Welcome to pplpy’s documentation!¶
Installation¶
pplpy is available from the Python Package Index. You can hence install it with:
$ pip install pplpy
The code source can be obtained from github:
$ git clone https://github.com/sagemath/pplpy.git
Introduction¶
Cython wrapper for the Parma Polyhedra Library (PPL)
The Parma Polyhedra Library (PPL) is a library for polyhedral computations over the rationals. This interface tries to reproduce the C++ API as faithfully as possible in Python. For example, the following C++ excerpt:
Variable x(0);
Variable y(1);
Constraint_System cs;
cs.insert(x >= 0);
cs.insert(x <= 3);
cs.insert(y >= 0);
cs.insert(y <= 3);
C_Polyhedron poly_from_constraints(cs);
translates into:
>>> from ppl import Variable, Constraint_System, C_Polyhedron
>>> x = Variable(0)
>>> y = Variable(1)
>>> cs = Constraint_System()
>>> cs.insert(x >= 0)
>>> cs.insert(x <= 3)
>>> cs.insert(y >= 0)
>>> cs.insert(y <= 3)
>>> poly_from_constraints = C_Polyhedron(cs)
The same polyhedron constructed from generators:
>>> from ppl import Variable, Generator_System, C_Polyhedron, point
>>> gs = Generator_System()
>>> gs.insert(point(0*x + 0*y))
>>> gs.insert(point(0*x + 3*y))
>>> gs.insert(point(3*x + 0*y))
>>> gs.insert(point(3*x + 3*y))
>>> poly_from_generators = C_Polyhedron(gs)
Rich comparisons test equality/inequality and strict/non-strict containment:
>>> poly_from_generators == poly_from_constraints
True
>>> poly_from_generators >= poly_from_constraints
True
>>> poly_from_generators < poly_from_constraints
False
>>> poly_from_constraints.minimized_generators()
Generator_System {point(0/1, 0/1), point(0/1, 3/1), point(3/1, 0/1), point(3/1, 3/1)}
>>> poly_from_constraints.minimized_constraints()
Constraint_System {-x0+3>=0, -x1+3>=0, x0>=0, x1>=0}
As we see above, the library is generally easy to use. There are a few pitfalls that are not entirely obvious without consulting the documentation, in particular:
There are no vectors used to describe
Generator
(points, closure points, rays, lines) orConstraint
(strict inequalities, non-strict inequalities, or equations). Coordinates are always specified via linear polynomials inVariable
All coordinates of rays and lines as well as all coefficients of constraint relations are (arbitrary precision) integers. Only the generators
point()
andclosure_point()
allow one to specify an overall divisor of the otherwise integral coordinates. For example:>>> from ppl import Variable, point >>> x = Variable(0); y = Variable(1) >>> p = point( 2*x+3*y, 5 ); p point(2/5, 3/5) >>> p.coefficient(x) mpz(2) >>> p.coefficient(y) mpz(3) >>> p.divisor() mpz(5)
PPL supports (topologically) closed polyhedra (
C_Polyhedron
) as well as not necessarily closed polyhedra (NNC_Polyhedron
). Only the latter allows closure points (=points of the closure but not of the actual polyhedron) and strict inequalities (>
and<
)
The naming convention for the C++ classes is that they start with
PPL_
, for example, the original Linear_Expression
becomes
PPL_Linear_Expression
. The Python wrapper has the same name as the
original library class, that is, just Linear_Expression
. In short:
If you are using the Python wrapper (if in doubt: that’s you), then you use the same names as the PPL C++ class library.
If you are writing your own Cython code, you can access the underlying C++ classes by adding the prefix
PPL_
.
Finally, PPL is fast. For example, here is the permutahedron of 5 basis vectors:
>>> from ppl import Variable, Generator_System, point, C_Polyhedron
>>> basis = range(0,5)
>>> x = [ Variable(i) for i in basis ]
>>> gs = Generator_System();
>>> from itertools import permutations
>>> for coeff in permutations(basis):
... gs.insert(point( sum( (coeff[i]+1)*x[i] for i in basis ) ))
>>> C_Polyhedron(gs)
A 4-dimensional polyhedron in QQ^5 defined as the convex hull of 120 points
DIFFERENCES VS. C++
Since Python and C++ syntax are not always compatible, there are necessarily some differences. The main ones are:
The
Linear_Expression
also accepts an iterable as input for the homogeneous coefficients.
AUTHORS:
Volker Braun (2010): initial version (within Sage).
Risan (2012): extension for MIP_Problem class (within Sage)
Vincent Delecroix (2016-2020): convert Sage files into a standalone Python package, interface bit_array, interface congruence
Vincent Klein (2017): improve doctest support and Python 3 compatibility Split the main code into several files. Remove the _mutable_immutable class.
Using in Cython¶
All types from ppl are extension types and can be used with Cython. The following is a short sample of Cython code using pplpy:
from ppl.linear_algebra cimport Variable
from ppl.constraint cimport Constraint_System
from ppl.polyhedron cimport C_Polyhedron
cdef Variable x = ppl.Variable(0)
cdef Variable y = ppl.Variable(1)
cdef Variable z = ppl.Variable(2)
cdef Constraint_System cs = Constraint_System()
cs.insert(x >= 0)
cs.insert(y >= 0)
cs.insert(x + y + z == 1)
cdef C_Polyhedron poly = C_Polyhedron(cs)
print(poly.minimized_generators())
Each extension type carries an attribute thisptr
that holds a pointer to
the corresponding C++ object from ppl. Continuing the above example, one can
do:
print('dim = %lu' % poly.thisptr.space_dimension())
To avoid name collisions, the original C++ class names are prefixed with
PPL_
, for example, the original Linear_Expression
becomes
PPL_Linear_Expression
. The Python wrapper has the same name as the original
library class, that is, just Linear_Expression
. All ppl
declarations
are done in the .pxd
file ppl/ppl_decl.pxd
. Only few functionalities
from ppl
are exposed in ppl_decl.pxd
. It is also preferable to avoid
mixing C++ ppl
objects with Cython pplpy
extension types.
To compile a Cython extension using pplpy you need to:
add the path of your pplpy installation to
include_dirs
link with the
ppl
library
Here is a minimal example of a setup.py
file for a unique Cython file
called test.pyx
:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize
import ppl
extensions = [
Extension("test", ["test.pyx"], libraries=['ppl'], include_dirs=ppl.__path__, language='c++')
]
setup(ext_modules=cythonize(extensions))
Module ppl.constraint¶
- class ppl.constraint.Constraint(arg=None)¶
Bases:
object
Wrapper for PPL’s
Constraint
class.An object of the class
Constraint
is either:an equality \(\sum_{i=0}^{n-1} a_i x_i + b = 0\)
a non-strict inequality \(\sum_{i=0}^{n-1} a_i x_i + b \geq 0\)
a strict inequality \(\sum_{i=0}^{n-1} a_i x_i + b > 0\)
where \(n\) is the dimension of the space, \(a_i\) is the integer coefficient of variable \(x_i\), and \(b_i\) is the integer inhomogeneous term.
