarinen proposed a chosen-key attack that recovers the S-
Boxes [102]. Certain ciphers such as the NSA’s Type-1 ciphers BATON and
JUNIPER prevent chosen-key scenarios by requiring the key to be provided
together with a 160-bit checksum [101].

In Section 2.3.3 of this thesis we will look at Cryptomeria [1], a block ci-
pher used for content protection of data on Video DVD-R’s, DVD Audios and
SD cards, for which the cipher specification itself is public, the S-Boxes of
the cipher however are considered trade secrets which need to be licensed.

The distinguishing model oftentimes is used for reduced-round ciphers
to guess the keys of the last round. A distinguishing attack on (r−1) rounds
of a block cipher – which distinguishes the output of those (r − 1) rounds
from a pseudo-random permutation – can often be exploited and turned
into a key-recovery attack on the same block cipher with r rounds. Please
note however, that there also exists another interesting use case for dis-
tinguishing attacks: assume the attacker has access to an oracle – i.e. an
encryption or decryption device – with a fixed key, unknown to him, for a
limited time. A distinguishing attack for this cipher will then allow him to
determine whether this oracle uses cipher A or not.

The models we have discussed thus far treat the cipher as an mathe-
matically idealized building block with fixed inputs and outputs, namely the
plaintext, the key and the ciphertext. In practice however, an adversary of
course does not have to comply with this idealized model but may choose to
attack the implementation instead. This means he is able to observe or even
control more aspects of the execution of the actual ciphering algorithm. This
gives rise to so-called side-channel attacks [73] and fault attacks [17]. Al-
though these classes of attacks are interesting in themselves, they will not
further been discussed in this thesis as they lie outside of our attack model.

32 CHAPTER 1. PRELIMINARIES

Weak Keys

For some block ciphers, such as DES [88] and IDEA [74] and Blowfish, so-
called weak keys have been found [109, 14]. Using a cipher with these keys
will cause the cipher to have cryptographic weaknesses. For example: For
E being the DES encryption function, a weak K causes the encryption to be
self-inverting, i.e. EK(EK(M)) = M . For DES, IDEA and Blowfish, the weak
keys found represent only a small fraction of the key space. IDEA’s weak
keys cause the cipher to be susceptible to linear cryptanalysis (see 2.2.2),
Blowfish’s weak keys generate S-Boxes that make allow a version reduced
to 14 rounds to be distinguished from a random permutation. Ciphers that
do not exhibit weak keys clearly are preferable, we call their key space “flat”.

1.5 The MQ-Problem

We know that linear systems of equations over finite fields can be solved in
polynomial time – Gaussian elimination for example solves them in O(n3)
with n being the number of variables. Given a random set of n quadratic
equations in n variables over a finite field Fq, we pose ourselves the follow-
ing question: How difficult is this problem to solve asymptotically? Can this
problem be solved in time polynomial in the number of variables?

To answer this question, we first have to perform a brief excursion into
complexity theory: A decision problem is a problem to which the answer
is a simple “yes” or “no”. Decision problems are the basis of the theory of
NP-completeness, the foundations for which were laid by Stephen Cook in a
1971 paper called “The Complexity of Theorem Proving procedures” [27].
To understand the notion of NP-completeness, we first have to explain what
NP stands for:

Definition 1.5.1 (non-deterministic polynomial time (NP)). Let P be a deci-
sion problem of size n. Given an input C, called “certificate” C, an algorithm
can check whether or not the answer to P is correct in time polynomial in
n.

The class of NP-complete problems informally speaking is a class of prob-
lems for which no polynomial time algorithm is known for solving them. On
the other hand, although there is no proof, it is widely believed that these al-
gorithms cannot be solved by polynomial time algorithms. More importantly
by using the concept of polynomial-time reducibility, each of the problems
in the class of NP-complete problems can be used to solve another arbitrary
NP-complete problem:

Definition 1.5.2 (polynomial-time reducible). Let P1, P2 be decision prob-
lems and Ω an oracle solving P1. We call P2 polynomial-time reducible to

1.5. THE MQ-PROBLEM 33

P1 if a polynomial-time algorithm for solving P2 using Ω exists. This means
that the number of calls to Ω is polynomially bounded.

More formally we state the MQ problem as follows:

Problem 1.5.1. Given a set of polynomials p1, . . . , pn ∈ F[X] with deg(pi) = 2
for all 1 ≤ i ≤ n. Decide whether there is an assignment of variables
a1, . . . , an ∈ F such that

p1(a1, . . . , an) = 0
...

...

p1(a1, . . . , an) = 0

holds.

It is trivial to see that the MQ problem indeed is a problem in NP; given
an assignment for the variables we can evaluate the polynomials in poly-
nomial time and check whether the result is 0. It turns out that solving
the general MQ problem in fact is an NP-complete problem. Unfortunately,
in the standard reference on NP-completeness [54], no reduction is given.
Merely a reference to an unpublished manuscript and a private communica-
tion is cited.

Therefore we give an outline for a reduction of 3SAT – one of Karp’s
original 21 NP-complete problems[69] – to the MQ problem for the case of
q = 2 in the following. A full proof for the general case can be found in
[114]; it covers not just the case of finite fields, it even transfers to the MQ
problem over domains.

Problem 1.5.2 (3SAT). Let k, n ∈ N, L = {L1, . . . , Ln} be a set of literals,
N =

{
L1, . . . , Ln

}
the corresponding set of negated literatals, ∨ the boolean

“or” operator, ∧ the boolean “and” operator and

(a1,1 ∨ a1,2 ∨ a1,3) ∧ ∧ (ak,1 ∨ ak,2 ∨ ak,3)

be a boolean formula for ai,j ∈ (L ∪ N), 1 ≤ i ≤ k, 1 ≤ j ≤ 3. Decide
whether this formula is true or false.

Theorem 1.5.3. The 3SAT problem is polynomial-time reducible to the MQ
problem.

Given an n-literal, k-clause instance of the 3SAT problem, we want
to transform the problem into a set of quadratic polynomials of the ring
GF (2)[x1, . . . , xt] such that the number of variables t grows at most poly-
nomially in n. This works by first transforming the boolean formula into
set of cubic polynomials from which quadratic polynomials are derived by
introducing additional “intermediate” variables.

In the following we need to introduce temporary variables yi, 1 ≤ i ≤ n
to deal with negated literals. We then perform the following transformations
to obtain polynomials from the formula:

34 CHAPTER 1. PRELIMINARIES

1. Negated literals Ni become expressions of the form yi = (1 − xi),
positive literals Li simply get transformed into yi = xi

2. Replace each clause (au ∨ av ∨ aw) by Ck := (yuyvyw + yuyv + yuyw +
yvyw + yu + yv + yw)

3. Turn each converted clause Ck into a polynomial 1 + Ck, expanding
the temporary variables yi appropriately.

All of the converted polynomials 1+Ck are of degree three. By introduc-
ing t =

(
n
2

)
new variables for quadratic terms we can transform the cubic

system into a quadratic system of t equations.

Chapter 2

Iterated Block Ciphers

In this chapter we give an overview of both the high-level construction prin-
ciples of as well as the most common attacks against iterated block ciphers.
This class of block ciphers breaks up the encryption and decryption process
into a sequence of steps, each of which is called a “round”. The rounds
themselves may be cryptographically weak in the sense of being easy to in-
vert (without knowledge of the round key), however this is made up by
iterating the round transformation F over a number of times r. The tech-
nique of iterating a weak transformation multiple times to obtain a strong
transformation is used to increase both hardware and software efficiency
of the cipher and to make it easier to analyse – in hardware less gates are
needed, in software less instructions.

The third objective of this chapter is to describe both deployed iterated
block ciphers and iterated block ciphers designed for experimentation with
algebraic attacks. The experimental ciphers are evaluated with regards to
their resistance against linear and differential attacks.

2.1 High-Level Structures of Block Ciphers

Several high-level structures have been used for building iterated block ci-
phers. We will restrict ourselves to the the two most commonly used con-
structions: Substitution linear networks and Feistel networks – including
generalizations of the latter. A third, less commonly used construction is
the Lai-Massey scheme [74]. This construction will not be explained as it
is of no further relevance to this thesis. We note however it is used in the
block ciphers IDEA [75] and FOX1 [65]; the 8-bit S-Box of the hash func-
tion Whirlpool [99] also is constructed using the Lay-Massey scheme from a
4-bit S-Box.

1Now renamed to IDEA NXT by the licensor, MediaCrypt.

35

36 CHAPTER 2. ITERATED BLOCK CIPHERS

2.1.1 Substitution Linear Networks

Shannon was the first to come up with the concept of product ciphers in his
seminal work “Communication Theory of Secrecy Systems” [104]. In this
article he also describes the concept of alternatingly applying substitutions
and permutation operations to a message, leading to the term Substitution
Permutation Network (SPN), which has since been used to describe every
cipher that follows this concept. However, since permutations usually allude
to bit permutations and not arbitrary permutations on the message space,
the term Substitution Linear Network (SLN) has been introduced to refer
to ciphers that are built of an alternation of layers of Substitution boxes
(S-Boxes) and linear layers.

Definition 2.1.1 (Substitution-Linear Network). A substitution-linear net-
work is a cipher C that is the result of a composition of invertible substitution
maps Si and (affine-)linear maps Li with 1 ≤ i ≤ r:

C = Lr ◦ Sr ◦ . . . ◦ L2 ◦ S2 ◦ L1 ◦ S1

For 1 ≤ i ≤ r, the composition (Li◦Si) is the round transformation of round
i.

Rijmen and Daemen later introduced the term bricklayer transforma-
tion [39] to describe functions which can be decomposed into a number
of smaller Boolean vectorial functions that are applied in parallel to a par-
tition on the bits – these are called bundles of the input. The term “brick-
layer transformations” can both be used to refer to a parallel application of
non-linear components such as S-Boxes as well as to parallel applications of
linear components, in which case the component is called a D-Box. Invert-
ible bricklayer transforms are called bricklayer permutations. The SubBytes
transform used in Rijndael is an prominent example of a bricklayer permu-
tation.

2.1.2 Feistel Networks

This design concept was first described by its inventor Horst Feistel in 1973
[48]. A Feistel network breaks the input into two pieces of equal length and
only operates on half of the state in each round. More specifically:

Definition 2.1.2 (Feistel network). Let L ∈ {0, 1}n and R ∈ {0, 1}n be the
left and right halves of the input to a round. The round transformation F :
{0, 1}2n → {0, 1}2n of a Feistel network then is (L,R) 7→ (R,L ⊕ fk(L,R))
where fk : {0, 1}n×{0, 1}n → {0, 1}n is a family of functions that is indexed
by the round key k. The function fk is called the round function.

Remark. Sometimes unkeyed Feistel constructions are used in cryptography
for mixing purposes, for example in the OAEP scheme [8]. In this case the
family of functions fk collapses into a single function f .

2.2. LAST-ROUND ATTACKS AGAINST BLOCK CIPHERS 37

Although the rate of diffusion per round achievable in Feistel networks
is less than that of substitution-linear networks, this design principle still is
widely used. This can be attributed to the fact that the round function fk
does not have to be invertible. Moreover, the same round transformation
can be used for both encryption and decryption. For decrypting a block, the
order of the round keys simply needs to be reversed.

The DES [88] was the first commercially available and widely deployed
Feistel cipher.

2.1.3 Generalized Unbalanced Feistel Networks

In contrast to the balanced Feistel networks described in 2.1.2, an Unbal-
anced Feistel Network (UFN) splits the round input into two parts L ∈
{0, 1}s and R ∈ {0, 1}t such that s 6= t. A taxonomy of unbalanced cipher
constructions was given by Schneier and Kelsey [103].

The family of round functions fk used in the round transformation of
course needs to have a different signature, fk : {0, 1}s × {0, 1}t → {0, 1}s.
For s > t, the UFN is called source-heavy and the function f contracting,
for s < t it is called target-heavy and the function f expanding. A network
using the same family of functions fk in each round is called homogeneous, a
network where the family fk changes in each round is called heterogeneous.
Schneier and Kelsey even generalized the concept of UFN by not requiring
the two blocks to be combined by an XOR operation – for a Generalized
Unbalanced Feistel Network (GUFN) it is sufficient that one part of the input
block controls another part of the input block. A GUFN in which all bits of
the internal state of a round are used in the round transformation is called
complete, if bits are left invariant by the round transformation, the cipher is
called incomplete. The number of rounds required such that each bit of the
block has been part of both the source and the target block at least once is
called cycle.

2.2 Last-Round Attacks against Block Ciphers

Most attacks against block ciphers with r rounds aim at computing or guess-
ing the round key of the last round. Having determined this round key, the
last round can be peeled off, reducing the problem to attacking a cipher
with r − 1 rounds. Most of the times, the last round key is obtained by
distinguishing the (r − 1)-round cipher from a random permutation.

This process is then repeated until all round keys have been determined.
In this section we will examine a number of last-round attacks and metrics
for measuring the resistance of a cipher against these attacks.

38 CHAPTER 2. ITERATED BLOCK CIPHERS

2.2.1 Differential Cryptanalysis

Differential cryptanalysis is a chosen-plaintext attack that was first publicly
demonstrated by Biham and Shamir against the block cipher FEAL [11] and
later refined into an attack on the full-round DES [13]. It was later revealed
by Don Coppersmith that this method of cryptanalysis was already known
to both the NSA and IBM during the design phase of DES in 1974. This
explains why the full-round DES shows good resistance against this method
– in order to carry out an attack against all of the 16 rounds of DES, an
attacker needs to be able to chose 247 plaintexts and obtain the resulting
ciphertexts.

By encrypting a pair of carefully selected plaintexts under the same key
to ciphertexts, the attacker is able to predict whether certain bits of the input
to the last round are equal or not. This is achieved by using a difference
pattern on the input. Let f : GF (2)n → GF (2)n be a vectorial boolean
function. A difference pattern is defined as follows:

Definition 2.2.1 (Difference pattern). A difference pattern for f is a tuple
(∆I ,∆O) such that for an input difference ∆I the output difference f(x) +
f(x+ ∆I) possibly has the value ∆O.

Usually, the difference pattern is only defined on the round transforma-
tion. To follow a path of difference patterns, the notion of “characteristic” is
defined:

Definition 2.2.2 (Characteristic). A r-round characteristic is a (r+ 1)-tuple
of difference patterns (Λ1, . . . ,Λr+1).

For a one-round characteristic, the probability that a given difference
in the inputs to the rounds results in the predescribed output difference
is called the probability of the characteristic, for an arbitrary function f :
GF (2)n → GF (2)n we speak of the differential probability:

Definition 2.2.3. Let X denote a random variable uniformly distributed in
GF (2)n. The differential probability for a pair (∆I ,∆O) ∈ GF (2)n×GF (2)n

with ∆I 6= 0 is defined as

DP(∆I ,∆O) = PrX {ρ(X) + ρ(X + ∆I) = ∆O}

Assuming that the input values for each round are distributed randomly
and independent of each other (Markov assumption), the probability of an
r-round characteristic simply is the product of the probabilities of the one-
round characteristics.

After the invention of differential cryptanalysis by Biham and Shamir,
Lai, Massey and Murphy introduced the notion of the differential[75]. They
noticed that for the success of the attack it is irrelevant whether the inter-
mediate values of the characteristic match, as long as the output at round r

2.2. LAST-ROUND ATTACKS AGAINST BLOCK CIPHERS 39

matches the output difference for an input matching the input difference in
the first.

Definition 2.2.4 (Differential). A r-round differential is a tuple (∆I ,∆O)
such that ∆I is the input difference and ∆O is the output difference after r
rounds.

Differential cryptanalysis was significantly refined after its discovery:
Truncated differential attacks, higher-order differentials, boomerang attacks.
For hash functions of the MD4 family, Wang showed how to combine the
modular-additive differentials with XOR differentials [110]. This result has
changed the landscape of hash function cryptanalysis significantly.

When measuring the resistance of a cipher against differential cryptanal-
ysis, only “basic” differential cryptanalysis is taken into account. In Section
4.5.1 we present a simple application of differential techniques.

2.2.2 Linear Cryptanalysis

Linear cryptanalysis is a known-plaintext attack that was first proposed by
Matsui and Yamagashi against the block cipher FEAL [83]. Again, just like
in the case of differential cryptanalysis, after its successful use against FEAL
it was turned into an attack against DES by Matsui [82] that was also prac-
tically demonstrated [81]. This attack required 243 known plaintexts and
corresponding ciphertexts. To this date, linear cryptanalysis is the most
powerful attack known against DES – if we disregard brute-force.

Linear cryptanalysis works by modelling the non-linear components of a
cipher by affine-linear approximations. This sounds somewhat easier than
it turns out to be in practice: Usually, one starts by determining “good”
linear approximations for individual components of the cipher, then builds
an approximation for a single round from these and finally searches for a
path through the cipher that makes use of the round approximations. By a
“good” approximation, an affine-linear function approximating the original
function with a probability p = 0.5 + ε with |ε| as large as possible is meant.
This variable ε is called the bias.

Linear cryptanalysis uses bit masks which indicate which bits of the input
and output are used in a linear approximation:

Definition 2.2.5. Let (a, b) ∈ GF (2)n ×GF (2)n be a pair with a 6= 0 being
the input mask and b being the output mask. The linear probability for (a, b)
then is defined as

LP(a, b) = (2 · PrX {〈a,X〉 = 〈b, ρ(X)〉} − 1)2

Similar to the case of differential cryptanalysis, a vector of masks A =
(a1, . . . , ar+1) with ai 6= 0 for all 1 ≤ i ≤ r is called linear characteristic of a
cipher.

40 CHAPTER 2. ITERATED BLOCK CIPHERS

Mitsuru Matsui proposed the following lemma, called Piling-Up Lemma
in [82]:

Lemma 2.2.1 (Piling-up lemma). Assume X1, . . . , Xn are independent ran-
dom variables representing bits and ε1, . . . , εn are their respective biases. We
can then calculate the bias ε of X1 ⊕ . . .⊕Xn as follows:

ε = 2n−1
n∏
i=1

εi

Using the Piling-Up Lemma, one can estimate the probability of suc-
cess of a linear attack if the probabilities for individual approximations are
known. This however under the assumption that we are dealing with a
Markov cipher. Given the affine-linear expression approximating a cipher
with probability p we can expect to an attack using linear cryptanalysis to
require ≈ p−2 known plaintext/ciphertext pairs.

Daemen, Govaerts and Vandewalle subsequently introduced the concept
of correlation matrices for Boolean mappings [36], which provide better in-
sight into the mechanisms of linear cryptanalysis.

2.2.3 Integral Cryptanalysis

The concept of integral cryptanalysis was invented by Lars Knudsen as an
attack against the block cipher Square and is presented in the paper describ-
ing the very same block cipher [37] as the so-called Square attack. The term
integral cryptanalysis was coined only later however, in a paper by Knudsen
and Wagner with this precise title. Integral cryptanalysis can most success-
fully applied against ciphers with a byte-wise structure and work best when
bijective components are used. Both criteria are fulfilled in the case of Rijn-
dael and indeed an extension of the original Square attack is the best known
current cryptanalysis of AES-256, breaking 9 out of 14 rounds [49].

Lucks later extended the concept [78] in an attack on a reduced-round
version of Twofish and called it saturation attack.

In [15], Biryukov and Shamir describe the concept of multiset attacks
which are closely related to integral cryptanalysis. Multiset attacks are at-
tacks against block ciphers that exploit properties of multisets that remain
invariant under the round transformation, regardless of the choice of the
round key. We will not describe neither integral cryptanalysis nor multi-set
attacks in further detail, but rather suggest as an open research problem to
model these attacks algebraically. Making advances in this field is expected
lead to new cryptanalytic methods.

2.3. SELECTED STANDARDIZED BLOCK CIPHERS 41

2.3 Selected Standardized Block Ciphers

This section will give descriptions of block ciphers that have been proposed
as a standard or as a part thereof. The criterion that was applied for a block
cipher to appear in this section was that it is of importance to a result on
algebraic cryptanalysis presented in this thesis.

2.3.1 The Advanced Encryption Standard (AES)

The cipher Rijndael [38] is a SLN that has been selected as the AES in 2001
[89], a United States encryption standard that since has been adopted world
wide. This section briefly lists the components used in this cipher. The
only difference between Rijndael and the standardized AES is that AES only
supports a block size of 128 bits, whereas Rijndael supports 128, 192 and
256 bit block sizes.

• SubBytes – applies the S-Box to all elements of the internal state

• ShiftRows – shifts rows of the internal state cyclically to the right

• MixColumns – mixes the columns using a GF (28)-linear transforma-
tion

• AddRoundKey – GF (2)-addition of the round key to the internal state

We do not describe Rijndael here, as Section 2.4.1 gives an algorithmic
description of a parametrized variant called Mini-AES that can be scaled up
to AES-128.

2.3.2 SMS4

The cipher SMS4 is a Chinese design proposed for the WAPI standard, a
wireless LAN protocol that will be enforced throughout China in the near
future. This section will describe the cipher and show that the design is
fragile by giving weak keys for a variant that only differs in the round con-
stants.

SMS4 is a 32 round unbalanced Feistel network with a block and key
size of 128 bits. Using the taxonomy of Section 2.1.3, the cipher is a homo-
geneous, complete, source-heavy (96:32) UFN with 8 cycles.

Let the internal state be denoted by S = (S1, S2, S3, S4) where Si ∈
GF (2)32. The round keys of the cipher shall be denoted by Ki ∈ GF (2)32.

Define the linear diffusion function λ as

λ : GF (2)32 → GF (2)32

x 7→ x⊕ (x<<<2)⊕ (x<<<10)⊕ (x<<<18)⊕ (x<<<24)

42 CHAPTER 2. ITERATED BLOCK CIPHERS

Figure 2.1: One round of the SMS4 Unbalanced Feistel Network

and the brick-layer function γ applying an 8-bit S-Box to the input 4 times
in parallel as:

γ : GF (2)32 → GF (2)32

x 7→ (ρ(x[31...24]), ρ(x[23...16]), ρ(x[15...8]), ρ(x[7...0]))

The round function then simply is the composition of the functions λ and γ:

F : GF (2)32 ×GF (2)32 → GF (2)32

(X,Ki) → λ(γ(X ⊕Ki))

and the round transformation R that maps Si to Si+1 under the round key
Ki is defined as:

R : GF (2)128 ×GF (2)32 → GF (2)128

(S1, S2, S3, S4,Ki) 7→ (S2, S3, S4, S1 ⊕ F (S2 ⊕ S3 ⊕ S4,Ki))

The S-Box used in SMS4 was shown to be based on an inversion mapping
over GF (2)[θ] with both an input and an output affine linear transform over
GF (2) in [77].

The Key Schedule

In total, 32 round key words ki are generated from a 128-bit cipher key. For
the key schedule a function F ′ is used that is almost identical to the round

2.3. SELECTED STANDARDIZED BLOCK CIPHERS 43

transformation; the only thing changed is the linear transform. Instead of
λ, the following mapping λ′ is used:

λ′ : GF (2)32 → GF (2)32

x 7→ x⊕ (x<<<13)⊕ (x<<<23)

In order to obtain the round keys, the cipher key K is first masked with a
so-called system parameter

T = 0xA3B1BAC656AA3350677D9197B27022DC

as follows:

k−4 = K[127..96] ⊕ T[127..96]

k−3 = K[95..64] ⊕ T[95..64]

k−2 = K[63..32] ⊕ T[63..32]

k−1 = K[31..0] ⊕ T[31..0]

The reasoning behind the masking of the cipher key is not explained in the
design document. The round key of the i-th round is computed as follows:

ki = ki−4 ⊕ λ′(γ(ki−3 ⊕ ki−2 ⊕ ki−1 ⊕ κi))

where κi are key constants. The key constants κi are of the form

κi = ((28 · i), (28 · i+ 7), (28 · i+ 14), (28 · i+ 21))

where each component of the above vector is a byte, the operators · and +
denote the multiplication respectively addition in Z256.

Weak Keys for Modified Round Key Constants

For slightly modified round key constants in the key schedule, the cipher
will exhibit a class of 264 weak keys. For all of these keys, the cipher exhibits
an invariant property over an arbitrary number of rounds. This invariance
can be used to effectively distinguish the encryption function from a random
permutation. Once the use of a weak key is detected, the key search space
for an attacker of course shrinks from 2128 to 264. The property shows an
unexpected fragility of the cipher design and in our opinion casts serious
doubt on its strength.

Definition 2.3.1. Let a ∈ GF (2)2n. If a = b||b for an element b ∈ GF (2)n,
then we say that the element a has a 1/2-repetition property; alternatively
a may be called 1/2-repeated.

44 CHAPTER 2. ITERATED BLOCK CIPHERS

Theorem 2.3.1. Let (s1, . . . , sk) ∈ Zk be a vector of shift offsets. Any 2n-bit
function g : GF (2)2n → GF (2)2n of the form

x 7→
k⊕
i=1

(x<<<si)

preserves the 1/2-repetition property.

Proof. Obviously the invariance condition is preserved under addition if it
holds for all elements of the sum. By induction the invariance condition for
n-bit cyclic shifts can be derived for 1-bit shits. �

Modifying all round key constants κi to be 1/2-repeated, we obtain 264

cipher keys for which all round keys possess the 1/2-repetition property;
note that due to the masking of the cipher key with the system parameter in
the key generation the 264 actual cipher keys are not 1/2-repeated though.
Both the function for generating the round keys and the round transfor-
mation preserve the invariance property for these keys. It follows that for
plaintexs in which each word is 1/2-repeated, we obtain ciphertexts that
also are 1/2-repeated. Henceforth, these cipher variants are insecure. A
similar idea has been investigated by Gilbert and Handschuh for SHA-256
in [56].

2.3.3 Cryptomeria

The Cryptomeria block cipher is a proprietary 64-bit Feistel cipher with a
56-bit key length used in the and standards. It is used to protect content on
DVD-Audio discs, recordable DVD-Video media and on SD cards. Although
the design of Cryptomeria itself is public [1], the actual S-Box used is pro-
prietary; it is considered a trade secret by the licensing body 4C Entity LLC.
Moreover, the S-Box seems to be application-specific. A S-Box different from
the DVD-Audio case is used for the recordable DVD-Video case. The S-Box
used in the case of SD cards is not publicly known.

The Encryption Operation

Unlike other Feistel ciphers, Cryptomeria does not use vectorial addition
modulo GF (2) for mixing the left and the right half of the block. Instead
modular addition in the residue class group Z232 is used for the Feistel step.
The cipher employs a total of 10 rounds, however each round only applies
a single 8× 8 S-box instead of a brick layer transform. We name this trans-
formation S:

S : GF (2)32 → GF (2)32 : (x1, x2, x3, x4)x 7→ (S(x1), x2, x3, x4) (2.1)

2.3. SELECTED STANDARDIZED BLOCK CIPHERS 45

The following three functions are used for diffusion within the round
transformation:

t2 : GF (2)16 → GF (2)8 : (x, y) 7→ ((x⊕ 0x65)<<<1)⊕ y (2.2)

t3 : GF (2)16 → GF (2)8 : (x, y) 7→ ((x⊕ 0x2b)<<<2)⊕ y (2.3)

t4 : GF (2)16 → GF (2)8 : (x, y) 7→ ((x⊕ 0xc9)<<<5)⊕ y (2.4)

namely in the linear transform L:

L : GF (2)32 → GF (2)32 : (2.5)

(x1, x2, x3, x4) 7→ (x1, t2(x1, x2), t3(x1, x3), t4(x1, x4)) (2.6)

Using all of the above definitions, the round function F of Cryptomeria
reads as follows:

F : Z232 → Z232 : x 7→ L(S(x)) (2.7)

The plaintext (L0, R0) is encrypted to the ciphertext (L10, R10) using the
following sequence of steps:

(Li, Ri) = F (Ri−1, Li−1 +Ki)

where Ki denotes the round key of round i and + denotes addition in
the residue class ring Z/Z232 .

The Key Schedule

The key schedule of Cryptomeria is simple, yet non-linear. The 56-bit cipher
key is rotated by a 17 bit positions to the left in each round. Subsequently
a modular addition of an 12-bit quantity is performed. This 12-bit quantity
is derived from parts of the cipher key and the round number which are
XORed and fed through the S-Box. More precisely, the key schedule for any
round key can be described as a function taking as input the cipher key x
and the round number r:

GF (2)56 × N→ GF (2)56 : (x, r) 7→ (x<<<(17r mod 56)) + (S(x[0..7] ⊕ r)>>4)

46 CHAPTER 2. ITERATED BLOCK CIPHERS

Figure 2.2: The Cryptomeria round function

x'
0

x'
1

x'
2

x'
3

SBox

<<< 1

<<< 5

x''
0

x''
1

x''
2

x''
3

<<< 2

0xca

0x65

0x27

X''

<<< 9 <<< 22

X'

X

RK
i

Y

2.4 Experimental Block Ciphers

Practically attacking reduced-round versions of the ciphers presented in the
last section does not work so well as the number of variables needed to
represent them as a polynomial system is too large. It therefore makes sense
to invent experimental ciphers that are structurally similar to deployed block
ciphers but which can be modelled with a lower number of variables.

In this section we describe block ciphers that have been proposed to
facilitate easier experimentation in the field of algebraic cryptanalysis. The
first family, Mini-AES, is a scaled-down version of Rijndael while the ciphers
described in Section 2.4.2, Flurry and Curry, are experimental ciphers in the
sense that they were invented to specifically prove the point that algebraic
attacks against block ciphers with a real-world block and key size which
resist differential and linear cryptanalysis indeed are possible.

2.4.1 Mini-AES

Mini-AES is a parametrized family of ciphers derived from Rijndael. It was
proposed by the author in his Diplom thesis [111]. It is very similar to
the SR family of ciphers proposed by Cid, Murphy and Robshaw [25] –
the difference being that Mini-AES gives more degrees of freedom in the

2.4. EXPERIMENTAL BLOCK CIPHERS 47

parameters than SR – and mimics the design criteria of the Rijndael cipher;
both families are instantiatable with much smaller parameters than Rijndael
and are thus much better suited for experimentation with algebraic attacks.

The internal state of the Rijndael as well as our family of Mini-Rijndaels
for this chapter is represented as a matrix with the elements being ordered
columnwise.

S :=

 a0,0 . . . a0,Nb−1
...

. . .
...

aNa−1,0 . . . aNa−1,Nb−1

 ∈ FNa×Nb

Parameters

The following table lists parameters of our cipher that can be easily adapted.
Note that changes such as assigning A = 0 and b = 0 respectively may make
algebraic cryptanalysis easier, but then again does not reflect the Rijndael
design criteria2.

s ∈ N width of the S-Box in bits
m ∈ F2[θ] minimal polynomial of the finite field F2s

Nr ∈ N number of rounds in the cipher
Na ∈ N number of rows in the state/key matrix
Nb ∈ N number of columns in the state/key matrix
Nk ∈ N number of columns in the key matrix
A ∈ FNs×Ns

2 matrix for affine transformation in SubElement
b ∈ FNs

2 vector for affine transformation in SubElement
Mmix ∈ FNa×Na

2s matrix for the MixColumns step

AES-128, that is Rijndael with a block and key size of 128 bits, is ob-
tained by using the following parameters:

• s = 8, Nr = 10, Na = 4, Nb = 4, Nk = 4

• m = θ8 + θ4 + θ3 + θ + 1

• Mmix =

θ θ + 1 1 1
1 θ θ + 1 1
1 1 θ θ + 1

θ + 1 1 1 θ

2since the resulting cipher is not protected against interpolation attacks then

48 CHAPTER 2. ITERATED BLOCK CIPHERS

• A =

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

, b =

1
1
0
0
0
1
1
0

An Algorithmic Cipher Description

The sequence of operations to be performed is the following:

• Add round key K0 in round zero (this effectively is the cipher key for
Nk = Nb)

• Nr − 1 rounds of the following transformations:

– Apply SubElement to each element of the state

– Shift rows cyclically to the left

– Diffuse internal state columnwise with MixColumns

– Add round key Ki for round i.

• In the last round the MixColumns step is left out:

– Apply SubElement to each element of the state

– Shift rows cyclically to the left

– Add round key Ki for round i.

AddRoundKey The function AddRoundKey simply performs a bitwise XOR
of the internal state with the round subkey.

SubElement SubElement applies the non-linear invertible function γ – the
S-Box function – to each element ai,j of the state. The S-box uses the same
construction as Rijndael, generalized to an arbitrary input/output size of s
bits.

The S-Box is composed of two functions f, g, which are defined as fol-
lows:

f : F2n → F2n , x 7→
{
x−1 if x 6= 0
0 if x = 0

g : Fn2 → Fn2 , x 7→ Ax+ b

2.4. EXPERIMENTAL BLOCK CIPHERS 49

Algorithm 3 MiniRijndaelEncrypt
Input: P ∈ FNa×Nb

Input: K0, . . . ,Kr ∈ FNa×Nb

Output: C ∈ FNa×Nb

S0 ← AddRoundKey(P,K0)
for r ← 1 to Nr do
Si ← SubElement(Si−1)
Si ← ShiftRows(Si)
if r 6= Nr then
Si ← MixColumns(Si)

end if
Si ← AddRoundKey(Si,Kr)

end for
C ← Sr

Algorithm 4 AddRoundKey
Input: S ∈ FNa×Nb

Input: K ∈ FNa×Nb

Output: S′ ∈ FNa×Nb

S′ ← S ⊕K

with A invertible. The transformation γ then is defined as a sequence of
applying the inversion f , the canonical mapping from F2s to Fs2, the affine
transformation g and finally the canonical mapping from Fs2 to F2s Note
that f can also be expressed as x 7→ x2n−2 for n ≥ 2. We further require the
matrix A used in the mapping g to be circulant, imposing the condition

Ai,j = A0,i−j mod n for all i, j

on its elements and the S-Box to have no fixed and no opposite fixed points.

ShiftRows Each row i of the internal state is cyclically shifted λi positions
to the left by the ShiftRows transformation.

MixColumns Each column of the state is multiplied by an invertible and
circulant matrix Mmix. The matrix Mmix used in Rijndael was chosen such
that its branch number (see Definition 2.4.3) is maximal – to obtain optimal

50 CHAPTER 2. ITERATED BLOCK CIPHERS

Algorithm 5 SubElement
Input: S ∈ FNa×Nb

Output: S′ ∈ FNa×Nb

for i← 0 to Na − 1 do
for j ← 0 to Nb − 1 do
S′i,j ← γ(Si,j)

end for
end for

Algorithm 6 ShiftRows
Input: S ∈ FNa×Nb

Output: S′ ∈ FNa×Nb

for i← 0 to Na − 1 do
for j ← 0 to Nb − 1 do
l← (j + λi) mod Nb

S′i,j ← Si,l
end for

end for

diffusion; thus for Mini-Rijndael we should do likewise. For a single column
i of a 4×Nb state the MixColumns transformation looks as follows:

Mmix ·

a0,i

a1,i

a2,i

a3,i

 7→

a′0,i
a′1,i
a′2,i
a′3,i

Algorithm 7 MixColumns
Input: S ∈ FNa×Nb

Output: S′ ∈ FNa×Nb

for i← 0 to Nb − 1 do
v ← S0...Na−1,i

v ←M · vT
S′0...Na−1,i ← vT

end for

2.4. EXPERIMENTAL BLOCK CIPHERS 51

Key Scheduling

The key schedule of Rijndael defines two types of key expansion, one variant
for Nk ≤ 6 and a slightly different one for Nk > 6. For the sake of simplicity
we only define one version of the key expansion.

The columns of the expanded key are recursively computed. Columns
(k0, . . . , kNk−1) of the expanded key are equal to the cipher key, column
i ≥ Nk can be calculated as follows:

(i) if Nk - i, column i is the bitwise XOR of column i − Nk and column
i− 1

(ii) if Nk | i, column i is the bitwise XOR of column i−Nk and the result of
the application of a non-linear function to column i−1. This non-linear
function applies the S-Box transformation to each of the elements in
the column, cyclically rotates the column and then adds the round

constant µi := θ
b i

Nk
c−1

F .

Algorithm 8 MiniRijndaelKeySchedule
Input: k ∈ FNa×Nk

Output: K0, . . . ,Kr ∈ FNa×Nb

for r ← 1 to Nr do
Kr ← Kr−1

for i← 0 to Nb − 1 do
for j ← 0 to Na − 1 do

if i = 0 then
Kr,j,i ← Kr,j,i + SubElement(Kr−1, (j+1) mod Nb, m−1)
if j = 0 then
Kr,0,0 ← Kr,0,0 + θr−1

F
end if

else
Kr,j,i ← Kr,j,i +Kr,j,i−1

end if
end for

end for
end for

2.4.2 Flurry and Curry

Flurry, a Feistel Network and Curry, a substitution linear network are two
block cipher families proposed by Andrei Pyshkin and the author of this the-
sis. The goal of constructing these families of ciphers was to show that block

52 CHAPTER 2. ITERATED BLOCK CIPHERS

ciphers with a sound design strategy against linear and differential crypt-
analysis as well as brute-force attacks can be built that fall prey to algebraic
Gröbner basis attacks. This goal was reached by using certain monomial
and inversion S-Box functions over extension fields of GF (2). For the se-
lected S-Box functions theoretical analyses of their resistance against linear
and differential cryptanalysis exist – showing them to be close to optimal.
However, in contrast to real-world block ciphers, we do not compose these
functions with affine-linear functions over GF (2) as was done in Rijndael
and KASUMI; this in order to make the cipher easily representable over the
extension field. Also, most of the instances we were able to successfully at-
tack use S-Boxes that are significantly wider than the ones in use in deployed
block ciphers.

The description of these ciphers has been published in the Proceedings
of CT-RSA 2006.

The Feistel Case: Flurry

We construct the family FLURRY(n,m, r, f,D) of Feistel ciphers. The param-
eters used are:

• m ∈ N: the plaintext space, the ciphertext space and the cipher key
space are F 2m.

• r ∈ N: the number of rounds

• f : F → F : a non-linear mapping giving the S-Box of the round
function

• D = (di,j) ∈ Fm×m: a matrix describing the linear diffusion mapping
of the round function.

We setR = (r1, . . . , rm) ∈ Fm, L = (l1, . . . , lm) ∈ Fm andK = (k1, . . . , km) ∈
Fm. The round transformation ρ : Fm×Fm×Fm → Fm×Fm of a FLURRY

cipher is then defined as:

ρ(L,R,K) = (R,G(R,K) + L)

with G : Fm × Fm → Fm being the parallel application of m S-Boxes fol-
lowed by a linear transform:

G(r1, . . . , rm, k1, . . . , km) = D ×

f(r1 + k1)
f(r2 + k2)

...
f(rm + km)

 .

2.4. EXPERIMENTAL BLOCK CIPHERS 53

A plaintext (L0, R0) is encrypted into a ciphertext (Lr, Rr) by iterating the
round transformation ρ over r rounds:

(Li, Ri) = ρ(Li−1, Ri−1,Ki−1) i = 1, 2, . . . , r − 1
(Lr, Rr) = ρ(Lr−1, Rr−1,Kr−1) + (Kr,Kr+1)

After the last round transformation, an additional key addition is performed
on both halves of the state. Analogously, using the inverse round transfor-
mation ρ−1

ρ−1(L,R,K) = (G(L,K) +R,L)

we can decrypt a ciphertext with the following sequence of steps:

(Lr−1, Rr−1) = ρ−1(Lr +Kr, Rr +Kr+1,Kr−1)
(Li−1, Ri−1) = ρ−1(Li, Ri,Ki−1) i = r − 1, r − 2, . . . , 1

The number of F -components of a cipher key, plaintext or ciphertext is de-
noted by t = 2m.