INPUT/OUTPUT:
You construct constraints by writing inequalities in
Linear_Expression
. Do not attempt to manually construct constraints.Examples:
>>> from ppl import Variable, Linear_Expression >>> x = Variable(0) >>> y = Variable(1) >>> 5*x-2*y > x+y-1 4*x0-3*x1+1>0 >>> 5*x-2*y >= x+y-1 4*x0-3*x1+1>=0 >>> 5*x-2*y == x+y-1 4*x0-3*x1+1==0 >>> 5*x-2*y <= x+y-1 -4*x0+3*x1-1>=0 >>> 5*x-2*y < x+y-1 -4*x0+3*x1-1>0 >>> x > 0 x0>0
Special care is needed if the left hand side is a constant:
>>> 0 == 1 # watch out! False >>> Linear_Expression(0) == 1 mpz(-1)==0
- ascii_dump(self)¶
Write an ASCII dump to stderr.
Examples:
>>> cmd = 'from ppl import Linear_Expression, Variable\n' >>> cmd += 'x = Variable(0)\n' >>> cmd += 'y = Variable(1)\n' >>> cmd += 'e = (3*x+2*y+1 > 0)\n' >>> cmd += 'e.ascii_dump()\n' >>> import subprocess, sys >>> proc = subprocess.Popen([sys.executable, '-c', cmd], stderr=subprocess.PIPE) >>> out, err = proc.communicate() >>> print(str(err.decode('ascii'))) size 4 1 3 2 -1 ...
- coefficient(self, Variable v)¶
Return the coefficient of the variable
v
.INPUT:
v
– aVariable
.
OUTPUT:
An integer.
Examples:
>>> from ppl import Variable >>> x = Variable(0) >>> ineq = 3*x+1 > 0 >>> ineq.coefficient(x) mpz(3) >>> y = Variable(1) >>> ineq = 3**50 * y + 2 > 1 >>> str(ineq.coefficient(y)) '717897987691852588770249' >>> ineq.coefficient(x) mpz(0)
- coefficients(self)¶
Return the coefficients of the constraint.
See also
coefficient()
.OUTPUT:
A tuple of integers of length
space_dimension()
.Examples:
>>> from ppl import Variable >>> x = Variable(0); y = Variable(1) >>> ineq = ( 3*x+5*y+1 == 2); ineq 3*x0+5*x1-1==0 >>> ineq.coefficients() (mpz(3), mpz(5))
- inhomogeneous_term(self)¶
Return the inhomogeneous term of the constraint.
OUTPUT:
Integer.
Examples:
>>> from ppl import Variable >>> y = Variable(1) >>> ineq = 10+y > 9 >>> ineq x1+1>0 >>> ineq.inhomogeneous_term() mpz(1) >>> ineq = 2**66 + y > 0 >>> str(ineq.inhomogeneous_term()) '73786976294838206464'
- is_equality(self)¶
Test whether
self
is an equality.OUTPUT:
Boolean. Returns
True
if and only ifself
is an equality constraint.Examples:
>>> from ppl import Variable >>> x = Variable(0) >>> (x==0).is_equality() True >>> (x>=0).is_equality() False >>> (x>0).is_equality() False
- is_equivalent_to(self, Constraint c)¶
Test whether
self
andc
are equivalent.INPUT:
c
– aConstraint
.
OUTPUT:
Boolean. Returns
True
if and only ifself
andc
are equivalent constraints.Note that constraints having different space dimensions are not equivalent. However, constraints having different types may nonetheless be equivalent, if they both are tautologies or inconsistent.
Examples:
>>> from ppl import Variable, Linear_Expression >>> x = Variable(0) >>> y = Variable(1) >>> (x > 0).is_equivalent_to(Linear_Expression(0) < x) True >>> (x > 0).is_equivalent_to(0*y < x) False >>> (0*x > 1).is_equivalent_to(0*x == -2) True
- is_inconsistent(self)¶
Test whether
self
is an inconsistent constraint, that is, always false.An inconsistent constraint can have either one of the following forms:
an equality: \(\sum 0 x_i + b = 0\) with bnot=0,
a non-strict inequality: \(\sum 0 x_i + b \geq 0\) with b< 0, or
a strict inequality: \(\sum 0 x_i + b > 0\) with bleq 0.
OUTPUT:
Boolean. Returns
True
if and only ifself
is an inconsistent constraint.Examples:
>>> from ppl import Variable >>> x = Variable(0) >>> (x==1).is_inconsistent() False >>> (0*x>=1).is_inconsistent() True
- is_inequality(self)¶
Test whether
self
is an inequality.OUTPUT:
Boolean. Returns
True
if and only ifself
is an inequality constraint, either strict or non-strict.Examples:
>>> from ppl import Variable >>> x = Variable(0) >>> (x==0).is_inequality() False >>> (x>=0).is_inequality() True >>> (x>0).is_inequality() True
- is_nonstrict_inequality(self)¶
Test whether
self
is a non-strict inequality.OUTPUT:
Boolean. Returns
True
if and only ifself
is an non-strict inequality constraint.Examples:
>>> from ppl import Variable >>> x = Variable(0) >>> (x==0).is_nonstrict_inequality() False >>> (x>=0).is_nonstrict_inequality() True >>> (x>0).is_nonstrict_inequality() False
- is_strict_inequality(self)¶
Test whether
self
is a strict inequality.OUTPUT:
Boolean. Returns
True
if and only ifself
is an strict inequality constraint.Examples:
>>> from ppl import Variable >>> x = Variable(0) >>> (x==0).is_strict_inequality() False >>> (x>=0).is_strict_inequality() False >>> (x>0).is_strict_inequality() True
- is_tautological(self)¶
Test whether
self
is a tautological constraint.A tautology can have either one of the following forms:
an equality: \(\sum 0 x_i + 0 = 0\),
a non-strict inequality: \(\sum 0 x_i + b \geq 0\) with bgeq 0, or
a strict inequality: \(\sum 0 x_i + b > 0\) with b> 0.
OUTPUT:
Boolean. Returns
True
if and only ifself
is a tautological constraint.Examples:
>>> from ppl import Variable >>> x = Variable(0) >>> (x==0).is_tautological() False >>> (0*x>=0).is_tautological() True
- permute_space_dimensions(self, cycle)¶
Permute the coordinates according to
cycle
.>>> from ppl import Variable >>> x = Variable(0); y = Variable(1); z = Variable(2) >>> l = 2*x - y + 3*z >>> ieq = l >= 5 >>> ieq.permute_space_dimensions([2, 1, 0]) >>> ieq -x0+3*x1+2*x2-5>=0
- space_dimension(self)¶
Return the dimension of the vector space enclosing
self
.OUTPUT:
Integer.
Examples:
>>> from ppl import Variable >>> x = Variable(0) >>> y = Variable(1) >>> (x>=0).space_dimension() 1 >>> (y==1).space_dimension() 2
- type(self)¶
Return the constraint type of
self
.OUTPUT:
String. One of
'equality'
,'nonstrict_inequality'
, or'strict_inequality'
.Examples:
>>> from ppl import Variable >>> x = Variable(0) >>> (x==0).type() 'equality' >>> (x>=0).type() 'nonstrict_inequality' >>> (x>0).type() 'strict_inequality'
- class ppl.constraint.Constraint_System(arg=None)¶
Bases:
object
Wrapper for PPL’s
Constraint_System
class.An object of the class Constraint_System is a system of constraints, i.e., a multiset of objects of the class Constraint. When inserting constraints in a system, space dimensions are automatically adjusted so that all the constraints in the system are defined on the same vector space.
Examples:
>>> from ppl import Constraint_System, Variable >>> x = Variable(0) >>> y = Variable(1) >>> cs = Constraint_System( 5*x-2*y > 0 ) >>> cs.insert( 6*x < 3*y ) >>> cs.insert( x >= 2*x-7*y ) >>> cs Constraint_System {5*x0-2*x1>0, ...} >>> cs[0] 5*x0-2*x1>0
- ascii_dump(self)¶
Write an ASCII dump to stderr.
Examples:
>>> cmd = 'from ppl import Constraint_System, Variable\n' >>> cmd += 'x = Variable(0)\n' >>> cmd += 'y = Variable(1)\n' >>> cmd += 'cs = Constraint_System( 3*x > 2*y+1 )\n' >>> cmd += 'cs.ascii_dump()\n' >>> import subprocess, sys >>> proc = subprocess.Popen([sys.executable, '-c', cmd], stderr=subprocess.PIPE) >>> out, err = proc.communicate() >>> print(str(err.decode('ascii'))) topology NOT_NECESSARILY_CLOSED ...
- clear(self)¶
Removes all constraints from the constraint system and sets its space dimension to 0.
Examples:
>>> from ppl import Variable, Constraint_System >>> x = Variable(0) >>> cs = Constraint_System(x>0) >>> cs Constraint_System {x0>0} >>> cs.clear() >>> cs Constraint_System {}
- empty(self)¶
Return
True
if and only ifself
has no constraints.OUTPUT:
Boolean.
Examples:
>>> from ppl import Variable, Constraint_System >>> x = Variable(0) >>> cs = Constraint_System() >>> cs.empty() True >>> cs.insert( x>0 ) >>> cs.empty() False
- has_equalities(self)¶
Tests whether
self
contains one or more equality constraints.OUTPUT:
Boolean.
Examples:
>>> from ppl import Variable, Constraint_System >>> x = Variable(0) >>> cs = Constraint_System() >>> cs.insert( x>0 ) >>> cs.insert( x<0 ) >>> cs.has_equalities() False >>> cs.insert( x==0 ) >>> cs.has_equalities() True
- has_strict_inequalities(self)¶
Tests whether
self
contains one or more strict inequality constraints.OUTPUT:
Boolean.
Examples:
>>> from ppl import Variable, Constraint_System >>> x = Variable(0) >>> cs = Constraint_System() >>> cs.insert( x>=0 ) >>> cs.insert( x==-1 ) >>> cs.has_strict_inequalities() False >>> cs.insert( x>0 ) >>> cs.has_strict_inequalities() True
- insert(self, Constraint c)¶
Insert
c
into the constraint system.INPUT:
c
– aConstraint
.
Examples:
>>> from ppl import Variable, Constraint_System >>> x = Variable(0) >>> cs = Constraint_System() >>> cs.insert( x>0 ) >>> cs Constraint_System {x0>0}
- space_dimension(self)¶
Return the dimension of the vector space enclosing
self
.OUTPUT:
Integer.
Examples:
>>> from ppl import Variable, Constraint_System >>> x = Variable(0) >>> cs = Constraint_System( x>0 ) >>> cs.space_dimension() 1
- class ppl.constraint.Poly_Con_Relation¶
Bases:
object
Wrapper for PPL’s
Poly_Con_Relation
class.INPUT/OUTPUT:
You must not construct
Poly_Con_Relation
objects manually. You will usually get them fromrelation_with()
. You can also get pre-defined relations from the class methodsnothing()
,is_disjoint()
,strictly_intersects()
,is_included()
, andsaturates()
.Examples:
>>> from ppl import Poly_Con_Relation >>> saturates = Poly_Con_Relation.saturates(); saturates saturates >>> is_included = Poly_Con_Relation.is_included(); is_included is_included >>> is_included.implies(saturates) False >>> saturates.implies(is_included) False >>> rels = [] >>> rels.append(Poly_Con_Relation.nothing()) >>> rels.append(Poly_Con_Relation.is_disjoint()) >>> rels.append(Poly_Con_Relation.strictly_intersects()) >>> rels.append(Poly_Con_Relation.is_included()) >>> rels.append(Poly_Con_Relation.saturates()) >>> rels [nothing, is_disjoint, strictly_intersects, is_included, saturates] >>> for i, rel_i in enumerate(rels): ... s = "" ... for j, rel_j in enumerate(rels): ... s=s+str(int(rel_i.implies(rel_j))) + ' ' ... print(" ".join(str(int(rel_i.implies(rel_j))) for j, rel_j in enumerate(rels))) 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1
- ascii_dump(self)¶
Write an ASCII dump to stderr.
Examples:
>>> cmd = 'from ppl import Poly_Con_Relation\n' >>> cmd += 'Poly_Con_Relation.nothing().ascii_dump()\n' >>> import subprocess, sys >>> proc = subprocess.Popen([sys.executable, '-c', cmd], stderr=subprocess.PIPE) >>> out, err = proc.communicate() >>> print(str(err.decode('ascii'))) NOTHING
- implies(self, Poly_Con_Relation y)¶
Test whether
self
impliesy
.INPUT:
y
– aPoly_Con_Relation
.
OUTPUT:
Boolean.
True
if and only ifself
impliesy
.Examples:
>>> from ppl import Poly_Con_Relation >>> nothing = Poly_Con_Relation.nothing() >>> nothing.implies( nothing ) True
- classmethod is_disjoint(cls)¶
Return the assertion “The polyhedron and the set of points satisfying the constraint are disjoint”.
OUTPUT:
Examples:
>>> from ppl import Poly_Con_Relation >>> Poly_Con_Relation.is_disjoint() is_disjoint
- classmethod is_included(cls)¶
Return the assertion “The polyhedron is included in the set of points satisfying the constraint”.
OUTPUT:
Examples:
>>> from ppl import Poly_Con_Relation >>> Poly_Con_Relation.is_included() is_included
- classmethod nothing(cls)¶
Return the assertion that says nothing.
OUTPUT:
Examples:
>>> from ppl import Poly_Con_Relation >>> Poly_Con_Relation.nothing() nothing
- classmethod saturates(cls)¶
Return the assertion “”.
OUTPUT:
Examples:
>>> from ppl import Poly_Con_Relation >>> Poly_Con_Relation.saturates() saturates
- classmethod strictly_intersects(cls)¶
Return the assertion “The polyhedron intersects the set of points satisfying the constraint, but it is not included in it”.