The key schedule The key schedule is affine over F . We write the cipher
key as a tuple of vectors (K0,K1) ∈ Fm × Fm. Let the round keys for the
first two rounds be K0,K1 and recursively compute subsequent round keys
for 2 ≤ i ≤ r + 1 as follows:

Ki = D ·KT
i−1 +Ki−2 + vi

where D is the same matrix used in the round function of the cipher and
the vi are round constants:

vi = ((θ + 1)i, (θ + 1)i+1, . . . , (θ + 1)i+m−1)

The SPN Case: Curry

In this section we construct a family CURRY(n,m, r, f,D) of ciphers similar
to SQUARE [37]. We explain the parameters used:

• m ∈ N: the plaintext space, the ciphertext space and the cipher key
space are Fm×m.

• r ∈ N: the number of rounds

• f : F → F : a bijective non-linear mapping giving the S-Box of the
round function

• D = (di,j) ∈ Fm×m: an invertible matrix used for diffusion

54 CHAPTER 2. ITERATED BLOCK CIPHERS

The round function ρ : Fm×m×Fm×m → Fm×m of a CURRY cipher is defined
as:

ρ(S,K) = D ·G(S +K)T

with G : Fm×m → Fm×m being the parallel application of m2 S-Boxes:

G((si,j)) = (f(si,j))

A plaintext S0 is encrypted into a ciphertext Sr by iterating the round trans-
formation ρ exactly r times followed by an additional key addition after the
last round:

Si = ρ(Si−1,Ki−1) i = 1, 2, . . . , r − 1
Sr = ρ(Sr−1,Kr−1) +Kr

Analogously, using the inverse round transformation ρ−1

ρ−1(S,K) = G−1((D−1 · S)T) +K

we can decrypt a ciphertext with the following sequence of steps:

Sr−1 = ρ−1(Sr +Kr,Kr−1)
Si−1 = ρ−1(Si,Ki) i = r − 1, r − 2, . . . , 1

Just as for FLURRY, let the number of F -components of a key, plaintext or
ciphertext be denoted by t, this time t = m2.

The key schedule For CURRY the first round key is equivalent to the cipher
key K0 ∈ Fm×m. Just as for FLURRY the key schedule is affine over F .
Subsequent round keys Ki, i ≥ 1 are recursively computed as follows:

Ki = D ·Ki−1 +Mi

where D is the same matrix used in the round function and Mi = ((aj,l))
with aj,l = θi+(j−1)m+l. The matrices Mi are round constants.

Selected Parameters

We will now specify suitable parameters for the S-Box function and the lin-
ear transformation. These will be used to more thoroughly investigate in-
stances of our cipher constructions later in this thesis. The number of rounds
shall be left unspecified for now.

2.4. EXPERIMENTAL BLOCK CIPHERS 55

Table 2.1: S-Box mappings over GF (2n) with n ∈ {8, 16, 32, 64}
function mapping bijective δ-uniformity N (f)

f−1 x 7→
{
x−1 iff x 6= 0
0 iff x = 0

yes 4 2n−1 − 2
n
2

f3 x 7→ x3 no 2 ≥ 2n−1 − 2
n
2

f5 x 7→ x5 no 4 ≥ 2n−1 − 2
n
2

+1

f7 x 7→ x7 yes ≤ 6 ≥ 2n−1 − 3 · 2
n
2

The S-Box functions The only non-linear components of FLURRY and CURRY

are the S-Boxes. In order to achieve resistance against differential and linear
cryptanalysis even for a small number of rounds these must be chosen very
carefully. The strength that an S-Box provides against these attacks is mea-
sured by its differential uniformity and its nonlinearity respectively. These
are defined as follows:

Definition 2.4.1. Let f : F → F be a mapping and

δ = max
a,b∈F

a6=0

#{x ∈ F : f(x+ a) = f(x) + b}.

Then f is called differentially δ-uniform.

In the following definition we use the bijective map

F → GF (2)n, a =
n−1∑
i=0

(
aiθ

i
)
7→ (a0, . . . , an−1)

to identify F with GF (2)n. For a = (a0, . . . , an−1), b = (b0, . . . , bn−1) we set

〈a, b〉 =
n−1∑
i=0

aibi

Definition 2.4.2. The nonlinearity of a function f : F → F is defined as

N (f) = min
a,b∈F

b6=0

#{x ∈ F | 〈x, a〉 6= 〈f(x), b〉}

For monomial functions as well as the multiplicative inverse over finite
fields of characteristic two the δ-uniformity and the nonlinearity have been
well studied in the literature [90, 10, 40]. In order to make Gröbner basis
attacks feasible, we keep the degree of our S-Box functions low. Table 2.1
shows the S-Box functions that we have picked.

We call f3, f5 and f7 monomial S-Boxes and f−1 the inversion S-box.

56 CHAPTER 2. ITERATED BLOCK CIPHERS

Lemma 2.4.1. 1. f3 is a 2-uniform mapping

2. f−1 and f5 are 4-uniform mappings.

3. f7 has δ-uniformity of 6 or less.

Proof. Obviously for all a, b ∈ F with a 6= 0 the equation x7 + (x + a)7 = b
has at most 6 roots. For claims 1 and 2, see [90].

Lemma 2.4.2. 1. The nonlinearity of f−1 is 2n−2 − 2
n
2 .

2. For a polynomial function f : F → F of degree d the following holds
true: N (f) ≥ 2n−1 − bd−1

2 c2
n
2

Proof. For claim 1, see [40], for claim 2 see [23].

The linear transformations We use matrices of Maximum Distance Sep-
arable codes – MDS matrices for short – for the matrix D in the linear layer
and the key schedule. We chose these types of linear transformations since
they have optimal diffusion properties. This strategy is widely used in mod-
ern block cipher design; all ciphers following the wide-trail design use dif-
fusion optimal matrices. The matrix D4 below actually is the matrix used in
the MixColumns step of Rijndael, D2 is equivalent to a Pseudo-Hadamard
Transform over F .

D2 =
(
θ 1
1 1

)
D4 =

θ θ + 1 1 1
1 θ θ + 1 1
1 1 θ θ + 1

θ + 1 1 1 θ

Rijmen and Daemen introduced the notion of the branch number of a linear
transformation to measure the quality of the diffusion provided. For a F -
vector X := (x1, . . . , xm) we define w(X) to be the hamming weight of
X, i.e. the count of all non-zero coordinates of this vector. The following
definition is according to [39]:

Definition 2.4.3. Let M ∈ Fm×m be a matrix describing a be a linear map.
The differential branch number Bd(M) of M is then defined as

Bd(M) = min
X∈Fm

X 6=0

(w(X) + w(MX))

while the linear branch number Bl(M) is defined as Bl(M) = Bd(MT).

For a symmetric matrix such as D2, the linear and the differential branch
number clearly coincide. For the circulant matrix D4 the linear and differ-
ential branch number coincide as well [39]. Thus in our case it suffices to
speak of the branch number B(M) of a matrix M . For MDS matrices the
branch number is maximal [39], i.e. B(M) = m + 1 with m being the size
of the matrix M . For block ciphers with m = 1 we use the identity matrix of
size one, I1, trivially resulting in B(I1) = 2.

2.4. EXPERIMENTAL BLOCK CIPHERS 57

Resilience against Linear and Differential Cryptanalysis

The notion of practical security of block ciphers against differential and lin-
ear cryptanalysis was introduced by Knudsen [72]. We will show how com-
pute the minimum number of rounds that will make FLURRY and CURRY

practically secure against differential and linear cryptanalysis.
Note that our objective was not to evaluate the strength of our ciphers

against all known attacks. Our ciphers may very well be vulnerable against
one or several advanced attacks even if they resist standard linear and dif-
ferential cryptanalysis. Indeed, as an example we argue that the choices we
have made for the S-Boxes are very weak against interpolation attacks.

A fundamental parameter that influences the complexity of differential
and linear attacks is the minimum number of active S-Boxes N over con-
secutive rounds of the cipher. Kanda [68] gives useful results on both SLN
ciphers and Feistel ciphers with a substitution-linear round function; from
these we derive the following lemma:

Lemma 2.4.3. The minimum number of active S-boxes in 4, 6, 8 consecu-
tive rounds of a Feistel cipher with substitution-linear round function is lower
bounded by B(D), B(D)+2 and 2B(D)+1 respectively. For an SLN cipher the
minimum number of active S-Boxes for 2r consecutive rounds is lower bounded
by rB(D).

Definition 2.4.4. Let ΩL be the set of all linear characteristics and ΩD the
set of all differential characteristics of a cipher C. The maximum linear
characteristic probability (MLCP) of C then is

MLCP(C) = max
A∈ΩL

r∏
i=1

LP(ai, ai+1)

Analogously the maximum differential characteristic probability (MDCP) of
C is

MDCP(C) = max
A∈ΩD

r∏
i=1

DP(ai, ai+1)

The maximum differential probability of a function f : F → F can be
calculated from δ as p(f) = δ

#F where δ is according to Definition 2.4.1.
The maximum linear probability of a mapping f : F → F can be computed
as

q(f) =
(

1− 2N (f)
#F

)2

where N (f) is defined as in Definition 2.4.2. For SLN ciphers and Feistel
ciphers with a substitution-linear round function the MDCP is bounded by
p(f)N while the MLCP is bounded by q(f)N [68], where N is the miminum
number of active S-Boxes.

58 CHAPTER 2. ITERATED BLOCK CIPHERS

From these bounds we can deduce the number of rounds required to
make an instance practically secure against differential and linear crypt-
analysis. According to Knudsen [72], a block cipher with dependent round
keys is practically secure against differential and linear cryptanalysis if the
MLCP and the MDCP is too low for an attack to work under the assumption
of independent round keys. Note however that for both r-round Feistel and
r-round SPN ciphers, we need to consider the MLCP and MDCP of r − 2
rounds because of attacks that guess bits of the first and the last round key,
so-called 2R attacks.

Chapter 3

Efficient Gröbner Basis
Algorithms

For the computation of normal forms state-of-the-art Gröbner basis algo-
rithms exploit a link between Gaussian elimination and Gröbner basis com-
putation first characterized by Daniel Lazard in 1983 [76]. This chapter
presents a number of algorithms based on the Lazard’s ideas in historical
order. The algorithms described in this chapter are already implemented
in the computer algebra package Magma [108]. However, Magma provides
the algorithms as a black box implementation with only few parameters that
the user can influence. This is not sufficient to advance the state of the art
in algebraic cryptanalysis. To wit: in order to efficiently solve the HFE chal-
lenge 1 using F4, a new parameter HFE was added to the GroebnerBasis
command in Magma. This parameter makes the algorithm behave in a way
that is tailored to specific classes of HFE instances: Magma in this case su-
presses all pairs of degree > 4. Using this parameter on the other hand
is distinctly different from simply computing a truncated Gröbner basis at
degree 4 using Magma.

It is therefore important to not only be able to operate the tools we have
but to understand their inner workings and to sharpen them: Open-source
software clearly gives an advantage here. The author of this thesis imple-
mented the algorithms described in this chapter for the case of finite fields as
base fields of the polynomial rings in a software package called Xylirt. This
software package is written in C++ and will be released under an open-
source license and integrated into the SAGE computer algebra system in the
near future.

A straightforward enhancement – that has been integrated into Xylirt – is
to not just efficiently deal with the case of field polynomials but also to allow
to use so-called “conjugate polynomials” in the case of cipher embeddings
such as the ones described in [87] for AES and in Section 4.2.2 for SMS4.

59

60 CHAPTER 3. EFFICIENT GRÖBNER BASIS ALGORITHMS

3.1 The FGLM Algorithm

In general, computing a Gröbner basis of an ideal relative to a lexicographi-
cal order results in a significantly higher computational cost than computing
a Gröbner basis for the same ideal relative to a degree-reverse lexicograph-
ical order. To take advantage of this, Faugére and Lazard as well as Gianni
and Mora developed algorithms for changing the order of a Gröbner basis.
The merged version of these algorithms resulted in a paper proposing an
algorithm that is now referred to as the “FGLM algorithm” [46].

Algorithm 9 FGLM
Input: <2 – the target term ordering
Input: G1 ⊂ F[x1, . . . , xn] – Gröbner basis w.r.t. <1

Output: G2 ⊂ F[x1, . . . , xn] – Gröbner basis w.r.t. <2

m = 1 {monomial}
M ← ∅ {monomial basis}
G2 ← ∅ {new basis}
L← () {list of nexts}
while m 6= ∅ do

if ∃m′ ∈ HM(G2) such that m|m′ then
v ← φ1(m)
if ∀w ∈M.∃λw ∈ F such that v +

∑
w∈M λwsecond(w) = 0 then

p← m+
∑

w∈M λwfirst(w)
G2 ← cons([p, v],M)

end if
for v ∈ {x1, . . . , xn} do

if (v ·m) does not exist in L then
insert(L, v ·m)

end if
end for

end if
m← head(L)

end while

Given a reduced Gröbner basis G of an zero-dimensional ideal I relative
to a term order <1 and a different term order <2, the FGLM algorithm
computes the Gröbner basis of I relative to <2. We will now describe the
FGLM algorithm and give upper bounds on the space and time complexity.

An important characteristic of the ideal is the vector space dimension of
the residue class ring obtained when factoring the polynomial ring R by the
ideal I:

3.2. THE F4 ALGORITHM 61

Definition 3.1.1. Let R := F [x1, . . . , xn]. Then the F -space dimension of
the ideal I ⊂ R shall be denoted by dim(R/I).

The complexity of the FGLM algorithm hinges on two parameters of the
input G: the number of variables of the polynomial ring R and the vector
space dimension of the residue class ringR/I, where I is the ideal generated
by the Gröbner basis G ⊂ R. The following theorem [7] shows how this
invariant of an ideal can be computed.

Theorem 3.1.1. Let G be a Gröbner basis of the ideal I. Then

dim(R/I) = # {t ∈ T (R) : HT (f) - t for all f ∈ G} (3.1)

This theorem turns out to have a trivial, but useful Corollary if the head
terms of all polynomials are univariate:

Corollary 3.1.2. Let G = {g1, . . . , gk} be a Gröbner basis for the ideal
I ⊂ F [x1, . . . , xk] with head terms xd11 , . . . , x

dk
k . Then dim(R/I) =

∏k
i=1 di.

Together with the following theorem this will later – in Chapter 4 – be
used to give an upper bound on the time and space complexity of a Gröbner
basis conversion for concrete instances of polynomial systems derived from
block ciphers.

Theorem 3.1.3. Let K be a finite field and R = K[x1, . . . , xk]. Furthermore
G1 ⊂ R is the Gröebner basis relative to a term order <1 of an ideal I, and
d = dim(R/I). We can then convert G1 into a Gröbner basis G2 relative to a
term order <2 in O(kd3) field operations.

3.2 The F4 Algorithm

The F4 algorithm is an algorithm proposed by Jean-Charles Faugére to com-
pute Gröbner bases more efficiently by employing a more powerful reduc-
tion algorithm. The algorithm uses Macaulay matrices to achieve this and
builds on Lazard’s ideas [76]. This also is the reason why these type of
algorithms sometimes are referred to as Faugère-Lazard solvers.

Algorithm 10 presents the so-called ”improved” version of the F4 algo-
rithm by Jean-Charles Faugère. Two improvements make it superior to the
first algorithm – the “normal” version of F4: it applies the Buchberger cri-
teria and it tries to apply results from previous steps of the computation to
simplify polynomials. It is recommended to use the Gebauer-Möller instal-
lation for the Update function implementing the Buchberger criteria. This
function is given in Algorithm 14.

To understand the following algorithm, we first have to introduce a
slightly different definition of a critical pair:

62 CHAPTER 3. EFFICIENT GRÖBNER BASIS ALGORITHMS

Definition 3.2.1. A critical pair of two polynomials f, g ∈ F[X] for the algo-
rithm F4 is defined by the function Pair(f, g) = (lcmfg, tf , f, tg, g) such that
the following holds:

lcm(Pair(f, g)) = lcmfg = HT(tf · f) = HT(tg · g) = lcm(HT(f),HT(g))

with lcmfg, tf , tg ∈ T (R).

We now define some properties of these critical pairs:

Definition 3.2.2. Let p = (lcmfg, tf , f, tg, g) be a critical pair. The degree of
p is defined as deg(lcmfg), two projections are defined to work on the com-
ponents of the pair: Left(p) = (tf , f) and Right(p) = (tg, g). Furthermore for
convenience, for a tuple (t, f) ∈ T (F[X])×F[X] we define mult(t, f) = t · f .

Algorithm 10 F4Improved
Require: P ⊂ F[X]
Ensure: G ⊂ F[X] is a Gröbner basis

(G,P, d)← (∅, ∅, 0)
while F 6= ∅ do
f ← first(F)
F ← F \ {f}
(G,P)← Update(G,P, f)

end while
while P 6= ∅ do
d← d+ 1
Pd ← SelectPairs(P)
P ← P \ Pd
Ld ← Left(Pd) ∪ Right(Pd)
(F̃+

d , Fd)← F4Reduction(Ld, G, (Fi)d=1,...,(d−1))
for h ∈ F̃+

d do
(G,P)← Update(G,P, h)

end for
end while

Comparing this algorithm to the Buchberger algorithm described in 1.3.2,
we see similarities. As mentioned before, the Reduction function returns
more than one polynomial. For all of these polynomials the Update func-
tion is executed, which checks the Buchberger criteria. Furthermore we
notice that more state than in the original Buchberger algorithm is kept.
The Reduction method returns subsets F+

d ⊂fin F[X] and Fd ⊂fin F[X] the
second of which is preserved until the algorithm terminates. The counter d
indicates the number of “steps” the F4 algorithm has already executed. In
step d, all of the previous Fi, are used in the reduction.

3.2. THE F4 ALGORITHM 63

To understand the reduction algorithm, we first have to agree on the
convention of identifying polynomials by their corresponding row vectors
in the Macaulay matrix of the set of polynomials processed. The func-
tion REF(F,≤) implicitly changes from the polynomial representation to
the representation of the polynomials by their Macaulay matrix such that
columns are ordered by the term order ≤, computes a row-echelon form of
the Macaulay matrix representation and returns the result as a set of poly-
nomials.

In practice however, this switch is only done once, when reading the in-
put system. After this point, all of the polynomial manipulations are trans-
lated into operations on row vectors. The naïve method of switching back
and forth between polynomial and matrix representations causes a slow-
down.

Algorithm 11 F4Reduction

Require:

L ⊂fin T ×R[F[X]]
G ⊂fin R[F[X]]
F = (Fk)k=1,...,(d−1)

Ensure: (F1, F2) ⊂ R[F[X]]×R[F[X]]
F ← SymbolicPreprocessing(L,G,F)
F̃ = REF(F,<)
F̃+ ←

{
f ∈ F̃ : HT(f) /∈ HT(F)

}
The reduction algorithm in turn makes use of another sub-algorithm

called “symbolic preprocessing”. Symbolic preprocessing is the main step
of F4 that builds the matrix to be reduced. Three auxiliarly functions are
used in this algorithm, the function RandomPick(S) does exactly what its
names suggests, it simply picks a random element of a set S. The function
IsTopReducible(m,G) checks whether m is top-reducible modulo G and the
function FindReductor(m,G) finds an element of f ∈ G and a term m′ ∈
T (F[X]) such that m = m′ · HT(f).

The goal of the Simplify is to replace rows representing the evaluated
product mult(m, f) occurring in the matrix F by equivalent rows represent-
ing mult(m′, f ′) such that m′ ≤ m. As input the function Simplify takes a
non-evaluated tuple (m′, f) ∈ T (F[X]) × F[X] as well all previous Fi and
recursively determines the simplification described. We note that Simplify
actually computes a row-echelon form of the matrices Fi again. There-
fore it would make sense to store the row-echelon forms that were already
computed in reduction step. However, from a practical point of view, the
overhead of storing the intermediate matrices is prohibitive. In the F4 im-
plementation contained in Xylirt, Simplify therefore is turned off and simply

64 CHAPTER 3. EFFICIENT GRÖBNER BASIS ALGORITHMS

Algorithm 12 SymbolicPreprocessing

Require:

L ⊂fin T × F[X]
G ⊂fin F[X]
F = (Fk)k=1,...,(d−1)

F ← {mult(Simplify(m, f,F ∈ L}
Done← HT(F)
while T (F) 6= Done do
m← RandomPick(T (F) \Done)
if IsTopReducible(m,G) then

(m′, f)← FindReductor(m,G)
m← m′ · HT(f)
F ← F ∪ {mult(Simplify(m′, f,F)}

end if
end while

returns the first two parameters passed to the function. This means that
the matrices returned by the F4Reduction function only are used in the loop
directly following the reduction step and can be discarded afterwards.