- Returns:
Examples:
>>> from ppl import Poly_Con_Relation >>> Poly_Con_Relation.strictly_intersects() strictly_intersects
- ppl.constraint.equation(expression)¶
Construct an equation.
INPUT:
expression
– aLinear_Expression
.
OUTPUT:
The equation
expression
== 0.Examples:
>>> from ppl import Variable, equation >>> y = Variable(1) >>> 2*y+1 == 0 2*x1+1==0 >>> equation(2*y+1) 2*x1+1==0
- ppl.constraint.inequality(expression)¶
Construct an inequality.
INPUT:
expression
– aLinear_Expression
.
OUTPUT:
The inequality
expression
>= 0.Examples:
>>> from ppl import Variable, inequality >>> y = Variable(1) >>> 2*y+1 >= 0 2*x1+1>=0 >>> inequality(2*y+1) 2*x1+1>=0
- ppl.constraint.strict_inequality(expression)¶
Construct a strict inequality.
INPUT:
expression
– aLinear_Expression
.
OUTPUT:
The inequality
expression
> 0.Examples:
>>> from ppl import Variable, strict_inequality >>> y = Variable(1) >>> 2*y+1 > 0 2*x1+1>0 >>> strict_inequality(2*y+1) 2*x1+1>0
Module ppl.linear_algebra¶
- class ppl.linear_algebra.Linear_Expression(*args)¶
Bases:
object
Wrapper for PPL’s
PPL_Linear_Expression
class.INPUT:
The constructor accepts zero, one, or two arguments.
If there are two arguments
Linear_Expression(a,b)
, they are interpreted asa
– either a dictionary whose indices are space dimension and values are coefficients or an iterable coefficients (e.g. a list or tuple).b
– an integer. The inhomogeneous term.
A single argument
Linear_Expression(arg)
is interpreted asarg
– something that determines a linear expression. Possibilities are:a
Variable
: The linear expression given by that variable.a
Linear_Expression
: The copy constructor.an integer: Constructs the constant linear expression.
No argument is the default constructor and returns the zero linear expression.
OUTPUT:
Examples:
>>> from ppl import Variable, Linear_Expression
>>> Linear_Expression({1: -3, 7: 1}, 0) -3*x1+x7 >>> Linear_Expression([1, 2, 3, 4], 5) x0+2*x1+3*x2+4*x3+5 >>> Linear_Expression(10) 10 >>> Linear_Expression() 0 >>> Linear_Expression({}, 2) 2 >>> Linear_Expression([], 2) 2
>>> Linear_Expression(10).inhomogeneous_term() mpz(10) >>> x = Variable(123) >>> expr = x+1 >>> expr x123+1 >>> expr.coefficient(x) mpz(1) >>> expr.coefficient(Variable(124)) mpz(0)
>>> from gmpy2 import mpz, mpq >>> Linear_Expression(mpz(3)) 3 >>> Linear_Expression([mpz(5), mpz(2)], mpz(-2)) 5*x0+2*x1-2
String, rationals and floating point types are accepted as long as they represent exact integers:
>>> Linear_Expression(('4', 1), 2) 4*x0+x1+2 >>> Linear_Expression((4, 1.0, mpq('4/2')), 2.0) 4*x0+x1+2*x2+2 >>> Linear_Expression(('1.5',), 0) Traceback (most recent call last): ... ValueError: invalid digits >>> Linear_Expression((mpq('3/2'),), 0) Traceback (most recent call last): ... TypeError: ppl coefficients must be integral >>> Linear_Expression((1, 2.1, 1), 1) Traceback (most recent call last): ... TypeError: ppl coefficients must be integral >>> Linear_Expression(mpq('1/2')) Traceback (most recent call last): ... TypeError: ppl coefficients must be integral >>> Linear_Expression('I am a linear expression') Traceback (most recent call last): ... ValueError: invalid digits >>> Linear_Expression(('I','am','a','linear','expression')) Traceback (most recent call last): ... TypeError: mpz() requires numeric or string argument
- all_homogeneous_terms_are_zero(self)¶
Test if
self
is a constant linear expression.OUTPUT:
Boolean.
Examples:
>>> from ppl import Variable, Linear_Expression >>> Linear_Expression(10).all_homogeneous_terms_are_zero() True
- ascii_dump(self)¶
Write an ASCII dump to stderr.
Examples:
>>> cmd = 'from ppl import Linear_Expression, Variable\n' >>> cmd += 'x = Variable(0)\n' >>> cmd += 'y = Variable(1)\n' >>> cmd += 'e = 3*x+2*y+1\n' >>> cmd += 'e.ascii_dump()\n' >>> from subprocess import Popen, PIPE >>> import sys >>> proc = Popen([sys.executable, '-c', cmd], stdout=PIPE, stderr=PIPE) >>> out, err = proc.communicate() >>> len(out) == 0 True >>> len(err) > 0 True
- coefficient(self, v)¶
Return the coefficient of the variable
v
.INPUT:
v
– aVariable
.
OUTPUT:
A gmpy2 integer.
Examples:
>>> from ppl import Variable >>> x = Variable(0) >>> e = 3*x+1 >>> e.coefficient(x) mpz(3) >>> e.coefficient(Variable(13)) mpz(0)
- coefficients(self)¶
Return the coefficients of the linear expression.
OUTPUT:
A tuple of gmpy2 integers of length
space_dimension()
.Examples:
>>> from ppl import Variable >>> x = Variable(0); y = Variable(1) >>> e = 3*x+5*y+1 >>> e.coefficients() (mpz(3), mpz(5))
- inhomogeneous_term(self)¶
Return the inhomogeneous term of the linear expression.
OUTPUT:
Integer.
Examples:
>>> from ppl import Linear_Expression >>> Linear_Expression(10).inhomogeneous_term() mpz(10)
- is_equal_to(self, Linear_Expression other)¶
Test equality with another linear expression.
OUTPUT: boolean
Examples:
>>> from ppl import Variable >>> L1 = Variable(0) + 2 * Variable(3) >>> L2 = Variable(0) + 2 * Variable(3) >>> L3 = Variable(0) - Variable(2) >>> L1.is_equal_to(L2) True >>> L1.is_equal_to(L3) False
- is_zero(self)¶
Test if
self
is the zero linear expression.OUTPUT:
Boolean.
Examples:
>>> from ppl import Variable, Linear_Expression >>> Linear_Expression(0).is_zero() True >>> Linear_Expression(10).is_zero() False
- permute_space_dimensions(self, cycle)¶
Permute the coordinates according to
cycle
.Examples:
>>> from ppl import Variable >>> x = Variable(0); y = Variable(1); z = Variable(2) >>> l = 2*x - y + 3*z >>> l.permute_space_dimensions([0, 2]) >>> l 3*x0-x1+2*x2 >>> l.permute_space_dimensions([1, 0, 2]) >>> l -x0+2*x1+3*x2
- remove_space_dimensions(self, Variables_Set V)¶
Removes the dimension specified by the set of variables
V
.See
Variables_Set
to construct set of variables.Examples:
>>> import ppl >>> L = sum(i * ppl.Variable(i) for i in range(10)) >>> L x1+2*x2+3*x3+4*x4+5*x5+6*x6+7*x7+8*x8+9*x9 >>> L.remove_space_dimensions(ppl.Variables_Set(3,5)) >>> L x1+2*x2+6*x3+7*x4+8*x5+9*x6
- set_coefficient(self, i, v)¶
Set the
i
-th coefficient tov
.INPUT:
i
- variable or variable indexv
- integer
Examples:
>>> from ppl import Variable >>> L = Variable(0) + 3 * Variable(1) >>> L.set_coefficient(1, -5) >>> L.set_coefficient(7, 3) >>> L x0-5*x1
- set_inhomogeneous_term(self, v)¶
Set the inhomogeneous term of this linear expression.
Examples:
>>> from ppl import Linear_Expression >>> L = Linear_Expression() >>> L.set_inhomogeneous_term(-1313958534578713747) >>> L.inhomogeneous_term() mpz(-1313958534578713747)
- set_space_dimension(self, PPL_dimension_type n)¶
Set the dimension of the ambient space to
n
Examples:
>>> import ppl >>> L = ppl.Variable(0) + ppl.Variable(3) >>> L.space_dimension() 4 >>> L.set_space_dimension(6) >>> L.space_dimension() 6
>>> L = ppl.Variable(5) - ppl.Variable(2) >>> L.set_space_dimension(3) >>> L -x2
- shift_space_dimensions(self, v, PPL_dimension_type n)¶
Shift by
n
the coefficients of variables starting from the coefficient ofv
.This increases the space dimension by
n
.Examples:
>>> import ppl >>> L = ppl.Variable(0) + 13 * ppl.Variable(2) + 5 * ppl.Variable(7) >>> L x0+13*x2+5*x7 >>> L.shift_space_dimensions(ppl.Variable(2), 2) >>> L x0+13*x4+5*x9 >>> L.shift_space_dimensions(ppl.Variable(7), 3) >>> L x0+13*x4+5*x12
- space_dimension(self)¶
Return the dimension of the vector space necessary for the linear expression.
OUTPUT:
Integer.
Examples:
>>> from ppl import Variable >>> x = Variable(0) >>> y = Variable(1) >>> (x+y+1).space_dimension() 2 >>> (x+y).space_dimension() 2 >>> (y+1).space_dimension() 2 >>> (x+1).space_dimension() 1 >>> (y+1-y).space_dimension() 2
- swap_space_dimensions(self, v1, v2)¶
Swaps the coefficients of
v1
andv2
.INPUT:
v1
,v2
- variables or indices of variables
Examples:
>>> import ppl >>> L = ppl.Variable(1) - 3 * ppl.Variable(3) >>> L.swap_space_dimensions(ppl.Variable(1), ppl.Variable(3)) >>> L -3*x1+x3
>>> L = ppl.Variable(1) - 3 * ppl.Variable(3) >>> L.swap_space_dimensions(1, 3) >>> L -3*x1+x3
- class ppl.linear_algebra.Variable¶
Bases:
object
Wrapper for PPL’s
Variable
class.A dimension of the vector space.
An object of the class Variable represents a dimension of the space, that is one of the Cartesian axes. Variables are used as basic blocks in order to build more complex linear expressions. Each variable is identified by a non-negative integer, representing the index of the corresponding Cartesian axis (the first axis has index 0). The space dimension of a variable is the dimension of the vector space made by all the Cartesian axes having an index less than or equal to that of the considered variable; thus, if a variable has index i, its space dimension is i+1.
INPUT:
i
– integer. The index of the axis.
OUTPUT:
A
Variable
Examples:
>>> from ppl import Variable >>> x = Variable(123) >>> x.id() 123 >>> x x123
Note that the “meaning” of an object of the class Variable is completely specified by the integer index provided to its constructor: be careful not to be mislead by C++ language variable names. For instance, in the following example the linear expressions
e1
ande2
are equivalent, since the two variablesx
andz
denote the same Cartesian axis:>>> x = Variable(0) >>> y = Variable(1) >>> z = Variable(0) >>> e1 = x + y; e1 x0+x1 >>> e2 = y + z; e2 x0+x1 >>> e1 - e2 0
- id(self)¶
Return the index of the Cartesian axis associated to the variable.
Examples:
>>> from ppl import Variable >>> x = Variable(123) >>> x.id() 123
- space_dimension(self)¶
Return the dimension of the vector space enclosing
self
.OUTPUT:
Integer. The returned value is
self.id()+1
.Examples:
>>> from ppl import Variable >>> x = Variable(0) >>> x.space_dimension() 1
- class ppl.linear_algebra.Variables_Set¶
Bases:
object
Wrapper for PPL’s
Variables_Set
class.A set of variables’ indexes.
Examples:
Build the empty set of variable indexes:
>>> from ppl import Variable, Variables_Set >>> Variables_Set() Variables_Set of cardinality 0
Build the singleton set of indexes containing the index of the variable:
>>> v123 = Variable(123) >>> Variables_Set(v123) Variables_Set of cardinality 1
Build the set of variables’ indexes in the range from one variable to another variable:
>>> v127 = Variable(127) >>> Variables_Set(v123,v127) Variables_Set of cardinality 5
You can alternatively use integers:
>>> Variables_Set(23) Variables_Set of cardinality 1 >>> Variables_Set(10, 14) Variables_Set of cardinality 5
- ascii_dump(self)¶
Write an ASCII dump to stderr.
TODO: rewrite examples EXAMPLES:
>>> cmd = 'from ppl import Variable, Variables_Set\n' >>> cmd += 'v123 = Variable(123)\n' >>> cmd += 'S = Variables_Set(v123)\n' >>> cmd += 'S.ascii_dump()\n' >>> import subprocess >>> import sys >>> proc = subprocess.Popen([sys.executable, '-c', cmd], stderr=subprocess.PIPE) >>> out, err = proc.communicate() >>> print(str(err.decode('ascii'))) variables( 1 ) 123
- insert(self, Variable v)¶
Inserts the index of variable v into the set.
EXAMPLES:
>>> from ppl import Variable, Variables_Set >>> S = Variables_Set() >>> v123 = Variable(123) >>> S.insert(v123) >>> S.space_dimension() 124
- space_dimension(self)¶
Returns the dimension of the smallest vector space enclosing all the variables whose indexes are in the set.
OUTPUT:
Integer.
EXAMPLES:
>>> from ppl import Variable, Variables_Set >>> v123 = Variable(123) >>> S = Variables_Set(v123) >>> S.space_dimension() 124
Module ppl.generator¶
- class ppl.generator.Generator¶
Bases:
object
Wrapper for PPL’s
Generator
class.An object of the class Generator is one of the following:
a line \(\ell = (a_0, \dots, a_{n-1})^T\)
a ray \(r = (a_0, \dots, a_{n-1})^T\)
a point \(p = (\tfrac{a_0}{d}, \dots, \tfrac{a_{n-1}}{d})^T\)
a closure point \(c = (\tfrac{a_0}{d}, \dots, \tfrac{a_{n-1}}{d})^T\)
where \(n\) is the dimension of the space and, for points and closure points, \(d\) is the divisor.