Algorithm 13 Simplify

Require:

t ∈ T (R[X])
f ∈ R[X]
F = (Fk)k=1,...,(d−1) with Fk ⊂fin R[X]
F̃ = (F̃k)k=1,...,(d−1) with F̃k ⊂fin R[X]

U ← ListOfDivisors(t)
for u ∈ U do

for j ∈ {1, . . . , d} do
if uf ∈ Fj then
p← FindP(F̃+

j , f, u)
if u 6= t then

Simplify(tu , p,F , F̃)
end if

end if
end for

end for

3.2.1 The Gebauer-Moeller Installation

Algorithm 14 gives an algorithmic description of the so-called Gebauer-
Moeller installation [55] implementing the Buchberger criteria. This is the

3.3. ON THE COMPLEXITY OF GRÖBNER BASIS COMPUTATIONS 65

proposed update strategy that should be used in the improved F4 algorithm.
The algorithmic description is taken from [7].

Again, we first give the auxiliarly functions needed before we give the
actual algorithm: The function DisjointHT(f, g) is defined to return true
iff gcd(HT(f),HT(g)) = 1, LCMHT(f, g) is defined as lcm(HT(f),HT(g))
and the function CT(g1, h, S) returns true iff LCMHT(h, g2) - LCMHT(h, g1)
for all {h, g2} ∈ S. As usual when employing the Buchberger criteria, the
normal strategy should be used as selection strategy. For F4, the function
SelectPairs now returns all critical pairs with the degree of their LCM being
minimal.

3.3 On the Complexity of Gröbner Basis Computa-
tions

Meyer and Mayr gave worst case complexities for Gröbner basis compu-
tations in [84]. For the case of algebraically closed fields, the worst-case
complexity can become doubly exponential in the number of variables. For
the cryptanalytic case – where we only consider solutions in the ground field
– the worst case complexity is single exponential though.

For the degrevlex order, exact complexity bounds are known for so-called
regular sequences [76]. Regular sequences are defined as follows:

Definition 3.3.1 (Regular sequence). Given a sequence of homogeneous
polynomials (f1, . . . , fm) ∈ F[X]m we call this sequence regular if for all
1 ≤ i ≤ m and an arbitrary g ∈ F[X]

gfi ∈ 〈f1, . . . , fi−1〉

implies that g also is in 〈f1, . . . , fi−1〉. An affine sequence of polynomials
(f1, . . . , fm) ∈ F[X]m is said to be regular if (H(f1), . . . ,H(fm)) is a regular
sequence.

An interesting property of regular sequences is that it can be proved that
no reductions to zero occur in the F5 algorithm if they are used as input
[44].

We clearly see that the notion of regularity only works for sequences of
polynomials where the number of polynomials does not exceed the number
of variables. Henceforth the notion of regularity needs to be adapted for
systems where this is not the case; we call the systems corresponding to
these sequences “overdetermined systems”. These systems are relevant in
cryptanalysis. For these cases, Magali Bardet introduced the notion of semi-
regularity in her Ph.D. thesis [5], which introduces a bound on the product
of g and fi. This bound is called the “degree of regularity” and is defined as
follows:

66 CHAPTER 3. EFFICIENT GRÖBNER BASIS ALGORITHMS

Algorithm 14 Update
Input: Gold ⊂fin F[X]
Input: Bold ⊂fin (F[X]× F[X])
Input: h ∈ F[X], h 6= 0
Output: Gnew ⊂fin F[X]
Output: Bnew ⊂fin (F[X]× F[X])

C ← {{h, g} |g ∈ Gold}
D ← ∅
while C 6= ∅ do
{h1, g} ← RandomPick(C)
C ← C \ {h1, g}
if DisjointHT(h, g1) ∨ (CT(h, g1, g2, C) ∧ CT(h, g1, g2, D)) then
D ← D ∪ {h, g1}

end if
end while
E ← ∅
while D 6= ∅ do
{h, g} ← RandomPick(D)
if DisjointHT(h, g) then
E ← E ∪ {h, g}

end if
end while
Bnew ← E
while Bold 6= ∅ do
{g1, g2} ← RandomPick(Bold)
Bold ← Bold \ {{g1, g2}}
if (HT(h) - LCMHT(g1, g2)) ∨ (LCMHT(g1, h) = LCMHT(g1, g2)) ∨
(LCMHT(g2, h) = LCMHT(g1, g2)) then
Bnew ← Bnew ∪ {{g1, g2}}

end if
end while
Gnew ← {h}
while Gold 6= ∅ do
g ← RandomPick(Bold)
Gold ← Gold \ {g}
if HT(h) - HT(g) then
Gnew ← Gnew ∪ {g}

end if
end while

Definition 3.3.2 (degree of regularity). Let I = 〈f1, . . . , fm〉 ⊂ F[X]. The

3.3. ON THE COMPLEXITY OF GRÖBNER BASIS COMPUTATIONS 67

degree of regularity of I is a function of I that is defined as

dreg(I) = min {d ≥ 0 | dimF(f ∈ I, deg(f) = d) = aaa}

To go from regular sequences to semi-regular sequences, Definition 3.3.1
only needs to be changed slightly. We simply bound the degree of g ·fi below
the degree of regularity for all fi:

Definition 3.3.3 (semi-regular sequence). Given a sequence of homoge-
neous polynomials F = (f1, . . . , fm) ∈ F[X]m we call it semi-regular if for
all 1 ≤ i ≤ m and an arbitrary g ∈ F[X]

gfi ∈ 〈f1, . . . , fi−1〉 and deg(gfi) < dreg(F)

implies that g also is in 〈f1, . . . , fi−1〉. An affine sequence of polynomials
(f1, . . . , fm) ∈ F[X]m is said to be semi-regular if (H(f1), . . . ,H(fm)) is a
regular sequence.

Bardet, Faugére, Salvy and Yang later gave worst-case complexity es-
timates for so-called semi-regular systems over GF (2) [4]. These were
obtained by bounding the maximum degree of the polynomials and sub-
sequently deriving the size of the matrices in the case of Lazard-Faugére
solvers.

68 CHAPTER 3. EFFICIENT GRÖBNER BASIS ALGORITHMS

Chapter 4

Algebraic Approaches To
Cryptanalysis

In this chapter we show how polynomial systems of equations can be used
for analyzing the security of ciphers. We explain the concept of interpola-
tion attacks, give an explicit construction for the polynomial representation
of FLURRY and CURRY and show how the bit-level operations that are used
in SMS4 can be embedded into the extension field GF (28), yielding a cipher
with a structurally “clean” representation over this field, ESMS4. Further-
more we give a high-level description of Gröbner basis attacks with minimal
data complexity; for FLURRY and CURRY we present experimental results.
We explain a method that can be used to avoid polynomial reductions com-
pletely when computing a Gröbner basis of certain ciphers and use it to ob-
tain a zero-dimensional Gröbner basis for AES-128. For this Gröbner basis
we analyze the impact that it has on the security of the cipher. Last but not
least we show how a chosen-key attack on the cipher Cryptomeria can be
used to recover its secret S-Box. This attack is a combination of differential
and algebraic methods.

4.1 Interpolation Attacks on Block Ciphers

Jakobsen and Knudsen presented interpolation attacks in [64] as a reaction
to ciphers using algebraically constructed S-Boxes such as those proposed by
Nyberg [90]. In fact, interpolation attacks were the first demonstration of
successful polynomial-based algebraic attacks against block ciphers. Inter-
polation attacks work by expressing the relationship between the plaintext
and ciphertext for a fixed key as either one or as a vector of polynomials.

If the degree of these polynomials is low enough, the coefficients of
the polynomials can be interpolated from a number of plaintext/ciphertext
pairs. A key–dependent equivalent of the encryption or the decryption algo-
rithm has then been determined. In [64] upper bounds on the data complex-

69

70 CHAPTER 4. ALGEBRAIC APPROACHES TO CRYPTANALYSIS

ity – the number of required pairs for known-plaintext interpolation attacks
– are given for selected examples. In general this number increases exponen-
tially with the degree of the polynomial function describing the S-Box, the
number of rounds and the number of elements in the internal state, while
for the attacks we present in the next section the data complexity remains a
constant quantity.

Courtois later improved on the work of Jakobsen and Knudsen and in-
troduced an attack called General Linear Cryptanalysis [30]. In the same
paper he also gives several examples of insecure ciphers based on inversion
based S-Boxes that resist differential and linear cryptanalysis. His approach
and his goals are quite different from ours however.

4.2 Deriving Systems of Polynomial Equations

Multiple approaches can be used for obtaining a polynomial system of equa-
tions describing the cipher process: Depending on the elementary opera-
tions used in the block cipher, a suitable ground field is chosen. In most
cases the equations are formulated over GF (2) or over an extension fields
of GF (2); sometimes the cipher be seen as a restriction of a more general
cipher, this is called an embedding. To practically express and manipulate
the polynomials, the introduction of so-called intermediate state variables
almost always is necessary. Without the introduction of these intermediate
variables, the degree of the polynomials grows with each round, causing
“expression swell”: the number of terms in the polynomials to grow expo-
nentially. This section describes different approaches by example: We look
at round-based descriptions over extension fields for the experimental ci-
pher FLURRY and CURRY as well as a way to obtain an embedded cipher
description of the block cipher SMS4. By “embedded” we mean that the bit-
level structure of the cipher is carried over into an extension field, causing
the bit-level operations to become compatible with other algebraic opera-
tions such as inversion. Later, in Section 4.5 we also describe how to obtain
polynomial systems over GF (2) for ciphers involving modular addition in
Z/Z2k

4.2.1 Polynomial Representation of FLURRY and CURRY

In the following we will detail how to obtain a system of polynomial equa-
tions that describes the transformation of a plaintext into a ciphertext block
round by round using intermediate state variables. Please note that our de-
scription is slightly simplified. For the sake of legibility we have omitted the
round key addition after the final round; for the experiments described in
Section 4.3.1 the final key addition has of course been retained.

4.2. DERIVING SYSTEMS OF POLYNOMIAL EQUATIONS 71

• FLURRY

For Feistel ciphers the left half of the state in round e is identical to the
right half of the state in round e − 1, giving rise to the following mr
trivial linear equations:

x
(e)
j + x

(e−1)
j+m = 0

Each monomial S-Box of the cipher induces a polynomial equation of
degree deg(f). Thus we get a total of mr non-linear equations of the
form:

x
(e)
m+j + x

(e−1)
j +

m∑
l=1

dj,l · f
(
x

(e−1)
m+l + k

(e−1)
l

)
= 0

with 1 ≤ e ≤ r, 1 ≤ j ≤ m. When using the inversion S-Box the poly-
nomial system is correct only with probability

(
2n−1

2n

)mr. The equa-
tions in this case are of a different form:(
x

(e−1)
j + x

(e)
m+j

) m∏
i=1

(
x

(e−1)
m+i + k

(e−1)
i

)
+

m∑
l=1

dj,l

m∏
i=1
i 6=l

(
x

(e−1)
m+i + k

(e−1)
i

)
= 0

The linear equations for the key schedule of FLURRY can be written as:

k
(e)
j + k

(e−2)
j + (θ + 1)et+j +

m∑
l=1

dj,lk
(e−1)
l = 0

with 2 ≤ e ≤ r, 1 ≤ j ≤ m.

• CURRY

No trivial linear equations hold between intermediate state variables.

Denote by x(e)
(i,j) the variable in row i, column j of the state in round

e, analogously for k(e)
(i,j). Then for all rounds e > 0 the following equa-

tions hold with 1 ≤ i, j ≤ m:

x
(e)
i,j +

m∑
l=1

di,l · f
(
x

(e−1)
j,l + k

(e−1)
j,l

)
= 0

Again for f−1 the non-linear equations look different:

x
(e)
i,j

m∏
u=1

(
x

(e−1)
j,u + k

(e−1)
j,u

)
+

m∑
l=1

di,l

m∏
u=1
u6=l

(
x

(e−1)
j,u + k

(e−1)
j,u

)
= 0

Using the above equations, the polynomial system also does not hold

with probability one but with probability
(

2n−1
2n

)m2r.

72 CHAPTER 4. ALGEBRAIC APPROACHES TO CRYPTANALYSIS

The linear equations for the key schedule can be expressed as follows:

k
(e)
i,j + (θ)e+(i−1)m+j +

m∑
l=1

di,lk
(e−1)
l,j = 0

with 1 ≤ e ≤ r, 1 ≤ i, j ≤ m.

The field polynomials will not be used in our system.

4.2.2 An Embedded Representation of SMS4

Similar to the embedding defined by Murphy and Robshaw for AES–128
[87], we can embed SMS4 into a more elegant and structured cipher ESMS4
in which all operations are performed over the finite field GF (28). In this
section we will show how this can be done. First note that the description
we give is probabilistic, since we do not allow the inversion of the value 0 to
occur. The overall number of S-Boxes in the cipher and key schedule is 256,
henceforth the probability that an arbitrary plaintext can be encrypted under
an arbitrary key without causing a zero inversion can be approximated by(

255
256

)256 ≈ 1/e ≈ 36.7%.
First of all, let F denote the field ESMS4 will be defined over:

F = GF (28) =
GF (2)[x]

x8 + x7 + x6 + x5 + x4 + x2 + 1
= GF (2)(θ)

The state space, the key space and the message space of ESMS4 then
are F 128, the round key space is F 32. In accordance with [87] we define
a vector conjugate mapping φ that maps an element a ∈ F to an 8-tuple
a′ ∈ F 8

φ(a) =
(
a20

, a21
, a22

, a23
, a24

, a25
, a26

, a27
)

and analogously maps a vector A ∈ Fn to A′ ∈ F 8n. The inverse of φ, Im(φ)
shall be called extraction mapping. For a GF (2)-linear function L operating
on a byte b := (b8, b7, b6, b5, b4, b3, b2, b1) we obtain a F -linear function L that
performs the equivalent operation on the vector φ(b) by first computing the
coefficients β1, . . . , β8 of the the linearized polynomial

L(b) =
8∑

k=1

βka
2k−1

and then computing the matrix ML = (αi,j) with αi,j = β2i−1

1+((j−i) mod 8). The
function L then is defined as L : F 8 → F 8, v → ML · v. We call ML the
linearized polynomial matrix form of L.

4.2. DERIVING SYSTEMS OF POLYNOMIAL EQUATIONS 73

The S-Box Layer

The S-Box of SMS4 can be decomposed into the form A ◦ I ◦ A, with A an
affine-linear function over GF (2) [77]. Analogously, for ESMS4, the S-Box
operation can be performed by A ◦ I ◦ A, with A being an affine-linear
transform over F and I being the componentwise inversion of elements on
a vector v ∈ F 8. The linear part of A can be expressed by multiplication
of the linearized polynomial matrix form MA ∈ F 8×8 of the linear part of
A, whilst the constant can simply be embedded using φ. We define C̃ =
(φ(C1), φ(C1), φ(C1), φ(C1)) and Ã = Diag4(MA)

The Linear Transform λ

Let P ∈ GF (2)32×32 be the permutation matrix such that for v ∈ GF (2)32,
the product P ·v corresponds to a cyclic shift of elements of v by one position
to the left. This matrix can be decomposed into the following form

P =

M1 0 0 M2

M2 M1 0 0
0 M2 M1 0
0 0 M2 M1

 , M1,M2 ∈ GF (2)8×8

By computing the linearized polynomial matrix forms for M1 and M2

M̃1 = L(M1), M̃2 = L(M2)

we obtain the following matrix that performs the equivalent action on a
32-tuple of elements representing 4 bytes of the state:

P =

M̃1 0 0 M̃2

M̃2 M̃1 0 0
0 M̃2 M̃1 0
0 0 M̃2 M̃1

 , M̃1, M̃2 ∈ F 8×8

Then the transformation λ is equivalent to the multiplication from the
left with the matrix

Λ1 = P 0 + P 2 + P 10 + P 18 + P 24

whilst for λ′ the corresponding matrix is

Λ2 = P 0 + P 13 + P 24.

The Round Function

The round function of ESMS4 can be expressed as:

F̃ : F 32 × F 32 → F 32,

(X̃, K̃) 7→ Λ1 ·
(
Ã · I

(
Ã ·
(
X̃ + K̃

)
+ C̃

)
+ C̃

)

74 CHAPTER 4. ALGEBRAIC APPROACHES TO CRYPTANALYSIS

The Key Schedule

The key generation function of ESMS4 is almost identical to the round func-
tion; merely Λ1 needs to be replaced by Λ2.

Impact

The existence of the embedding arises from SMS4 solely using GF (2)-linear
operations and inversions over GF (28). Since the number of S-Boxes per
cipher round for ESMS4 is only a quarter of that of BES–128, we expect
ESMS4 to be more amenable to experimenting with algebraic attacks with-
out having to resort to scaling down the field or block size.

4.3 Gröbner Basis Attacks with Minimal Data Com-
plexity

This section describes the general concept of a Gröbner Basis Attack. We
show that for several ciphers, notably some instances of Flurry and Curry,
Gröbner Bases can be computed with minimal computational effort. This
then reduces the problem of finding the key to a Gröbner basis conversion
problem, which can be solved with a Gröbner basis conversion algorithm,
e.g. FGLM.

Estimating the time and space complexity of Gröbner basis algorithms
is no easy feat. For polynomial systems induced by block ciphers, theoret-
ical results estimating the performance of Gröbner basis algorithms were
previously unknown. We therefore carried out experiments to study the
resistance of FLURRY and CURRY against Gröbner Basis attacks. Results of
these experiments are presented and analysed in section 4.3.1.

The Gröbner basis attack we have successfully used against instances
of FLURRY and CURRY yields a key recovery. This attack has minimal data
complexity, i.e. a single pair of plaintext and corresponding ciphertext will
suffice unless an inversion-based S-Box is used. Another pair is used to
verify key candidates. The attack works as follows:

1. Set up a polynomial system P = {pi = 0} for the cipher in question
with pi ∈ R as described in Section 4.2.1. The system P consists of
both cipher and key schedule equations.

2. Request a plaintext/ciphertext pair ((P1, . . . Pt), (C1, . . . , Ct)). This
gives rise to the following additional system of linear equations G =
{gi = 0}: Let I be the ideal generated by the set of polynomials
L = (

⋃
i{pi}) ∪ (

⋃
i{gi}). We call this ideal the key recovery ideal.

4.3. GRÖBNER BASIS ATTACKS WITH MINIMAL DATA COMPLEXITY 75

3. Compute a degree-reverse lexicographic Gröbner basis GDRL of I. For
ciphers using a multiplicative inverse as S-Box function, the system
may be inconsistent, resulting in GDRL = 1.

4. If GDRL = 1 go to Step 2, otherwise proceed.

5. Use a Gröbner basis conversion algorithm to obtain a lexicographical
Gröbner basis Glex from GDRL. The variable ordering should be such
that the key variables of the first round are the least elements.

6. Compute the variety Z of I using the Gröbner basis Glex.

7. Request another plaintext/ciphertext pair (P ′, C ′).

8. Try all elements k ∈ Z as key candidates to encrypt P ′. If k does not
encrypt P ′ to C ′, remove k from Z, otherwise retain.

9. If Z contains more than one element, go to step 7.

10. Terminate

Considerable complexity is hidden in step 6. To compute the variety
of an ideal using a lexicographical Gröbner basis, we need to successively
eliminate variables by computing zeroes of univariate polynomials and back-
substituting results. The complexity of this step depends on the number of
solutions of the polynomial system (zeroes of the ideal) and the complexity
of the algorithm for finding roots of univariate polynomials. The best algo-
rithm for factoring polynomials is due to Kaltofen and Shoup [67] and has a
complexity of O(d1.815n) field operations, where d is the degree of the poly-
nomial. This degree if bounded by 2n − 1. The number zeroes is equivalent
to the number of distinct keys encrypting the plaintext to a ciphertext. In
general we can expect this number to be small.