INPUT/OUTPUT:
Use the helper functions
line()
,ray()
,point()
, andclosure_point()
to construct generators. Analogous class methods are also available, seeGenerator.line()
,Generator.ray()
,Generator.point()
,Generator.closure_point()
. Do not attempt to construct generators manually.Note
The generators are constructed from linear expressions. The inhomogeneous term is always silently discarded.
Examples:
>>> from ppl import Generator, Variable >>> x = Variable(0) >>> y = Variable(1) >>> Generator.line(5*x-2*y) line(5, -2) >>> Generator.ray(5*x-2*y) ray(5, -2) >>> Generator.point(5*x-2*y, 7) point(5/7, -2/7) >>> Generator.closure_point(5*x-2*y, 7) closure_point(5/7, -2/7)
- ascii_dump(self)¶
Write an ASCII dump to stderr.
Examples:
>>> cmd = 'from ppl import Linear_Expression, Variable, point\n' >>> cmd += 'x = Variable(0)\n' >>> cmd += 'y = Variable(1)\n' >>> cmd += 'p = point(3*x+2*y)\n' >>> cmd += 'p.ascii_dump()\n' >>> import subprocess >>> import sys >>> proc = subprocess.Popen([sys.executable, '-c', cmd], stderr=subprocess.PIPE) >>> out, err = proc.communicate() >>> print(str(err.decode('ascii'))) size 3 1 3 2 ...
- classmethod closure_point(cls, expression=0, divisor=1)¶
Construct a closure point.
A closure point is a point of the topological closure of a polyhedron that is not a point of the polyhedron itself.
INPUT:
expression
– aLinear_Expression
or something convertible to it (Variable
or integer).divisor
– an integer.
OUTPUT:
A new
Generator
representing the point.Raises a
ValueError` if ``divisor==0
.Examples:
>>> from ppl import Generator, Variable >>> y = Variable(1) >>> Generator.closure_point(2*y+7, 3) closure_point(0/3, 2/3) >>> Generator.closure_point(y+7, 3) closure_point(0/3, 1/3) >>> Generator.closure_point(7, 3) closure_point() >>> Generator.closure_point(0, 0) Traceback (most recent call last): ... ValueError: PPL::closure_point(e, d): d == 0.
- coefficient(self, Variable v)¶
Return the coefficient of the variable
v
.INPUT:
v
– aVariable
.
OUTPUT:
An integer.
Examples:
>>> from ppl import Variable, line >>> x = Variable(0) >>> line = line(3*x+1) >>> line line(1) >>> line.coefficient(x) mpz(1)
- coefficients(self)¶
Return the coefficients of the generator.
See also
coefficient()
.OUTPUT:
A tuple of integers of length
space_dimension()
.Examples:
>>> from ppl import Variable, point >>> x = Variable(0); y = Variable(1) >>> p = point(3*x+5*y+1, 2); p point(3/2, 5/2) >>> p.coefficients() (mpz(3), mpz(5))
- divisor(self)¶
If
self
is either a point or a closure point, return its divisor.OUTPUT:
An integer. If
self
is a ray or a line, raisesValueError
.Examples:
>>> from ppl import Generator, Variable >>> x = Variable(0) >>> y = Variable(1) >>> point = Generator.point(2*x-y+5) >>> point.divisor() mpz(1) >>> line = Generator.line(2*x-y+5) >>> line.divisor() Traceback (most recent call last): ... ValueError: PPL::Generator::divisor(): *this is neither a point nor a closure point.
- is_closure_point(self)¶
Test whether
self
is a closure point.OUTPUT:
Boolean.
Examples:
>>> from ppl import Variable, point, closure_point, ray, line >>> x = Variable(0) >>> line(x).is_closure_point() False >>> ray(x).is_closure_point() False >>> point(x,2).is_closure_point() False >>> closure_point(x,2).is_closure_point() True
- is_equivalent_to(self, Generator g)¶
Test whether
self
andg
are equivalent.INPUT:
g
– aGenerator
.
OUTPUT:
Boolean. Returns
True
if and only ifself
andg
are equivalent generators.Note that generators having different space dimensions are not equivalent.
Examples:
>>> from ppl import Variable, point, line >>> x = Variable(0) >>> y = Variable(1) >>> point(2*x , 2).is_equivalent_to( point(x) ) True >>> point(2*x+0*y, 2).is_equivalent_to( point(x) ) False >>> line(4*x).is_equivalent_to(line(x)) True
- is_line(self)¶
Test whether
self
is a line.OUTPUT:
Boolean.
Examples:
>>> from ppl import Variable, point, closure_point, ray, line >>> x = Variable(0) >>> line(x).is_line() True >>> ray(x).is_line() False >>> point(x,2).is_line() False >>> closure_point(x,2).is_line() False
- is_line_or_ray(self)¶
Test whether
self
is a line or a ray.OUTPUT:
Boolean.
Examples:
>>> from ppl import Variable, point, closure_point, ray, line >>> x = Variable(0) >>> line(x).is_line_or_ray() True >>> ray(x).is_line_or_ray() True >>> point(x,2).is_line_or_ray() False >>> closure_point(x,2).is_line_or_ray() False
- is_point(self)¶
Test whether
self
is a point.OUTPUT:
Boolean.
Examples:
>>> from ppl import Variable, point, closure_point, ray, line >>> x = Variable(0) >>> line(x).is_point() False >>> ray(x).is_point() False >>> point(x,2).is_point() True >>> closure_point(x,2).is_point() False
- is_ray(self)¶
Test whether
self
is a ray.OUTPUT:
Boolean.
Examples:
>>> from ppl import Variable, point, closure_point, ray, line >>> x = Variable(0) >>> line(x).is_ray() False >>> ray(x).is_ray() True >>> point(x,2).is_ray() False >>> closure_point(x,2).is_ray() False
- classmethod line(cls, expression)¶
Construct a line.
INPUT:
expression
– aLinear_Expression
or something convertible to it (Variable
or integer).
OUTPUT:
A new
Generator
representing the line.Raises a
ValueError` if the homogeneous part of ``expression
represents the origin of the vector space.Examples:
>>> from ppl import Generator, Variable >>> y = Variable(1) >>> Generator.line(2*y) line(0, 1) >>> Generator.line(y) line(0, 1) >>> Generator.line(1) Traceback (most recent call last): ... ValueError: PPL::line(e): e == 0, but the origin cannot be a line.
- permute_space_dimensions(self, cycle)¶
Permute the coordinates according to
cycle
.>>> from ppl import Generator, Variable >>> x = Variable(0); y = Variable(1); z = Variable(2) >>> p = Generator.point(2*x+7*y-z, 3) >>> p.permute_space_dimensions([0, 1]) >>> p point(7/3, 2/3, -1/3) >>> p.permute_space_dimensions([0, 2, 1]) >>> p point(2/3, -1/3, 7/3)
- classmethod point(cls, expression=0, divisor=1)¶
Construct a point.