4.3.1 Experimental Results

We have performed experiments to analyze the resistance of FLURRY and
CURRY using the computer algebra system MAGMA [108], version 2.11-8,
on an AMD Athlon 64 3200+ equipped with 1024 Megabytes of RAM run-
ning Linux. MAGMA implements Faugére’s F4 algorithm [43] and is widely
considered the best publicly available tool for computing Gröbner bases.
We have chosen n and m such that the ciphers evaluated are 128-bit block
ciphers.

Table 4.1 lists a number of instantiations of FLURRY and CURRY ciphers
for which we were able to successfully recover the secret key; the FLURRY

ciphers listed with 6 and more rounds are resistant to linear and differential
cryptanalysis. We see that ciphers with inversion-based S-boxes are easier

76 CHAPTER 4. ALGEBRAIC APPROACHES TO CRYPTANALYSIS

to break than ciphers which use a monomial S-box, even if the monomial is
of very low degree. For monomial S-Boxes, we clearly see that the degree
of the function used in the S-Box influences the complexity of the attack.
The influence of the degree however is smaller than the influence of an
additional two rounds.

Unfortunately we were unable to determine an a priori indicator for
selecting the most efficient Gröbner basis conversion algorithm – in some
cases FGLM was faster, in other cases the Gröbner walk; the same holds for
the memory consumption.

Table 4.1: Experimental results obtained with MAGMA (from [21])
cipher conversion CPU time memory used
FLURRY(64, 1, 4, f−1, I1) Walk 0.011 s 3.48 MBytes
FLURRY(64, 1, 4, f−1, I1) FGLM 0.011 s 3.48 MBytes
FLURRY(64, 1, 4, f3, I1) Walk 0.04 s 3.48 MBytes
FLURRY(64, 1, 4, f3, I1) FGLM 0.029 s 3.58 MBytes
FLURRY(64, 1, 4, f5, I1) Walk 1.28 s 3.97 MBytes
FLURRY(64, 1, 4, f5, I1) FGLM 2.3 s 6.36 MBytes
FLURRY(64, 1, 4, f7, I1) Walk 13.61 s 6.22 MBytes
FLURRY(64, 1, 4, f7, I1) FGLM 82.62 s 33.4 MBytes
FLURRY(64, 1, 6, f−1, I1) Walk 0.15 s 3.58 MBytes
FLURRY(64, 1, 6, f−1, I1) FGLM 0.059 s 3.58 MBytes
FLURRY(64, 1, 6, f3, I1) Walk 59.91 s 10.63 MBytes
FLURRY(64, 1, 6, f3, I1) FGLM 145.08 s 193.24 MBytes
FLURRY(64, 1, 8, f−1, I1) Walk 3.43 s 4.51 MBytes
FLURRY(64, 1, 8, f−1, I1) FGLM 1.46 s 4.46 MBytes
FLURRY(64, 1, 10, f−1, I1) Walk 115.44 s 14.74 MBytes
FLURRY(64, 1, 10, f−1, I1) FGLM 60.61 s 12.39 MBytes
FLURRY(64, 1, 12, f−1, I1) Walk 4194.28 s 99.97 MBytes
FLURRY(64, 1, 12, f−1, I1) FGLM 2064 s 142.90 MBytes
FLURRY(32, 2, 4, f−1, D2) Walk 216.53 s 25.58 MBytes
FLURRY(32, 2, 4, f−1, D2) FGLM 65.78 s 41.62 MBytes
FLURRY(16, 4, 2, f−1, D4) Walk 264 s 37.13 MBytes
FLURRY(16, 4, 2, f−1, D4) FGLM 26.119 s 18.56 MBytes
CURRY(32, 2, 3, f−1, D2) Walk 1750.87 sec 138.77 MBytes
CURRY(32, 2, 3, f−1, D2) FGLM 3676.26 sec 107.54 MBytes

4.3.2 Gröbner Bases without Polynomial Reductions

In certain situations one can determine whether a set of polynomials forms
a Gröbner basis without computing normal forms. This is an interesting ob-
servation, as it allows to obtain a Gröbner basis for the polynomial systems

4.3. GRÖBNER BASIS ATTACKS WITH MINIMAL DATA COMPLEXITY 77

of some instances of FLURRY and CURRY instantaneously. In the following
let be G ⊂ R be a finite set of polynomials with 0 6= G.

The first Buchberger criterion (1.3.3) together with the following theo-
rem given in [34] allows us to decide whether a sequence of polynomials is
a Gröbner basis. This is done by simply looking at their head terms:

Theorem 4.3.1. The set G is a Gröbner basis iff spol(f, g)→G 0 for all f, g ∈
G with f 6= g.

The following lemma results:

Lemma 4.3.2. Let G be a set of polynomials and H = {HT (f) : f ∈ G}. If
all elements in H are pairwise prime, then G is a Gröbner basis.

When using polynomial S-boxes, this enables us to compute a degree-
reverse lexicographic Gröbner bases of the key-recovery ideals of FLURRY

and CURRY without performing polynomial reductions; the head terms of
all polynomials of I are univariate. For each polynomial of round e, either
a power of a state variable of the preceeding round or a power of a key
variable of the current round occur as head term. Some head terms however
occur more than once.

By using an appropriate variable order we can force the set of head terms
of each round to be disjunct from the set of head terms of all other rounds:

• CURRY

For better legibility, we identify x(e)
i,j with xet+im+j and k(e)

i,j with ket+im+j .
We then fix the following variable order:

x0 <. . .< xt−1︸ ︷︷ ︸
plaintext variables

< xtr <. . .< xt(r+1)−1︸ ︷︷ ︸
ciphertext variables

< k0 <. . .< kt(r+1)−1︸ ︷︷ ︸
key variables

< xt <. . .< xtr−1︸ ︷︷ ︸
internal state

variables

• FLURRY

Again we decrease the number of indexes: we identify x(e)
i with xet+i

and k(e)
i with ket+i. We then fix the following variable order:

x0 < . . . < xt−1︸ ︷︷ ︸
plaintext variables

< xtr < . . . < x(t+1)r−1︸ ︷︷ ︸
ciphertext variables

< xt(r−1)+m < . . . < xtr−1︸ ︷︷ ︸
state variables of the right

half of the second last round

<

k0 < . . . < km−1︸ ︷︷ ︸
key variables of

the first round

< km(r−1) < . . . < kmr−1︸ ︷︷ ︸
key variables of round r

<

km < . . . < km(r−1)−1 < kmr < . . . < km(r+2)−1︸ ︷︷ ︸
remaining key variables

< xt < . . . < xt(r−1)+m−1︸ ︷︷ ︸
remaining state variables

78 CHAPTER 4. ALGEBRAIC APPROACHES TO CRYPTANALYSIS

To make the following linear transformation easier to describe we use a
vectorial representation for FLURRY and a matrix representation for CURRY.
The entries in the vector and matrix of each round are the left-hand side
polynomials of the nonlinear cipher equations.

We can multiply the vectors respectively matrices of all rounds by D−1

to obtain pairwise prime head terms within each and across rounds. For
CURRY this is sufficient. For FLURRY we also need to adjust the key schedule
equations. The nonlinear polynomials of the first and the last round have
powers of key variables as head terms. These key variables are of the first
and the last round respectively. For the first round this poses no problem.
However for the last round the key schedule polynomials that produce the
last round key have the same head terms. Thus we rewrite the key schedule
equations. We express all round keys except for the last round key as a
linear combination of the first two round keys. Then we write the second
round key as a linear combination of the first and the last round key. This
results in all head terms being pairwise prime. In order for this to work for
FLURRY, the order of the matrix used in the key schedule needs to be greater
than the number of rounds.

We have shown how to make the head terms of all polynomials pairwise
prime. Hence by Theorem 4.3.1, we have obtained a Gröbner basis. This
strategy however does not work FLURRY and CURRY instances with inversion
S-Boxes, as the head terms in these cases are never univariate.

By using the result on the complexity of FGLM, Theorem 3.1.3, we are in
a position to give theoretical upper bounds on the time complexity required
to break FLURRY and CURRY instances with polynomial S-Boxes.

We conjecture the constant factor in Theorem 3.1.3 to be approximately
one cipher operation. For the space complexity of the algorithm, no bound
is given in the original FGLM paper. We note that the dominant memory
requirement of the FGLM algorithm is a d × kd matrix over F . Thus the
memory usage of the algorithm is upper bounded by d(kd2n)/8e+o(1) bytes.

This allows us to estimate the maximum resistance of FLURRY and CURRY

ciphers with polynomial S-Boxes against Gröbner basis attacks (see Table
4.2). Note that for the CURRY cipher we need to use a bijective S-Box in the
round function; the lowest degree S-Box function that is bijective is f7.

4.3. GRÖBNER BASIS ATTACKS WITH MINIMAL DATA COMPLEXITY 79

Table 4.2: Upper bounds on the complexity of breaking 128-bit FLURRY and
CURRY ciphers with FGLM

cipher n dim(R/I) # of ops memory (bytes)
FLURRY(32, 2, 4, f3, D2) 8 38 ≈ 212.68 O(241.0) 230.4

FLURRY(32, 2, 4, f5, D2) 8 58 ≈ 218.58 O(258.7) 242.2

FLURRY(32, 2, 4, f7, D2) 8 78 ≈ 222.46 O(270.4) 249.9

FLURRY(32, 2, 6, f3, D2) 12 312 ≈ 219.02 O(260.6) 243.2

FLURRY(32, 2, 6, f5, D2) 12 512 ≈ 227.86 O(287.2) 261.3

FLURRY(32, 2, 6, f7, D2) 12 712 ≈ 233.69 O(2104.7) 273.0

FLURRY(32, 2, 8, f3, D2) 16 316 ≈ 225.36 O(280.0) 256.7

FLURRY(32, 2, 8, f5, D2) 16 516 ≈ 237.15 O(2115.5) 280.3

FLURRY(32, 2, 8, f7, D2) 16 716 ≈ 244.92 O(2138.8) 295.8

FLURRY(16, 4, 4, f3, D2) 16 316 ≈ 225.36 O(280.0) 255.7

FLURRY(16, 4, 4, f5, D2) 16 516 ≈ 237.15 O(2115.5) 279.3

FLURRY(16, 4, 4, f7, D2) 16 716 ≈ 244.92 O(2138.8) 294.8

CURRY(32, 2, 3, f7, D2) 12 712 ≈ 233.69 O(2104.6) 273.0

Example 4.3.1. The following sequence of polynomials G for the polyno-
mial representation of FLURRY (32, 2, 4, f3, D2) together with polynomials
for the plaintext and the ciphertext is a degree-reverse lexicographic Gröb-
ner basis with the following variable ordering:
x0 < x1 < x2 < x3 < x16 < x17 < x18 < x19 < x14 < x15 < k0 < k1 < k6 < k7 <

k2 < k3 < k4 < k5 < k8 < k9 < k10 < k11 < x4 < x5 < x6 < x7 < x8 < x9 < x10 <

x11 < x12 < x13

80 CHAPTER 4. ALGEBRAIC APPROACHES TO CRYPTANALYSIS

G = {
plaintext:

x0 + θ31 + θ29 + θ27 + θ24 + θ22 + θ21 + θ19 + θ13 + θ11 + θ8 + θ7 + θ6 + θ4 + 1
x1 + θ31 + θ30 + θ29 + θ22 + θ21 + θ15 + θ14 + θ11 + θ10 + θ7 + θ6 + θ5 + θ3 + θ
x2 + θ26 + θ25 + θ24 + θ21 + θ19 + θ18 + θ16 + θ14 + θ8 + θ7 + θ6 + θ4 + θ + 1
x3 + θ27 + θ26 + θ24 + θ21 + θ17 + θ15 + θ13 + θ11 + θ9 + θ6 + θ4 + θ

ciphertext:

x16 + θ31 + θ29 + θ21 + θ19 + θ18 + θ16 + θ15 + θ14 + θ12 + θ4 + 1
x17 + θ24 + θ21 + θ20 + θ18 + θ16 + θ13 + θ10 + θ9 + θ8 + θ6 + θ5 + θ3 + θ + 1
x18 + θ29 + θ25 + θ21 + θ20 + θ19 + θ13 + θ10 + θ9 + θ8 + θ7 + θ6 + θ5 + θ3

x19 + θ29 + θ27 + θ26 + θ20 + θ13 + θ10 + θ8 + θ5 + θ2

round 1:

x4 + x2

x5 + x3

k3
0 + k2

0x2 + k0x
2
2 + x3

2 + C1x7 + C1x6 + C1x1 + C1x0

k3
1 + k2

1x3 + k1x
2
3 + x3

3 + C2x7 + C1x6 + C2x1 + C1x0

round 2:

x8 + x6

x9 + x7

x3
6 + x2

6k2 + x6k
2
2 + k3

2 + C1x11 + C1x10 + C1x5 + C1x4

x3
7 + x2

7k3 + x7k
2
3 + k3

3 + C2x11 + C1x10 + C2x5 + C1x4

round 3:

x12 + x10

x13 + x11

x3
10 + x2

10k4 + x10k
2
4 + k3

4 + C1x9 + C1x8 + C1k9 + C1k8 + C1x15 + C1x14

x3
11 + x2

11k5 + x11k
2
5 + k3

5 + C2x9 + C1x8 + C2k9 + C1k8 + C2x15 + C1x14

round 4:

x14 + x16

x15 + x17

k3
6 + k2

6x14 + k6x
2
14 + x3

14 + C1x13 + C1x12 + C1k11 + C1k10 + C1x19 + C1x18

k3
7 + k2

7x15 + k7x
2
15 + x3

15 + C2x13 + C1x12 + C2k11 + C1k10 + C2x19 + C1x18

key expansion:

k11 + θ2k7 + (θ2 + θ + 1)k1 + θk0 + θ4 + θ2

k10 + θ2k6 + θk1 + k0 + θ3 + θ
k9 + (θ2 + θ)k7 + (θ + 1)k6 + θ2k1 + (θ + 1)k0 + θ6 + θ5 + θ3 + 1
k8 + (θ + 1)k7 + (θ + 1)k6 + (θ + 1)k1 + k0 + θ5 + θ3

k5 + (θ2 + θ + 1)k7 + θk6 + θ2k1 + (θ + 1)k0 + θ6 + θ4 + θ3 + θ
k4 + θk7 + k6 + (θ + 1)k1 + k0 + θ5 + θ4 + θ3 + 1
k3 + θ2k7 + (θ + 1)k6 + (θ2 + θ + 1)k1 + θk0 + θ6 + θ5 + θ4 + θ
k2 + (θ + 1)k7 + k6 + θk1 + k0 + θ5 + θ2 + θ + 1

}

4.4. A GRÖBNER BASIS FOR AES-128 81

with C1 = (θ + 1)−1 and C2 = 1 + (θ + 1)−1

4.4 A Gröbner Basis for AES-128

In this section we will describe how to obtain a Gröbner basis for AES-128.
These results have been published in ”Selected and Revised Papers, Fast
Software Encryption 2006”.

In the following we restrict ourselves to AES-128, i.e. Rijndael with a
block and key size of 128 bits. We will deviate from the standard represen-
tation by using a column vector instead of a matrix for the internal state and
the round keys. The elements in the column vector are identified with the
elements of the matrix in a column-wise fashion by the following map:

ϕ :F 4×4→F 16,

 s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

 7→(s0,0, s1,0, . . . , s0,1, s1,1, . . .)
T

(4.1)
The 16 × 16 matrix P is defined to be the permutation matrix that ex-

presses the exchange of elements in the column vector that is equivalent to
transposing the state matrix.

The above notation allows us to combine the diffusion performed by the
MixColumns and ShiftRows operations into a single matrix multiplication.

Let xi,j denote the variable referring to the ith component of the state
vector after the jth round execution. By this definition the variables xi,0
are called plaintext variables, correspondingly xi,10 are called ciphertext vari-
ables. All other variables xi,j are called intermediate state variables; variables
ki,j are called key variables. We will also refer to ki,0 as cipher key variables.

The field F is the finite field GF (28) as defined for Rijndael. The poly-
nomial ring R is defined as

R := F [xi,j , ki,j : {0 ≤ i ≤ 15, 0 ≤ j ≤ 10}]

4.4.1 The S-Box

The S-Box used in Rijndael can be interpolated as a sparse polynomial over
F :

σ : F → F, x 7→ 05x254 + 09x253 + F9x251 + 25x247 + F4x239+
B5x223 + B9x191 + 8Fx127 + 63

(4.2)
whilst the interpolation polynomial of the inverse S-Box

82 CHAPTER 4. ALGEBRAIC APPROACHES TO CRYPTANALYSIS

σ−1 : F → F, x 7→
254∑
i=0

cix
i (4.3)

is dense.

4.4.2 The Linear Transformation

The linear transformation of AES consists of two operations, ShiftRows and
MixColumns. We can perform the linear transform by multiplying the state
column vector with a 16 × 16-matrix D from the left. In the following, we
calculate D; however at the start of each round we apply the transposition
matrix P since it makes expressing the operations as matrices easier. At the
end we multiply with the matrix P to undo the initial transposition.

A matrix that shifts the elements of a 1 × 4 row vector cyclically by an
offset t is of the following form:

DSRt =
(
∆i,(j−t) mod 4

)
∈ F 4×4 (4.4)

where ∆i,j is the Kronecker delta. The ShiftRows operation is equivalent
to multiplying by the matrix DSR:

DSR =

DSR0 0 0 0

0 DSR1 0 0
0 0 DSR2 0
0 0 0 DSR3

 ∈ F 16×16 (4.5)

The MixColumns operation is applied to each row of the internal state.
We use the matrix DMC to transform the column vector equivalently:

DMC =

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⊗ I4 ∈ F 16×16 (4.6)

where ⊗ denotes the tensor product. Concatenation of the two opera-
tions in the diffusion layer is achieved by multiplying the above matrices,
yielding the matrix D:

D = P ·DMC ·DSR · P (4.7)

The diffusion layer of the last round is missing the MixColumns trans-
formation; it will be described by the matrix D̃:

D̃ = P ·DSR · P (4.8)

4.4. A GRÖBNER BASIS FOR AES-128 83

This enables us to obtain the following vectorial representation of a sys-
tem of 16 polynomial equations that holds for rounds 1 ≤ j ≤ 9 of the
cipher: σ(x0,(j−1) + k0,(j−1))

...
σ(x15,(j−1) + k15,(j−1))

+D−1

 x0,j
...

x15,j

 = 0 (4.9)

For the last round we need to take the simplified diffusion layer and the
final key addition into account:

 σ (x0,9 + k0,9)
...

σ (x15,9 + k15,9)

+ D̃−1

 x0,10 + k0,10
...

x15,10 + k15,10

 = 0 (4.10)

Choosing any degree lexicographical term order, either a term x254
i,j or a

term k254
i,j occurs as head term of each polynomial. We take note that none of

the head terms is a power of a plaintext nor of a ciphertext variable. More-
over all of the head terms are pairwise prime. The variable order chosen
will influence whether the head term is a power of a key variable or of an
intermediate state variable.