INPUT:
expression
– aLinear_Expression
or something convertible to it (Variable
or integer).divisor
– an integer.
OUTPUT:
A new
Generator
representing the point.Raises a
ValueError` if ``divisor==0
.Examples:
>>> from ppl import Generator, Variable >>> y = Variable(1) >>> Generator.point(2*y+7, 3) point(0/3, 2/3) >>> Generator.point(y+7, 3) point(0/3, 1/3) >>> Generator.point(7, 3) point() >>> Generator.point(0, 0) Traceback (most recent call last): ... ValueError: PPL::point(e, d): d == 0.
- classmethod ray(cls, expression)¶
Construct a ray.
INPUT:
expression
– aLinear_Expression
or something convertible to it (Variable
or integer).
OUTPUT:
A new
Generator
representing the ray.Raises a
ValueError` if the homogeneous part of ``expression
represents the origin of the vector space.Examples:
>>> from ppl import Generator, Variable >>> y = Variable(1) >>> Generator.ray(2*y) ray(0, 1) >>> Generator.ray(y) ray(0, 1) >>> Generator.ray(1) Traceback (most recent call last): ... ValueError: PPL::ray(e): e == 0, but the origin cannot be a ray.
- set_space_dimension(self, size_t n)¶
Set the dimension of this generator to
n
Examples:
>>> import ppl >>> p = ppl.point() >>> p point() >>> p.set_space_dimension(5) >>> p point(0/1, 0/1, 0/1, 0/1, 0/1)
>>> p = ppl.point(1 * ppl.Variable(0) + 2 * ppl.Variable(1) + 3 * ppl.Variable(2)) >>> p.set_space_dimension(2) >>> p point(1/1, 2/1)
- space_dimension(self)¶
Return the dimension of the vector space enclosing
self
.OUTPUT:
Integer.
Examples:
>>> from ppl import Variable, point >>> x = Variable(0) >>> y = Variable(1) >>> point(x).space_dimension() 1 >>> point(y).space_dimension() 2
- type(self)¶
Return the generator type of
self
.OUTPUT:
String. One of
'line'
,'ray'
,'point'
, or'closure_point'
.Examples:
>>> from ppl import Variable, point, closure_point, ray, line >>> x = Variable(0) >>> line(x).type() 'line' >>> ray(x).type() 'ray' >>> point(x,2).type() 'point' >>> closure_point(x,2).type() 'closure_point'
- class ppl.generator.Generator_System¶
Bases:
object
Wrapper for PPL’s
Generator_System
class.An object of the class Generator_System is a system of generators, i.e., a multiset of objects of the class Generator (lines, rays, points and closure points). When inserting generators in a system, space dimensions are automatically adjusted so that all the generators in the system are defined on the same vector space. A system of generators which is meant to define a non-empty polyhedron must include at least one point: the reason is that lines, rays and closure points need a supporting point (lines and rays only specify directions while closure points only specify points in the topological closure of the NNC polyhedron).
Examples:
>>> from ppl import Generator_System, Variable, line, ray, point, closure_point >>> x = Variable(0) >>> y = Variable(1) >>> gs = Generator_System(line(5*x-2*y)) >>> gs.insert(ray(6*x-3*y)) >>> gs.insert(point(2*x-7*y, 5)) >>> gs.insert(closure_point(9*x-1*y, 2)) >>> gs Generator_System {line(5, -2), ray(2, -1), point(2/5, -7/5), closure_point(9/2, -1/2)}
- ascii_dump(self)¶
Write an ASCII dump to stderr.
Examples:
>>> cmd = 'from ppl import Generator_System, point, Variable\n' >>> cmd += 'x = Variable(0)\n' >>> cmd += 'y = Variable(1)\n' >>> cmd += 'gs = Generator_System( point(3*x+2*y+1) )\n' >>> cmd += 'gs.ascii_dump()\n' >>> import subprocess, sys >>> proc = subprocess.Popen([sys.executable, '-c', cmd], stderr=subprocess.PIPE) >>> out, err = proc.communicate() >>> print(str(err.decode('ascii'))) topology NECESSARILY_CLOSED ...
- clear(self)¶
Removes all generators from the generator system and sets its space dimension to 0.
Examples:
>>> from ppl import Variable, Generator_System, point >>> x = Variable(0) >>> gs = Generator_System( point(3*x) ); gs Generator_System {point(3/1)} >>> gs.clear() >>> gs Generator_System {}
- empty(self)¶
Return
True
if and only ifself
has no generators.OUTPUT:
Boolean.
Examples:
>>> from ppl import Variable, Generator_System, point >>> x = Variable(0) >>> gs = Generator_System() >>> gs.empty() True >>> gs.insert( point(-3*x) ) >>> gs.empty() False
- insert(self, Generator g)¶
Insert
g
into the generator system.The number of space dimensions of
self
is increased, if needed.INPUT:
g
– aGenerator
.
Examples:
>>> from ppl import Variable, Generator_System, point >>> x = Variable(0) >>> gs = Generator_System( point(3*x) ) >>> gs.insert( point(-3*x) ) >>> gs Generator_System {point(3/1), point(-3/1)}
- set_space_dimension(self, size_t n)¶
Set the dimension of the vector space enclosing
self
Examples:
>>> import ppl >>> gs = ppl.Generator_System() >>> gs.insert(ppl.point(ppl.Variable(0) + ppl.Variable(12))) >>> gs.insert(ppl.point(ppl.Variable(1) + 2*ppl.Variable(3))) >>> gs.space_dimension() 13 >>> gs.set_space_dimension(25) >>> gs.space_dimension() 25 >>> gs.set_space_dimension(3) >>> gs.space_dimension() 3
- space_dimension(self)¶
Return the dimension of the vector space enclosing
self
.OUTPUT:
Integer.
Examples:
>>> from ppl import Variable, Generator_System, point >>> x = Variable(0) >>> gs = Generator_System( point(3*x) ) >>> gs.space_dimension() 1
- class ppl.generator.Poly_Gen_Relation¶
Bases:
object
Wrapper for PPL’s
Poly_Con_Relation
class.INPUT/OUTPUT:
You must not construct
Poly_Gen_Relation
objects manually. You will usually get them fromrelation_with()
. You can also get pre-defined relations from the class methodsnothing()
andsubsumes()
.Examples:
>>> from ppl import Poly_Gen_Relation >>> nothing = Poly_Gen_Relation.nothing(); nothing nothing >>> subsumes = Poly_Gen_Relation.subsumes(); subsumes subsumes >>> nothing.implies( subsumes ) False >>> subsumes.implies( nothing ) True
- ascii_dump(self)¶
Write an ASCII dump to stderr.
Examples:
>>> cmd = 'from ppl import Poly_Gen_Relation\n' >>> cmd += 'Poly_Gen_Relation.nothing().ascii_dump()\n' >>> from subprocess import Popen, PIPE >>> import sys >>> proc = Popen([sys.executable, '-c', cmd], stderr=PIPE) >>> out, err = proc.communicate() >>> print(str(err.decode('ascii'))) NOTHING >>> proc.returncode 0
- implies(self, Poly_Gen_Relation y)¶
Test whether
self
impliesy
.INPUT:
y
– aPoly_Gen_Relation
.