4.4.3 The Key Schedule

In order to obtain a Gröbner basis of both the cipher and the key scheduling
polynomials, we need to set up the key scheduling in a slightly different way.
Usually, the key scheduling expresses the elements of the round subkey of
round 1 ≤ j ≤ 10 as a vector of polynomials in the key variables of the
previous round as follows:

k0,j

k1,j

k2,j

k3,j

k4,j
...

k15,j

=

k0,j−1

k1,j−1

k2,j−1

k3,j−1

k4,j−1
...

k15,j−1

+

σ(k15,j−1)
σ(k12,j−1)
σ(k13,j−1)
σ(k14,j−1)

k0,j
...

k11,j

+

γj−1

0
0
0
0
...
0

(4.11)

where the γ0, . . . , γ9 are the round constants. To make all head terms
pairwise prime (see also Section 4.4.4 on the term order chosen), we have
to proceed in reverse order:

84 CHAPTER 4. ALGEBRAIC APPROACHES TO CRYPTANALYSIS

σ−1(k0,j + k0,j−1 + γj−1)
σ−1(k1,j + k1,j−1)
σ−1(k2,j + k2,j−1)
σ−1(k3,j + k3,j−1)
k4,j + k4,j−1

...
k15,j + k15,j−1

+

k15,j−1

k12,j−1

k13,j−1

k14,j−1

k0,j
...

k11,j

= 0 (4.12)

4.4.4 Choosing a Suitable Variable Order

The plaintext and ciphertext polynomials simply are of the form

xi,0 + pi pi ∈ F, 0 ≤ i ≤ 15 (4.13)

respectively
xi,0 + ci ci ∈ F, 0 ≤ i ≤ 15. (4.14)

Let A be the union of the left-hand side of equations (4.9), (4.10) and
(4.12) for all rounds 1 ≤ j ≤ 10 as well as the plaintext and ciphertext poly-
nomials. Ordering the variables as follows makes all head terms pairwise
prime:

1. plaintext variables: x0,0 < . . . < x15,0

2. ciphertext variables: x0,10 < . . . < x15,10

3. key variables of all rounds in natural order: k0,0 < k1,0 < . . . < k15,10

4. intermediate state variables in their natural order

The degree lexicographical term order with the above variable order
will be in the following be referred to as <A. By Theorem 4.3.2, the set
of polynomials A is a Gröbner basis relative to this term order! Moreover,
checking Lemma 1.3.2 we verify that this ideal is zero-dimensional.

4.4.5 Impact Analysis

In the previous section we have shown how to obtain a zero-dimensional
Gröbner basis A for AES-128. In this section we explore the cryptanalytic
impact of this finding. To this end, we investigate the complexity of a Gröb-
ner basis conversion algorithm, find an invariant under the elimination of
variables and explain why the naïve way of applying the ideal membership
test does not work for guessing parts of the round key.

4.4. A GRÖBNER BASIS FOR AES-128 85

Complexity of Gröbner Basis Conversions

An obvious question is whether the Gröbner basis we have computed in the
previous section can be efficiently converted to a different, more suitable
order, i.e. a lexicographical order or an elimination order [6].

Two algorithms and variations of them are known for performing Gröb-
ner basis conversions, the FGLM algorithm and the Gröbner Walk [26].
Since we have established that A is zero-dimensional, we are in a position
to use FGLM and give an estimate for its time complexity below.

Since the head terms of the polynomials in the Gröbner basis are pair-
wise prime and univariate, Corollary 3.1.2 together with Theorem 3.1.3 are
sufficient to give a bound on the complexity of the Gröbner basis conver-
sion using FGLM. We conclude that the vector space dimension of the ideal
generated by the Gröbner basis A is far too big for the FGLM algorithm be
useful for cryptanalytic purposes in this case:

dim(R/A) = 254200 ≈ 21598 (4.15)

For the Gröbner Walk, the running time strongly depends on the source
and the target term order. It is an open problem to give bounds on the time
and space complexity for this algorithm. The only bounds known are local
bounds, namely for adjacent term orders, due to Kalkbrener [66].

Elimination of Variables

In this section we establish that the dimension of the vector space of the
ideal remains invariant when eliminating certain variables. We first prove
the following more general statement:

Proposition 4.4.1. Let I ′ be a zero-dimensional ideal of R′ := F [x1, . . . , xn],
I an ideal of R := R′[xn+1] and I ′ = I ∩ R′. Then dimR/I = dimR′/I ′ iff
there exists a polynomial g ∈ R′ such that xn+1 + g ∈ I.

Proof. W.l.o.g. we fix a lexicographical term ordering such that xn+1 is the
greatest variable. Let RT(I) and RT(I ′) be defined as follows:

RT(I) = {t ∈ T (R) : s - t for all s ∈ HT(I)}
RT(I ′) =

{
t ∈ T (R′) : s - t for all s ∈ HT(I ′)

}
⊂ RT(I)

By Lemma 3.1.1, dimK(R/I) = #RT(I) holds. Thus it is sufficient to
prove that #RT(I) = #RT(I ′). Since xn+1 - t for t ∈ T (R′), the equality
RT(I) = RT(I ′) holds iff xn+1 ∈ HT(I), i.e. exists a g ∈ R′ for which
xn+1 + g ∈ I.

Corollary 4.4.2. For the set of polynomials A the dimension dim(R/I) is
invariant under the elimination of all variables except the round key variables
ki,0 with 0 ≤ i ≤ 15 and ki,j with 0 ≤ i ≤ 3, 1 ≤ j ≤ 9.

86 CHAPTER 4. ALGEBRAIC APPROACHES TO CRYPTANALYSIS

Proof. By induction using Proposition 4.4.1.

So even eliminating a significant amount of variables – resulting in a
system only in the round key variables – does not reduce the complexity of
converting the Gröbner basis to a term order suitable for key recovery.

Taking the Field Equations into Account

The main problem that we have is that the Gröbner basis basis does not
capture that we are only interested in the solutions over the ground field
GF (28). It contains so-called “parasitic solutions”, meaning solutions that
do not help cryptanalytically because they are only contained in the closure
of the ground field but not in the ground field itself.

A potential way to deal with this issue is to try to adjoin the set of field
polynomials to the Gröbner basis. The set of roots of each of these poly-
nomials is the set of all elements of the field F . By adjoining the set of all
field polynomials F to the set of polynomials A, we eliminate all points of
the variety that only exist in the closure but not in the ground field. The
resulting set does not form a Gröbner basis, however.

What we have to do is to compute the intersection of two varieties; this
is usually achieved by computing the Gröbner basis of the sum of the corre-
sponding ideals. We have a set of polynomials A, describing AES which is a
Gröbner basis relative to the order <A, and a second set of polynomials F ,
which also forms a Gröbner basis relative to the same order. It is however
unclear how to exploit the Gröbner basis property of the input.

Testing Keys

Gröbner bases were invented to solve the ideal membership problem. So
why are we not able to simply test whether a linear polynomial of the form

ki + C, C ∈ F (4.16)

— with C being a guess for a key variable — lies in the ideal? After all,
this would allow us to determine the key piecementally by guessing each
byte.

A serious problem presents itself here. The polynomial system has solu-
tions over the closure of the ground field, which means that we have to test
for a polynomial:

g = p ·
∏

(ki + Cj)tj , tj ∈ N0, Cj ∈ F

instead of the above polynomial. The Cj denote candidate values for the
key variable and p is a product of irreducible non-linear polynomials. The
dimension of the ideal again plays an important role here: it is an upper

4.5. SECRET S-BOXES AND ALGEBRAIC ATTACKS 87

bound on the number of solutions of the corresponding polynomial system
in the closure of the field. Hence the degree of g is expected to be very large,
which prohibits this approach from working in practice.

Summary

As far as the author is aware at the time of writing this thesis, the existence
of the above Gröbner basis has no implications for the security of the AES.
We conjecture that methods similar to the one presented in this paper can be
used to produce total-degree Gröbner bases for many other iterated block
ciphers – however we like to point out that because of the high algebraic
structure of Rijndael, it makes for an excellent example.

4.5 Secret S-Boxes and Algebraic Attacks

Cryptomeria, the block cipher presented in Section 2.3.3 allows for a novel
algebraic attack. Its 8 × 8 S-Box – which is application-specific – is kept
secret. In this section we show a combination of differential and algebraic
methods which recovers the values of this S-Box in a chosen-text, chosen-
key attack for reduced round versions of this cipher.

During an execution of the Cryptomeria cipher as a function with a vari-
able plaintext and key, up to 20 different S-Box entries can be active, one for
each round in both the round key generation and in the actual encryption
process.

4.5.1 Constructing a Polynomial System

From a high-level perspective, our attack exploits simple differential char-
acteristics and one chosen key which triggers only a low number of S-Boxes
in the key schedule. This is done in order to reduce the number of active
S-boxes over a small number of chosen plaintext/ciphertext pairs; our goal
is to maximize the number of S-Boxes shared for these pairs. After having
queried an encryption oracle for the chosen number of plaintexts we can
set up a quadratic system of equations. The variables in this system model
both the outputs of the S-Boxes as well as the carry bits occurring during
the modular additions in the cipher and the key schedule. By obtaining a
solution for the bits representing the outputs of the S-Boxes we are able
to determine a subset of the S-Box entries. A repeated application of this
method allows us to recover the complete S-Box.

Active S-Box Entries in the Key Schedule

Ad-hoc methods allowed for a minimization of the number of active S-Boxes
down to four in the key schedule – this was more or less based on luck and

88 CHAPTER 4. ALGEBRAIC APPROACHES TO CRYPTANALYSIS

intution though. Whether this number was the minimum was not clear
initially.

In the end we used a simple combinatorial method to systematically
reduce the number of S-Boxes in the key schedule. Let r be the number of
rounds in the cipher and k the number of distinct S-Boxes we think we can
get by with as a minimum number in the key schedule. We enumerate all
possible assignments of k S-Boxes to r positions and check whether there
are keys fulfilling the restrictions imposed by the key schedule by solving a
system of linear equations. This system of equations is small, for the full
Cryptomeria cipher with 10 rounds we needed to check the solvability of
linear systems consisting of 56 equations in 48 variables. The number of
these systems we needed to solve was large: we had to check > 106 of these
systems.

We found that four S-Boxes indeed is the minimum number of distinct
S-Boxes that are active in the key schedule for any given key. A total of 1024
keys trigger only four S-Boxes, one possible key is 0x26042284118C08 1

Minimizing the Number of Active S-Boxes in the Cipher

In order to set up a polynomial system of equations that is solvable it is a
necessity to keep both the number of unknowns and the degree of the equa-
tions low. At the same time there is an information theoretic minimum of
variables we need to model in order to obtain a unique solution. In general
m executions of r rounds of the cipher will potentially trigger (m+1)r differ-
ent entries of the S-Box, resulting in 8(m+1)r variables. However, since the
output of the cipher is only 64 bits wide, we see that for the full 10 rounds
we cannot hope to perform the attack with a single plaintext/ciphertext pair.

Differentials on the plaintext allow us to select three plaintexts which
will trigger the same S-Boxes in the first 4 rounds. Moreover, by imposing
a filtering condition on the ciphertext, we can then ensure that the same
S-Box is triggered in the last round as well. Using these techniques we cut
down the total number of potentially distinct S-Boxes for these three plain-
text/ciphertext pairs to 24. Given the width of the S-Box, in this scenario
sufficient information is contained in the plaintext/ciphertext pairs to deter-
mine 24 S-Box entries.

The following difference patterns trigger the same S-Boxes in the first
4 rounds with probability 0.5. If the Feistel step were an XOR instead of a
modular addition they would hold with probability 1, in our case the differ-
ence can get affected by a carry bit of the modular addition.

1The author of this thesis later realized that this statement is wrong: the minimum num-
ber of distinct S-Boxes is three. This was overlooked due to a silly mistake in one of the
author’s programs.

4.5. SECRET S-BOXES AND ALGEBRAIC ATTACKS 89

∆1 = (0x0000000000000080)
∆2 = (0x0000000080000000)
∆3 = (0x0000000080000080)

The filter used in the last round works as follows: We simply undo the
last Feistel step, apply L−1 and then check whether the same S-Box was
applied by checking whether the S-Box output x′′0 is the same. This means
that we need to find a 3-collision on the S-Boxes of the last round for the
plaintext/ciphertext pairs considered.

The Polynomial System

In the following we will demonstrate how to set up a quadratic system of
polynomial equations for the S-Box recovery problem. These polynomial
systems are interesting in their own right because they only model a series
of XORs, modular additions and bit shifts of byte and 32-bit word sized
quantities. Systems of equations that can be constructed for the stream
cipher SALSA-20 [9] or the block cipher TEA [113] are constructed from
the same set of operations.

Equation Systems for Modular Addition

The following gives equations for a full modular addition of two k-bit val-
ues (x1, . . . , xk) and (y1, . . . , yk). The result is (z1, . . . , zk). The variables
c1, . . . , ck−1 are intermediate variables used to store the carry bits; these are
introduced to make the system a quadratic one. The equation system for the
modular addition of two k-bit numbers modulo 2k looks as follows:

z1 = x1 + y1

c1 = x1y1

z2 = x2 + y2 + c1

c2 = x2y2 + c2x2 + c2y2

...
...

zk = xk + yk + ck1

Putting it together

As previously stated, each S-box will be modelled by 8 variables representing
its output. Figure 4.1 shows which S-Boxes are used in which rounds and
which S-Boxes are used in the key schedule and which in the cipher. Each
modular addition incurs the cost of 31 carry bits and after each round a new

90 CHAPTER 4. ALGEBRAIC APPROACHES TO CRYPTANALYSIS

Table 4.3: Equation systems for reduced round versions of Cryptomeria

rounds S-Boxes p/c pairs variables equations
4 5 2 916 1036
5 8 2 1159 1255
6 10 2 1394 1482
7 13 2 1637 1701
8 15 2 1872 1912
9 21 3 3009 3129
10 24 3 3322 3442

set of 32 state variables is introduced. Thus, if a total of s S-boxes is used
in r rounds for l plaintext/ciphertext pairs, we need a total of 8s + 32lr +
62lr + 31r variables.

The following observation helps us construct an overdetermined system:
the S-boxes are only modelled by their output, however we know that for
the first 4 rounds and for the last round the input must match as well for the
pairs we have chosen. We can express this by equations of the form pi+pj =
0 where pi denotes the linear combination of variables that becomes the S-
Box input for plaintext A; likewise pj for the same S-Box in plaintext B.

For the full 10 round Cryptomeria, we obtain a total of 3442 equations
in 3322 variables. Of these, 192 variables are S-Box variables.

4.5.2 The Attack: Solving the Polynomial System

Whereas the difficulty of solving previous systems arose from the equations
describing their S-Boxes, the systems we try to solve in the Cryptomeria
case are hard to solve because of the long chains of non-linear carry bit
calculations contained in them. In the following we present a number of
methods that can be used for dealing with this specific case.

Tricks used for Solving the Polynomial System

Several methods can be used to make a Gröbner basis computation and thus
a solution of the polynomial system possible.

• Carry chains can be broken by guessing variables.

• Internally, S-boxes outputs can be guessed to be identical (chance for
that happening is approx.

√
2−8)

4.5. SECRET S-BOXES AND ALGEBRAIC ATTACKS 91

Figure 4.1: Active S-Boxes in Cryptomeria (10 rounds and three p/c pairs)

1

2

3

4

5

6

7

8

9

10

21

21

21

21

22

23

24

22

22

23

plaintext #1 plaintext #2 plaintext #3 key schedule

+ F

Ki

+ F

Ki

+ F

Ki

+ F

Ki

+ F

Ki

+ F

Ki

+ F

Ki

+ F

Ki

+ F

Ki

1

2

3

4

11

12

13

14

15

10

+ F

Ki

+ F

Ki

+ F

Ki

+ F

Ki

+ F

Ki

+ F

Ki

+ F

Ki

+ F

Ki

+ F

Ki

1

2

3

4

16

17

18

19

20

10

+ F

Ki

+ F

Ki

+ F

Ki

+ F

Ki

+ F

Ki

+ F

Ki

+ F

Ki

+ F

Ki

+ F

Ki

92 CHAPTER 4. ALGEBRAIC APPROACHES TO CRYPTANALYSIS

• By knowing certain bits – i.e. the lowermost 4 bits in the modular
addition of the key schedule – are always or almost always zero, the
number of variables can be reduced.

• Truncated Gröbner bases can be used to avoid terms occuring in the
computation above a pre-specified degree bound. Caveat: this can
produce incorrect results if not applied carefully!

Experimental Results

We have written code for the open-source computer algebra system SAGE
[105] to generate the systems of equations described. We then attempted
to solve these systems using both the F4 [43] implementation contained in
MAGMA [92] as well as the PolyBoRi framework [18] shipped with recent
versions of SAGE.

We have succeeded in breaking up to four rounds using MAGMA. Two
plaintext/ciphertext pairs were needed for this attack, and a total of 5 S-
Boxes were used in the encryption and the key schedule for this particular
case. On an Opteron 2218 clocked at 2.6GHz the solution of this system – in
916 variables – took 42 seconds and 134MB of memory using Magma 2.13-
11. As the key remains fixed, we recover four S-Box entries per iteration
in this attack. With 42 seconds per entry, this attack is entirely practical.
Scaling this attack up however, a we hit a hard limit. Even for five rounds
were not able to attack the problem with Magma anymore, on a machine
with 8GB of RAM. At this point we switched to our own implementation of
F4, as it allowed us more freedom in experimentation than Magma.

We were then able to solve polynomial systems for 8 rounds – in 1872
variables – on a machine equipped with 64 Gigabytes of memory using cus-
tom software that implements a specialized variant of the improved F4 al-
gorithm. This also required two plaintext/ciphertext pairs; a total of 15
S-Boxes need to be determined. In order to succeed at this, the tricks – ex-
cept for the guessing of colliding S-Boxes – listed in the previous subsection
were employed. We needed to guess a total of 6 carry variables to zero to
obtain a polynomial system that could be solved. A total of 20GB of memory
and 15 CPU hours on a Power5 p565+ were consumed.

A practical attack against the full cipher has not yet been achieved. This
attack would need three plaintext/ciphertext pairs in order to build a system
that allows for a unique solution as there are a total of 24 S-Boxes to be
recovered in this case.

4.5.3 Results Achieved against Cryptomeria

We have demonstrated a practical attack against 8 out of 10 rounds of Cryp-
tomeria which recovers the content of the S-Box. For this we have shown

4.5. SECRET S-BOXES AND ALGEBRAIC ATTACKS 93

how differential techniques can be successfully combined with algebraic
cryptanalysis. Our work should be seen as a proof that algebraic crypt-
analysis against deployed block ciphers can indeed be performed and. It
also should serve as a warning to designers that not adhering to Kerkhoffs’
principle only increases the number of possible attack vectors against a ci-
pher. Especially when it has to be relied upon the fact that certain parts of
the design stay secret.

94 CHAPTER 4. ALGEBRAIC APPROACHES TO CRYPTANALYSIS

Chapter 5

Distributed Memory
Computation of RREFs

The progress of practical algebraic cryptanalysis currently is not limited by
the amount of CPU power available to an attacker but rather by the amount
of memory. Faugère-Lazard style Gröbner basis algorithms are extremely
memory hungry, as the size of the matrix they triangulate grows exponen-
tially in the degree of the polynomials. In this chapter we present a way
to handle this problem: We propose to use distributed memory systems for
Gröbner basis computations – allowing us to scale the problem better.

We show how to adapt the Gauss-Jordan algorithm to efficiently com-
pute a Row-Reduced Echelon Form (RREF) of a matrix over a finite field in
dense representation on a distributed memory system. By efficient we mean
that both the data duplication is kept to a minimum and that the speed-up
over a serial implementation is close to optimal. The algorithm does not
require low latency for inter-node communication.

5.1 Motivation

Algorithms for computing Gröbner bases that follow the Faugère-Lazard
principle [43, 76] of using linear algebra in the reduction step – such as
F4 [43] and F5 [44] – depend on highly efficient linear algebra routines.
The size of the problems we are able to solve with these algorithms cru-
cially depends on the maximum size of matrices for which we are able to
compute a Row Echelon Form (REF). Especially in the field of cryptanalysis
the problems are large in the number of variables and equations. On the
upside, in most cryptanalytically relevant cases the problems are specified
over finite fields. Thus we do not have to worry about potential stability and
convergence problems of our algorithms.

Definition 5.1.1 (REF). Let M ∈ Fn×m be a matrix. We say that M is in

95

96 CHAPTER 5. DISTRIBUTED MEMORY COMPUTATION OF RREFS

row echelon form if all of the following conditions hold:

• All zero rows are at the bottom of the matrix

• The leading entry of each nonzero row after the first occurs to the
right of the leading entry of the previous row.

• The leading entry in any nonzero row is 1.

If a matrix is in REF and additionally, all entries in the column above and
below a leading 1 are zero, the matrix is said to be in RREF.

Several methods can be chosen for computing a REF of a matrix. Itera-
tive methods for solving systems of equations such as Block-Lanczos [28, 62]
or Block-Wiedemann [29] have been proposed in the F4 paper. [43] These
can be employed to compute possible assignments for the vector x in the
equation Ax − b = 0 with A ∈ Fn×m, b, x ∈ Fn for fixed A, b. These solu-
tions can then be used to reconstruct a REF of the matrix. However, this
appproach is not efficient for matrices with large rank deficit. As the so-
lution vectors generated by these algorithms are random elements of the
nullspace, a we effectively have to perform elimination on these vectors to
regenerate a REF.

Two commonly used methods exist for directly computing the REF of
a matrix: The Gaussian Elimination (GE) method and the Gauss-Jordan
Elimination (GJE) method. A regular GE brings a matrix into REF whereas
a GJE produces a RREF. In the case of GE, a RREF is obtained from the
REF by an additional step called back substitution. In the GJE method the
RREF is achieved directly by forcing the column elements above and below
the pivot to zero. This is the reason why this method is referred to as “one-
sweep”. The problem of inverting a matrix is closely related to the task of
obtaining a RREF, however the latter task is more general: we have to be
able to deal with rectangular and singular matrices as well.

For inverting a matrix in parallel, a block matrix version of the Gauss-
Jordan algorithm [107, 96] has been proposed. This allows to split the
task of computing a RREF up into several jobs of inverting, multiplying and
adding matrices that can be performed on a Distributed Memory System
(DMS) Essentially, we want to do the computation in-place with the entries
of the matrix being stored distributed among the nodes. Implementations
of these parallel block-matrix Gauss-Jordan algorithms have already been
analyzed in the literature [85, 95]. Unfortunately however, using the block-
matrix approach does not seem to be easily possible for computing RREFs
since it requires submatrices to be invertible. Henceforth we analyze the
direct approach of a parallel Gauss-Jordan algorithm in our setting. The
advantage of not using a block-matrix algorithm however is that we can
more easily adapt the algorithm to a situation that requires additional con-
straints in the elimination process such as those imposed by the F5 crite-
rion [44]. Parallel GJE has been investigated for Hypercube architectures in

5.2. A MODEL FOR DISTRIBUTED MEMORY COMPUTATIONS 97

[61], showing a parallel efficiency of 90%. This led us to revisit these results
and propose the algorithm presented in this chapter.

5.2 A Model for Distributed Memory Computations

Several models for computation on DMSs exist. One of the earliest pro-
posed models was the Parallel Random Access Machine (PRAM) [51]. This
is a theoretical model of a register machine in which multiple registers can
perform computations at the same time, subsequently storing the results in
memory. Several variants of this model exist which differ in whether con-
current write access to a memory cell by different registers at the same time
is allowed.

We will be using a model that is much more coarse-grained and geared
towards the specific application we have in mind. Just like the PRAM model,
we assume a common clock – synchronous operation of the nodes. We
distinguish between a master node and slave nodes, where the master node
is pushing data towards the slave nodes. The assignment of the master node
is not static. It may change during the computation.

At the beginning of the reduced-row echelon form computation, we will
decide on a fixed number of nodes t of the cluster to run our code. Each of
these nodes may have multiple CPUs with RAM shared between them. The
configuration of the nodes is identical in all characteristics except in terms
of CPUs per node. Node i, with 1 ≤ i ≤ t has Ni CPUs for and the RAM on
each of the nodes is limited to hold at most M elements of the field F .

5.3 A Parallelized version of Gauss-Jordan

Let A = (ai,j) ∈ Fn×m. The central idea of Gauss-Jordan is to subtract an
appropriate multiple of a line k from all other lines such that every element
in column k becomes zero:

ai,j = ai,j − (ai,k · a−1
k,k · ak,j)

We propose to compute a RREF in parallel using this idea with the following
code being executed on the master node:

1. Slice matrix into t submatrices B1, . . . , Bt such that B1|| . . . ||Bt = A.

2. Set master node to i = 1

3. Set r = 0 (used for computing the rank)

4. Set k = 1 and l = 1 (row and column index)

98 CHAPTER 5. DISTRIBUTED MEMORY COMPUTATION OF RREFS

5. Check whether ak,l 6= 0. If so, broadcast row multiplier a−1
k,l to all

nodes
[MULTIPLY(a−1

k,l , k)], increase r by 1 and go to step 8.

6. Find row u with u > k such that au,l 6= 0. If no such row exists,
broadcast [SYNC(l)], increase l by 1 and go to step 5

7. Broadcast request to add row u to row k to all nodes [ADD_ROW(u, k)]
and go to step 5

8. Find multipliers to clear all entries in column above and below ak,l

9. Broadcast column of multipliers b := (b1, . . . , bn) and row index k to
all nodes
[CLEAR_COLUMN(b, k)].

10. Increase k by 1, increase l by 1.

11. If r = m, broadcast request to set all rows below row k to zero
[ZEROIZE(k)] and terminate (rank maximal).

12. If column l does not reside in master’s local memory, increase i and
pass control to next node.

Please note that the requests for computation that the master node broad-
casts to all nodes are not only executed on the slave nodes but also on the
master node itself. The node-local row-data of row j will in the following
be referred to as Rj . Each node performs one of the following operations:

MULTIPLY_ROW(c, k) Rk ← c ·Rk
CLEAR_COLUMN((b1, . . . , bn), k) for all 1 ≤ j ≤ n: Rj ← Rj + bj ·Rk
ADD_ROW(u, k) Rk ← Rk +Ru
ZEROIZE(k) for all k < j ≤ n: Rj = (0, . . . , 0)

The operation SYNC keeps nodes synchronized and assures that each
slave node’s row and column index is identical to the values of the master
node. Otherwise the slave nodes have no reliable information what row is
operated on and when they have to switch over, becoming the master node.

We found that slicing the matrix vertically rather than horizontally has
the benefit of resulting in a much simpler algorithm. Because all of the in-
formation to clear a column are local to the master node, only unidirectional
communication towards the slave nodes is needed.

5.4 Notes on the Performance of the Algorithm

Looking at the above outline of the algorithm, we see that a maximum num-
ber of each of the following operations requests to be broadcast is bounded

5.5. PROPERTIES OF THE ALGORITHM AND IMPLEMENTATION 99

by n: MULTIPLY_ROW, ADD_ROW, CLEAR_COLUMN. The maximum
communication cost incurred therefore is 4n integer values and (n + 1)m
field elements.

In most cases, especially when dealing with very small finite fields such
as GF (2), the performance of the algorithm may not be constrained by the
cost of arithmetic operations but rather by speed between the CPUs of the
node and RAM. Caches between the CPU and RAM can help to improve
performance when data locality can be exploited. This is something to keep
in mind for the data layout in RAM to achieve an efficient implementation
of the algorithm.

We see that the impact of latency of intra-node communication for our
algorithm is almost negligible. Because of the unidirectional communica-
tion, the requests may actually be queued both on the sending and the
receiving side. Latency issues only kick in when a master node yields his
control to another node. This however only happens a total of t times. This
makes the speed-up almost linear in the number of nodes involved in the
computation.

5.5 Properties of the Algorithm and Implementation

The algorithm proposed has an undesirable asymptotic complexity, namely
cubic time complexity in the size of the matrix. However, we are able to
obtain an almost linear speed-up in the number of nodes. Moreover the
algorithm does not need low-latency networks to perform well. This indi-
cates that it may even be suited for running a computation on a network of
physically distributed nodes, such as the internet or a company intranet.

The algorithm proposed has been implemented in ANSI C. This imple-
mentation does not make use of the Message-Passing Interface (MPI); rather
the requests between the nodes are communicated through TCP. A tiny com-
mand line program for broadcasts receives the requests on each node and
passes them on through a pipe. Future plans include to integrate the im-
plementation into the Xylirt package, a piece of software written by the
author that implements the linear-algebra based Gröbner basis algorithms
described in Chapter 3.

It is an open problem to adapt the algorithm to the case of sparse ma-
trices. In this case a strategy for avoiding rows to become dense during the
computation is needed. Most strategies for reducing the fill-in require re-
ordering the rows. In order to decide how to reorder the rows, heuristics
are applied that require a global view on the individual rows. This in turn
is likely to require bi-directional communication between the master and
slave nodes which would destroy one of the most attractive properties of
the algorithm.

100 CHAPTER 5. DISTRIBUTED MEMORY COMPUTATION OF RREFS

5.6 Experimental Results

We have benchmarked our implementation against the implementations in
Magma and in SAGE. For this we have chosen GF (257) as a base field and
have chosen matrix sizes between 1500× 1500 and 6000× 7500. The matrix
dimensions were chosen to be multiples of three since in our experiments
we have restricted the number of nodes too three.

SAGE contains two implementations for computing the row-echelon form
of a matrix. LinBox’s implementation is described in the FFPACK [41] paper.
It makes use of LQUP factorizations [63] and Coppersmith-Winograd matrix
multiplication to achieve a sub-cubic time complexity in the matrix dimen-
sion. The results for this implementation are listed in the column labelled
“Linbox”, the results for the vanilla GJE implementation are listed in the
next column. The columns with the labels PGJE show our own C implemen-
tation running on n = 1 node (without communication) and on a network
with n = 3 nodes.

matrix size Linbox Gauss PGJE (n = 1) PGJE (n = 3)
1500×1500 4.2 s 30.4 s 27.4 s 9.3 s
1500×3000 11.1 s 90.0 s 52.1 s 17.5 s
3000×3000 20.9 s 240.9 s 209.6 s 70.1 s
3000×4500 39.8 s 484.3 s 309.4 s 103.4 s
4500×4500 56.4 s 817.1 s 697.8 s 232.8 s
4500×6000 95.3 s 1310.0 s 923.8 s 308.3 s
6000×6000 141.8 s 1868.8 s 1644.0 s 548.5 s
6000×7500 326.0 s 2903.3 s 2042.5 s 681.7 s

The experiments were performed on a network of Linux PCs with Intel
Celeron CPUs clocked at 2.4GHz. The machines were connected through
Gigabit Ethernet and running kernel version 2.6.x. We see that in practice
the algorithm achieves almost linear speed-up – as claimed.

Chapter 6

Conclusions

This thesis shows several things: First of all, we have demonstrated that
there are indeed block ciphers that resist differential and linear cryptanalysis
as well as brute-force attacks for which Gröbner bases can be used to recover
the key from a plaintext/ciphertext pair. Secondly, we have shown how to
construct a Gröbner basis for AES-128. We have however been unable to
leverage this Gröbner basis into a cryptanalytic attack. For a reduced-round
version of a deployed cipher, Cryptomeria, we have shown how to recon-
struct the contents of it secret S-Box using algebraic and differential meth-
ods. Last but not least we have demonstrated that row-reduced echelon
forms of dense matrices can be efficiently computed on a distributed mem-
ory system by giving a parallelized version of the Gauss-Jordan algorithm
that has almost linear speedup in the number of nodes.

Open research problems Some of the most fundamental problems in the
field of algebraic cryptanalysis are not yet settled. For example, it has not
been established whether the iterated structure of modern block ciphers
gives symmetry in the polynomial equations that is actually exploitable in
cryptanalysis. To answer this question positively, customized algorithms
need to be developed and used instead of using generic algorithms like F4;
in fact customized variants of efficient general purpose Gröbner basis algo-
rithms may be sufficient. Answering this question negatively potentially is
much harder. Thus far we have only seen experimental evidence suggesting
that general purpose algorithms are not able to exploit the structure.

Attacks that work with only a single plaintext/ciphertext pair are the
holy grail in cryptanalysis. In algebraic cryptanalysis only a single plain-
text/ciphertext pairs is used to keep the number of variables as low as pos-
sible. However, Faugère showed that for certain instances of FLURRY using
several pairs of related plaintext/ciphertext pairs indeed allow to attack the
cipher faster by using Gröbner basis methods [42]. It is an open problem to
carry this method over to other block ciphers and improve upon it.

101

102 CHAPTER 6. CONCLUSIONS

Looking at the last-round attacks presented in Chapter 2 we see that all
of these attacks can be reduced to distinguishing the input of the last round
from the input that would have been generated by a random permutation.
Henceforth the question arises whether we can perform this distinguishing
process in an algebraic way. Recent results on the multivariate cryptosystem
HFE show that algebraic distinguishers can be built in practice [58], whether
they can be built for block ciphers is an open problem.

Combining algebraic cryptanalysis with other types of cryptanalytic at-
tacks seems to be a worthwhile research topic. Integral cryptanalysis for
example can be modelled algebraically, it remains to be seen whether this
approach yields cryptanalytic advances.

Guessing variables is a very simple yet effective method to trade off
memory complexity for time complexity in algebraic attacks. More work
needs to be done to systematically determine which variables should best
be guessed. In certain situations it makes sense to guess variables during
the Gröbner basis computation.

From a practical side, more work needs to be done on dealing with the
issue of memory complexity of Gröbner basis algorithms. Using distributed
memory architectures may be the key to success here. The Parallel Gauss
Jordan algorithm presented in the last chapter of this thesis is a step into this
direction. It only deals with densely populated matrices however, whereas
the Macaulay matrices we encounter in practice are only sparsely populated.
It is an open problem to come up with algorithms that allow us to efficiently
compute row-echelon forms of sparsely populated matrices on distributed
memory systems. For the dense case it should be investigated whether and
if so, how blocking methods can be used in the algorithm. This would allow
to obtain an algorithm performing better asymptotically by using fast matrix
multiplication algorithms.

Last but not least: Although I am very much in favour of using tech-
niques with a solid mathematical foundation such as Gröbner bases, other
more heuristic methods should not be easily discarded but be studied in de-
tail. Also, methods using different polynomial representations such as BDDs,
as was recently suggested by Brickenstein and Dreyer [18] and implemented
in their PolyBoRi package clearly seem to be worth investigating.

Bibliography

[1] 4C Entity, LLC. C2 Block Cipher Specification, January 2003.

[2] Frederik Armknecht and Matthias Krause. Algebraic attacks on com-
biners with memory. In Boneh [16], pages 162–175.

[3] Gwénolé Ars, Jean-Charles Faugère, Hideki Imai, Mitsuru Kawazoe,
and Makoto Sugita. Comparison between XL and Gröbner basis al-
gorithms. In Pil Joong Lee, editor, ASIACRYPT 2004, volume 3329 of
Lecture Notes in Computer Science, pages 338–353. Springer, 2004.

[4] Magali Bardet, Jean Charles Faugère, Bruno Salvy, and Bo-Yin Yang.
Asymptotic behaviour of the degreeof regularity of semi-regular poly-
nomial systems. In In MEGA 2005, 8th International Symposium on
Effective Methods in Algebraic Geometry, 2005. 15 pages.

[5] Magali Turrel Bardet. Étude des systèmes algébriques surdéterminés.
Applications aux codes correcteurs et à la cryptographie. PhD thesis,
Université Paris 6, December 2004.

[6] David Bayer and Michael Stillman. On the complexity of computing
syzygies. Journal of Symbolic Computation, 6(2/3):135–147, 1988.

[7] Thomas Becker and Volker Weispfenning. Gröbner Bases – A Compu-
tational Approach to Commutative Algebra. Springer-Verlag, 1991.

[8] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption.
In Alfredo De Santis, editor, EUROCRYPT 1994, volume 950 of Lecture
Notes in Computer Science, pages 92–111. Springer, 1995.

[9] Daniel J. Bernstein. Salsa20. eSTREAM, ECRYPT Stream Cipher
Project, Report 2005/025, 2005. http://www.ecrypt.eu.org/
stream.

[10] Thomas Beth and Cunsheng Ding. On almost perfect nonlinear per-
mutations. In Helleseth [59], pages 65–76.

103

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

104 BIBLIOGRAPHY

[11] Eli Biham. How to make a difference: Early history of differential
cryptanalysis. presentation given at Fast Software Encryption (FSE)
2006 in Graz, Austria on March 16th, 2006.

[12] Eli Biham, editor. Fast Software Encryption, 4th International Work-
shop, FSE ’97, Haifa, Israel, January 20-22, 1997, Proceedings, volume
1267 of Lecture Notes in Computer Science. Springer, 1997.

[13] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryp-
tosystems. In Alfred Menezes and Scott A. Vanstone, editors, CRYPTO
1990, volume 537 of Lecture Notes in Computer Science, pages 2–21.
Springer, 1991.

[14] Alex Biryukov, Jorge Nakahara Jr., Bart Preneel, and Joos Vande-
walle. New weak-key classes of IDEA. In Robert H. Deng, Sihan Qing,
Feng Bao, and Jianying Zhou, editors, ICICS 2002, volume 2513 of
Lecture Notes in Computer Science, pages 315–326. Springer, 2002.

[15] Alex Biryukov and Adi Shamir. Structural cryptanalysis of SASAS. In
Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of Lecture
Notes in Computer Science, pages 394–405. Springer, 2001.

[16] Dan Boneh, editor. Advances in Cryptology - CRYPTO 2003, 23rd An-
nual International Cryptology Conference, Santa Barbara, California,
USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture Notes
in Computer Science. Springer, 2003.

[17] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the im-
portance of checking cryptographic protocols for faults (extended ab-
stract). In Walter Fumy, editor, EUROCRYPT 1997, volume 1233 of
Lecture Notes in Computer Science, pages 37–51. Springer, 1997.

[18] Michael Brickenstein and Alexander Dreyer. PolyBoRi: A framework
for Gröbner basis computations with Boolean polynomials. In Elec-
tronic Proceedings of MEGA 2007, pages 48–65, 2007.

[19] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basisele-
mente des Restklassenringes nach einem nulldimensionalen Polyno-
mideal. PhD thesis, University of Innsbruck, 1965.

[20] Bruno Buchberger. A criterion for detecting unnecessary reductions
in the construction of Groebner bases. In Edward W. Ng, editor, EU-
ROSAM 1979, volume 72 of Lecture Notes in Computer Science, pages
3–21. Springer, 1979.

[21] Johannes Buchmann, Andrei Pyshkin, and Ralf-Philipp Weinmann.
Block ciphers sensitive to Gröbner basis attacks. In David Pointcheval,

BIBLIOGRAPHY 105

editor, CT-RSA 2006, volume 3860 of Lecture Notes in Computer Sci-
ence, pages 313–331. Springer, 2006.

[22] Johannes Buchmann, Andrei Pyshkin, and Ralf-Philipp Weinmann.
A zero-dimensional Gröbner basis for AES-128. In Matthew J. B.
Robshaw, editor, FSE 2006, volume 4047 of Lecture Notes in Computer
Science, pages 78–88. Springer, 2006.

[23] Jung Hee Cheon, Seongtaek Chee, and Choonsik Park. S-boxes with
controllable nonlinearity. In Stern [106], pages 286–294.

[24] Carlos Cid and Gaëtan Leurent. An analysis of the XSL algorithm. In
Bimal K. Roy, editor, ASIACRYPT 2005, volume 3788 of Lecture Notes
in Computer Science, pages 333–352. Springer, 2005.

[25] Carlos Cid, Sean Murphy, and Matt Robshaw. Small scale variants of
the AES. In Henri Gilbert and Helena Handschuh, editors, FSE 2005,
volume 3557 of Lecture Notes in Computer Science, pages 145–162.
Springer, 2005.

[26] Stéphane Collart, Michael Kalkbrener, and Daniel Mall. Convert-
ing bases with the Gröbner walk. Journal of Symbolic Computation,
24(3/4):465–469, 1997.

[27] Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the 3rd Annual ACM Symposium on Theory of Comput-
ing, STOC’71, pages 151–158, New York, 1971. ACM, ACM Press.

[28] Don Coppersmith. Solving linear equations over GF(2): block Lanc-
zos algorithm. Linear Algebra and its Applications, 192:33–60, 1993.

[29] Don Coppersmith. Solving homogeneous linear equations over
GF(2) via block Wiedemann algorithm. Mathematics of Computation,
62(205):333–350, 1994.

[30] Nicolas Courtois. Feistel schemes and bi-linear cryptanalysis. In
Matthew Franklin, editor, CRYPTO 2004, volume 3152 of Lecture
Notes in Computer Science. Springer, 23–40.

[31] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir.
Efficient algorithms for solving overdefined systems of multivariate
polynomial equations. In Bart Preneel, editor, EUROCRYPT 2000,
volume 1807 of Lecture Notes in Computer Science, pages 392–407.
Springer, 2000.

[32] Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of block ciphers
with overdefined systems of equations. In Yuliang Zheng, editor, ASI-
ACRYPT 2002, volume 2501 of Lecture Notes in Computer Science,
pages 267–287. Springer, 2002.

106 BIBLIOGRAPHY

[33] Nicolas T. Courtois, Gregory V. Bard, and David Wagner. Algebraic
and slide attacks on KeeLoq. In Kaisa Nyberg, editor, FSE 2008, Lec-
ture Notes in Computer Science. Springer, 2008. to be published.

[34] David A. Cox, John B. Little, and Don O’Shea. Ideals, Varieties, and
Algorithms. Springer-Verlag, NY, 2nd edition, 1996. 536 pages.

[35] Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005,
24th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Pro-
ceedings, volume 3494 of Lecture Notes in Computer Science. Springer,
2005.

[36] Joan Daemen, René Govaerts, and Joos Vandewalle. Correlation ma-
trices. In Preneel [97], pages 275–285.

[37] Joan Daemen, Lars Knudsen, and Vincent Rijmen. The block cipher
Square. In Biham [12], pages 149–165.

[38] Joan Daemen and Vincent Rijmen. AES proposal: Rijndael. Submis-
sion to NIST for AES call, 1998.

[39] Joan Daemen and Vincent Rijmen. The Design of Rijndael: The Wide
Trail Strategy. Springer-Verlag, 2001.

[40] Hans Dobbertin. One-to-one highly nonlinear power functions on
GF (2n). Applicable Algebra in Engineering, Communication and Com-
puting, 9(2):139–152, 1998.

[41] Jean-Guillaume Dumas, Pascal Giorgi, and Clément Pernet. Ffpack:
finite field linear algebra package. In Jaime Gutierrez, editor, ISSAC
2004, pages 119–126. ACM, 2004.

[42] Jean-Charles Faugere. Gröbner bases. applications in cryptology. in-
vited talk given at Fast Software Encryption (FSE) 2007 in Luxem-
bourg on March 27th, 2007.

[43] Jean-Charles Faugère. A new efficient algorithm for computing Gröb-
ner bases (F4). Journal of Pure and Applied Algebra, 139(1-3):61–88,
June 1999.

[44] Jean-Charles Faugère. A new efficient algorithm for computing Gröb-
ner bases without reduction to zero (F5). In ISSAC, pages 75–83.
ACM, 2002.

[45] Jean-Charles Faugère and Gwénolé Ars. An algebraic cryptanal-
ysis of nonlinear filter generators using Gröbner bases. Rap-
port de recherche de l’INRIA 4739, INRIA, February 2003.
http://www.inria.fr/rrrt/rr-4739.html.

http://www.inria.fr/rrrt/rr-4739.html

BIBLIOGRAPHY 107

[46] Jean-Charles Faugère, P. Gianni, Daniel Lazard, and Teo Mora. Effi-
cient computation of zero-dimensional Gröbner bases by change of
ordering. Journal of Symbolic Computation, 16(4):329–344, 1993.

[47] Jean Charles Faugère and Antoine Joux. Algebraic cryptanalysis of
Hidden Field Cryptosystems using Gröbner bases. In Boneh [16],
pages 44–60.

[48] Horst Feistel. Cryptography and computer privacy. Scientific Ameri-
can, 228(5):15–23, May 1973.

[49] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael
Stay, David Wagner, and Doug Whiting. Improved cryptanalysis of
rijndael. In Bruce Schneier, editor, FSE 2000, volume 1978 of Lecture
Notes in Computer Science, pages 213–230. Springer, 2001.

[50] Niels Ferguson, Richard Schroeppel, and Doug Whiting. A simple al-
gebraic representation of rijndael. In Serge Vaudenay and Amr M.
Youssef, editors, Selected Areas in Cryptography, volume 2259 of Lec-
ture Notes in Computer Science, pages 103–111. Springer, 2001.

[51] Steven Fortune and James Wyllie. Parallelism in random access ma-
chines. In STOC 1978, pages 114–118. ACM, 1978.

[52] Pierre-Alain Fouque, Louis Granboulan, and Jacques Stern. Differ-
ential cryptanalysis for multivariate schemes. In Cramer [35], pages
341–353.

[53] Kris Gaj and Arkadiusz Orlowski. Facts and myths of enigma: Break-
ing stereotypes. In Eli Biham, editor, EUROCRYPT 2003, volume 2656
of Lecture Notes in Computer Science, pages 106–122. Springer, 2003.

[54] Michael R. Garey and David S. Johnson. Computers and Intractability.
W.H. Freeman and Co., New York, 1979.

[55] Rüdiger Gebauer and H. Michael Möller. On an installation of Buch-
berger’s algorithm. J. Symb. Comput., 6(2/3):275–286, 1988.

[56] Henri Gilbert and Helena Handschuh. Security analysis of SHA-256
and sisters. In Mitsuru Matsui and Robert J. Zuccherato, editors,
Selected Areas in Cryptography 2003, volume 3006 of Lecture Notes in
Computer Science, pages 175–193. Springer, 2004.

[57] Dieter Gollmann, editor. Fast Software Encryption, Third International
Workshop, Cambridge, UK, February 21-23, 1996, Proceedings, vol-
ume 1039 of Lecture Notes in Computer Science. Springer, 1996.

108 BIBLIOGRAPHY

[58] Louis Granboulan, Antoine Joux, and Jacques Stern. Inverting HFE
is quasipolynomial. In Cynthia Dwork, editor, CRYPTO 2006, volume
4117 of Lecture Notes in Computer Science, pages 345–356. Springer,
2006.

[59] Tor Helleseth, editor. Advances in Cryptology - EUROCRYPT ’93, Work-
shop on the Theory and Application of of Cryptographic Techniques,
Lofthus, Norway, May 23-27, 1993, Proceedings, volume 765 of Lec-
ture Notes in Computer Science. Springer, 1994.

[60] Martin E. Hellman, Ralph Merkle, Richard Schroeppel, Lawrence
Washington, Whit Diffie, Stephen Pohlig, and P. Schweitzer. Results
of an initial attempt to cryptanalyze the data encryption standard.
Technical Report SEL 76-042, Stanford University, Information Sys-
tems Laboratory, September 1976.

[61] Paul G. Hipes and Aron Kuppermann. Gauss-Jordan inversion with
pivoting on the Caltech Mark II hypercube. In The 3rd Conference on
Hypercube Concurrent Computers and Applications, volume II, Appli-
cations, pages 1621–1634, Pasadena, CA, January 1988. ACM. Cal-
tech.

[62] Bradford Hovinen and Wayne Eberly. A reliable block lanczos algo-
rithm over small finite fields. In Manuel Kauers, editor, ISSAC 2005,
pages 177–184. ACM, 2005.

[63] Oscar H. Ibarra, Shlomo Moran, and Roger Hui. A generalization of
the fast lup matrix decomposition algorithm and applications. Jour-
nal of Algorithms, 3(1):45–56, 1982.

[64] Thomas Jakobsen and Lars Knudsen. The interpolation attack on
block ciphers. In Biham [12], pages 28–40.

[65] Pascal Junod and Serge Vaudenay. FOX: A new family of block ci-
phers. In Helena Handschuh and M. Anwar Hasan, editors, Selected
Areas in Cryptography, volume 3357 of Lecture Notes in Computer Sci-
ence, pages 114–129. Springer, 2004.

[66] Michael Kalkbrener. On the complexity of Gröbner bases conversion.
Journal of Symbolic Computation, 28(1-2):265–273, 1999.

[67] Erich Kaltofen and Victor Shoup. Subquadratic-time factoring
of polynomials over finite fields. Mathematics of Computation,
67(223):1179–1197, 1998.

[68] Masayuki Kanda. Practical security evaluation against differential
and linear cryptanalyses for Feistel ciphers with SPN round function.

BIBLIOGRAPHY 109

In Douglas R. Stinson and Stafford E. Tavares, editors, Selected Ar-
eas in Cryptography 2000, volume 2012 of Lecture Notes in Computer
Science, pages 324–338. Springer, 2001.

[69] Richard M. Karp. Reducibility among combinatorial problems. In
Raymond E. Miller and James W. Thatcher, editors, Complexity of
Computer Computations (Proceedings of a Symposium on the Complex-
ity of Computer Computations, March, 1972, Yorktown Heights, NY),
pages 85–103. Plenum Press, New York, 1972.

[70] Auguste Kerckhoffs. La cryptographie militaire. Journal des sciences
militaires, IX:3–72, January 1883.

[71] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and
vinegar signature schemes. In Stern [106], pages 206–222.

[72] Lars R. Knudsen. Practically secure Feistel ciphers. In Ross J. An-
derson, editor, FSE 1993, volume 809 of Lecture Notes in Computer
Science, pages 211–221. Springer, 1994.

[73] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In Neal Koblitz, editor, CRYPTO 1996,
volume 1109 of Lecture Notes in Computer Science, pages 104–113.
Springer, 1996.

[74] Xuejia Lai and James L. Massey. A proposal for a new block encryp-
tion standard. In Ivan Damgård, editor, EUROCRYPT 1990, volume
473 of Lecture Notes in Computer Science, pages 389–404. Springer,
1991.

[75] Xuejia Lai, James L. Massey, and Sean Murphy. Markov ciphers and
differential cryptanalysis. In Donald W. Davies, editor, EUROCRYPT
1991, volume 547 of Lecture Notes in Computer Science, pages 17–38.
Springer, 1991.

[76] Daniel Lazard. Gröbner-bases, Gaussian elimination and resolution
of systems of algebraic equations. In J. A. van Hulzen, editor, EURO-
CAL 1983, volume 162 of Lecture Notes in Computer Science, pages
146–156. Springer, 1983.

[77] Fen Liu, Wen Ji, Lei Hu, Jintai Ding, Shuwang Lv, Andrei Pyshkin, and
Ralf-Philipp Weinmann. Analysis of the SMS4 block cipher. In Josef
Pieprzyk, Hossein Ghodosi, and Ed Dawson, editors, ACISP 2007,
volume 4586 of Lecture Notes in Computer Science, pages 158–170.
Springer, 2007.

110 BIBLIOGRAPHY

[78] Stefan Lucks. The saturation attack - a bait for Twofish. In Mitsuru
Matsui, editor, FSE 2001, volume 2355 of Lecture Notes in Computer
Science, pages 1–15. Springer, 2002.

[79] F. S. Macaulay. On some formulæ in elimination. Proceedings of the
London Mathematical Society, 33(1):3–27, 1902.

[80] Francis Sowerby Macaulay. On the resolution of a given modular sys-
tem into primary systems including some properties of Hilbert num-
bers. Mathematische Annalen, 74(1):66–121, 1913.

[81] M. Matsui. Linear cryptanalysis method for DES cipher. In Douglas R.
Stinson, editor, CRYPTO 1993, volume 773 of Lecture Notes in Com-
puter Science, pages 386 – 387. Springer, 1994.

[82] Mitsuru Matsui. Linear cryptoanalysis method for DES cipher. In
Helleseth [59], pages 386–397.

[83] Mitsuru Matsui and Atsuhiro Yamagishi. A new method for known
plaintext attack of FEAL cipher. In Rainer A. Rueppel, editor, EURO-
CRYPT 1992, volume 658 of Lecture Notes in Computer Science, pages
81–91. Springer, 1993.

[84] E. Mayr and A. Meyer. The complexity of the word problems for
commutative semigroups and polynomial ideals. Adv. Math., Beijing,
46(3):305–329, 12 1982.

[85] Nouredine Melab, El-Ghazali Talbi, and Serge G. Petiton. A parallel
adaptive Gauss-Jordan algorithm. The Journal of Supercomputing,
17(2):167–185, 2000.

[86] Ilya Mironov and Lintao Zhang. Applications of sat solvers to crypt-
analysis of hash functions. In Armin Biere and Carla P. Gomes, ed-
itors, SAT 2006, volume 4121 of Lecture Notes in Computer Science,
pages 102–115. Springer, 2006.

[87] Sean Murphy and Matthew J.B. Robshaw. Essential algebraic struc-
ture within the AES. In Moti Yung, editor, CRYPTO 2002, volume
2442 of Lecture Notes in Computer Science, pages 1–16. Springer,
2002.

[88] National Bureau of Standards. The Data Encryption Standard. Fed-
eral Information Processing Standards Publication (FIPS) 46, 1977.

[89] National Institute of Standards and Technology (NIST). Announc-
ing the Advanced Encryption Standard (AES). Federal Information
Processing Standards Publication (FIPS) 197, November 2001.

BIBLIOGRAPHY 111

[90] Kaisa Nyberg. Differentially uniform mappings for cryptography. In
Helleseth [59], pages 55–64.

[91] Kaisa Nyberg and Lars R. Knudsen. Provable security against differen-
tial cryptanalysis. In Ernest F. Brickell, editor, CRYPTO 1992, volume
740 of Lecture Notes in Computer Science, pages 566–574. Springer,
1993.

[92] University of Sydney Computational Algebra Group. The Magma
computational algebra system, 2004. http://magma.maths.
usyd.edu.au/magma/.

[93] Government Committee of the USSR for Standards. Gosudarstvennyi
standard 28147-89. Cryptographic Protection for Data Processing
Systems, 1989.

[94] Jacques Patarin. Hidden Fields Equations (HFE) and Isomorphisms
of Polynomials (IP): Two new families of asymmetric algorithms. In
Ueli M. Maurer, editor, EUROCRYPT 1996, volume 1070 of Lecture
Notes in Computer Science, pages 33–48. Springer, 1996.

[95] Serge G. Petiton and Lamine M. Aouad. Large scale peer to peer
performance evaluations, with Gauss-Jordan method as an example.
In Roman Wyrzykowski, Jack Dongarra, Marcin Paprzycki, and Jerzy
Wasniewski, editors, PPAM 2003, volume 3019 of Lecture Notes in
Computer Science, pages 938–945. Springer, 2004.

[96] Brad Pierce and D. Stott Parker. A block matrix generalization of
Gauss-Jordan elimination using Haynsworth’s quotient formula for
Schur complements. Technical report CSD-950063, University of Cal-
ifornia, Los Angeles, 1995.

[97] Bart Preneel, editor. Fast Software Encryption: Second International
Workshop. Leuven, Belgium, 14-16 December 1994, Proceedings, vol-
ume 1008 of Lecture Notes in Computer Science. Springer, 1995.

[98] Håvard Raddum and Igor Semaev. New technique for solving sparse
equation systems. Cryptology ePrint Archive, Report 2006/475,
2006. http://eprint.iacr.org/2006/475.

[99] Vincent Rijmen and Paulo S. L. M. Barreto. The WHIRLPOOL hash-
ing function. NESSIE submission, standardized in ISO/IEC 10118-
3:2004, may 2003.

[100] Vincent Rijmen, Joan Daemen, Bart Preneel, Antoon Bosselaers, and
Erik De Win. The cipher SHARK. In Gollmann [57], pages 99–111.

http://magma.maths.usyd.edu.au/magma/
http://magma.maths.usyd.edu.au/magma/
http://eprint.iacr.org/2006/475

112 BIBLIOGRAPHY

[101] RSA Laboratories. PKCS #11 v2.11: Cryptographic Token Interface
Standard. RSA Data Security, Inc., November 2001.

[102] Markku-Juhani Saarinen. A chosen key attack against the secret S-
boxes of GOST, 1998.

[103] Bruce Schneier and John Kelsey. Unbalanced Feistel networks and
block cipher design. In Gollmann [57], pages 121–144. full version
also at http://www.schneier.com/paper-unbalanced-feistel.pdf.

[104] Claude Shannon. Communication theory of secrecy systems. The Bell
System Technical Journal, 28(4):656–715, 1949. A footnote on the
initial page says: “The material in this paper appeared in a confiden-
tial report, ‘A Mathematical Theory of Cryptography’, dated Sept. 1,
1946, which has now been declassified.”.

[105] William Stein. Sage Mathematics Software (Version 2.10.1). The
Sage Group, 2008. http://www.sagemath.org.

[106] Jacques Stern, editor. Advances in Cryptology - EUROCRYPT ’99, In-
ternational Conference on the Theory and Application of Cryptographic
Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding, vol-
ume 1592 of Lecture Notes in Computer Science. Springer, 1999.

[107] Ole Tingleff. Systems of linear equations solved by block Gauss-
Jordan method using a transputer cube. Technical report IMM-REP-
1995-08, Institute of Mathematical Modelling, Technical University
of Denmark, 1995.

[108] University of Sydney Computational Algebra Group. The Magma
Computational Algebra System, 2004. http://magma.maths.
usyd.edu.au/magma/.

[109] Serge Vaudenay. On the weak keys of Blowfish. In Gollmann [57],
pages 27–32.

[110] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash
functions. In Cramer [35], pages 19–35.

[111] Ralf-Philipp Weinmann. Evaluating algebraic attacks on the AES.
Diplom thesis, Technische Universität Darmstadt, Sep 2003.

[112] Ralf-Philipp Weinmann and Johannes Buchmann. Distributed mem-
ory computation of row-reduced echelon forms over finite fields. sub-
mitted to First International Conference on Symbolic Computation
and Cryptography (SCC 2008).

[113] David J. Wheeler and Roger M. Needham. TEA, a tiny encryption
algorithm. In Preneel [97], pages 363–366.

http://magma.maths.usyd.edu.au/magma/
http://magma.maths.usyd.edu.au/magma/

BIBLIOGRAPHY 113

[114] Christopher Wolf. “Hidden Field Equations" (HFE) - variations
and attacks. Master’s thesis, Universität Ulm, December 2002.
http://www.christopher-wolf.de/dpl.

http://www.christopher-wolf.de/dpl

	Introduction
	Preliminaries
	Notation for Data Structures
	Polynomial Rings and Ideals
	Affine Varieties

	Gröbner Bases
	Term Orders
	Buchberger's Algorithm
	Buchberger's Criteria
	Macaulay Matrices

	Block Ciphers
	Diffusion and Confusion
	Attack Models

	The MQ-Problem

	Iterated Block Ciphers
	High-Level Structures of Block Ciphers
	Substitution Linear Networks
	Feistel Networks
	Generalized Unbalanced Feistel Networks

	Last-Round Attacks against Block Ciphers
	Differential Cryptanalysis
	Linear Cryptanalysis
	Integral Cryptanalysis

	Selected Standardized Block Ciphers
	The Advanced Encryption Standard (AES)
	SMS4
	Cryptomeria

	Experimental Block Ciphers
	Mini-AES
	Flurry and Curry

	Efficient Gröbner Basis Algorithms
	The FGLM Algorithm
	The F4 Algorithm
	The Gebauer-Moeller Installation

	On the Complexity of Gröbner Basis Computations

	Algebraic Approaches To Cryptanalysis
	Interpolation Attacks on Block Ciphers
	Deriving Systems of Polynomial Equations
	Polynomial Representation of Flurry and Curry
	An Embedded Representation of SMS4

	Gröbner Basis Attacks with Minimal Data Complexity
	Experimental Results
	Gröbner Bases without Polynomial Reductions

	A Gröbner Basis for AES-128
	The S-Box
	The Linear Transformation
	The Key Schedule
	Choosing a Suitable Variable Order
	Impact Analysis

	Secret S-Boxes and Algebraic Attacks
	Constructing a Polynomial System
	The Attack: Solving the Polynomial System
	Results Achieved against Cryptomeria

	Distributed Memory Computation of RREFs
	Motivation
	A Model for Distributed Memory Computations
	A Parallelized version of Gauss-Jordan
	Notes on the Performance of the Algorithm
	Properties of the Algorithm and Implementation
	Experimental Results

	Conclusions