OUTPUT:
Boolean.
True
if and only ifself
impliesy
.Examples:
>>> from ppl import Poly_Gen_Relation >>> nothing = Poly_Gen_Relation.nothing() >>> nothing.implies( nothing ) True
- classmethod nothing(cls)¶
Return the assertion that says nothing.
OUTPUT:
Examples:
>>> from ppl import Poly_Gen_Relation >>> Poly_Gen_Relation.nothing() nothing
- classmethod subsumes(cls)¶
Return the assertion “Adding the generator would not change the polyhedron”.
OUTPUT:
Examples:
>>> from ppl import Poly_Gen_Relation >>> Poly_Gen_Relation.subsumes() subsumes
Module ppl.polyhedron¶
- class ppl.polyhedron.C_Polyhedron(*args)¶
Bases:
Polyhedron
Wrapper for PPL’s
C_Polyhedron
class.An object of the class
C_Polyhedron
represents a topologically closed convex polyhedron in the vector space. SeeNNC_Polyhedron
for more general (not necessarily closed) polyhedra.When building a closed polyhedron starting from a system of constraints, an exception is thrown if the system contains a strict inequality constraint. Similarly, an exception is thrown when building a closed polyhedron starting from a system of generators containing a closure point.
INPUT:
arg
– the defining data of the polyhedron. Any one of the following is accepted:A non-negative integer. Depending on
degenerate_element
, either the space-filling or the empty polytope in the given dimensionarg
is constructed.A
Constraint_System
.A
Generator_System
.A single
Constraint
.A single
Generator
.A
C_Polyhedron
.
degenerate_element
– string, either'universe'
or'empty'
. Only used ifarg
is an integer.
OUTPUT:
A
C_Polyhedron
.Examples:
>>> from ppl import Constraint_System, Generator_System, Variable, C_Polyhedron, point, ray >>> x = Variable(0) >>> y = Variable(1) >>> C_Polyhedron( 5*x-2*y >= x+y-1 ) A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 1 ray, 1 line >>> cs = Constraint_System() >>> cs.insert( x >= 0 ) >>> cs.insert( y >= 0 ) >>> C_Polyhedron(cs) A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 2 rays >>> C_Polyhedron( point(x+y) ) A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point >>> gs = Generator_System() >>> gs.insert( point(-x-y) ) >>> gs.insert( ray(x) ) >>> C_Polyhedron(gs) A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 1 ray
The empty and universe polyhedra are constructed like this:
>>> C_Polyhedron(3, 'empty') The empty polyhedron in QQ^3 >>> C_Polyhedron(3, 'empty').constraints() Constraint_System {-1==0} >>> C_Polyhedron(3, 'universe') The space-filling polyhedron in QQ^3 >>> C_Polyhedron(3, 'universe').constraints() Constraint_System {}
Note that, by convention, the generator system of a polyhedron is either empty or contains at least one point. In particular, if you define a polyhedron via a non-empty
Generator_System
it must contain a point (at any position). If you start with a single generator, this generator must be a point:>>> C_Polyhedron( ray(x) ) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::C_Polyhedron(gs): *this is an empty polyhedron and the non-empty generator system gs contains no points.
- class ppl.polyhedron.NNC_Polyhedron(*args)¶
Bases:
Polyhedron
Wrapper for PPL’s
NNC_Polyhedron
class.An object of the class
NNC_Polyhedron
represents a not necessarily closed (NNC) convex polyhedron in the vector space.Note: Since NNC polyhedra are a generalization of closed polyhedra, any object of the class
C_Polyhedron
can be (explicitly) converted into an object of the classNNC_Polyhedron
. The reason for defining two different classes is that objects of the classC_Polyhedron
are characterized by a more efficient implementation, requiring less time and memory resources.INPUT:
arg
– the defining data of the polyhedron. Any one of the following is accepted:An non-negative integer. Depending on
degenerate_element
, either the space-filling or the empty polytope in the given dimensionarg
is constructed.A
Constraint_System
.A
Generator_System
.A single
Constraint
.A single
Generator
.A
C_Polyhedron
.
degenerate_element
– string, either'universe'
or'empty'
. Only used ifarg
is an integer.
OUTPUT:
A
C_Polyhedron
.Examples:
>>> from ppl import Constraint, Constraint_System, Generator, Generator_System, Variable, NNC_Polyhedron, point, ray, closure_point >>> x = Variable(0) >>> y = Variable(1) >>> NNC_Polyhedron( 5*x-2*y > x+y-1 ) A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 1 closure_point, 1 ray, 1 line >>> cs = Constraint_System() >>> cs.insert( x > 0 ) >>> cs.insert( y > 0 ) >>> NNC_Polyhedron(cs) A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 1 closure_point, 2 rays >>> NNC_Polyhedron( point(x+y) ) A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point >>> gs = Generator_System() >>> gs.insert( point(-y) ) >>> gs.insert( closure_point(-x-y) ) >>> gs.insert( ray(x) ) >>> p = NNC_Polyhedron(gs); p A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 1 closure_point, 1 ray >>> p.minimized_constraints() Constraint_System {x1+1==0, x0+1>0}
Note that, by convention, every polyhedron must contain a point:
>>> NNC_Polyhedron( closure_point(x+y) ) Traceback (most recent call last): ... ValueError: PPL::NNC_Polyhedron::NNC_Polyhedron(gs): *this is an empty polyhedron and the non-empty generator system gs contains no points.
- class ppl.polyhedron.Polyhedron¶
Bases:
object
Wrapper for PPL’s
Polyhedron
class.An object of the class Polyhedron represents a convex polyhedron in the vector space.
A polyhedron can be specified as either a finite system of constraints or a finite system of generators (see Section Representations of Convex Polyhedra) and it is always possible to obtain either representation. That is, if we know the system of constraints, we can obtain from this the system of generators that define the same polyhedron and vice versa. These systems can contain redundant members: in this case we say that they are not in the minimal form.
INPUT/OUTPUT:
This is an abstract base for
C_Polyhedron
andNNC_Polyhedron
. You cannot instantiate this class.- BHRZ03_widening_assign(self, Polyhedron y, unsigned int tp=0)¶
Assigns to
self`
the result of computing the BHRZ03-widening betweenself
andy
.INPUT:
y
– aPolyhedron
that must be contained inself
tp
– an optional unsigned variable with the number of available tokens (to be used when applying the widening with tokens delay technique).
OUTPUT:
This method assigns to
self
the result of computing the BHRZ03-widening betweenself
andy
. And returns the new value oftp
.Raises a
ValueError
ifself
andy
are topology-incompatible.Examples:
>>> from ppl import NNC_Polyhedron, Variable >>> x = Variable(0) >>> y = Variable(1) >>> ph1 = NNC_Polyhedron(2) >>> ph1.add_constraint( y >= 0 ) >>> ph1.add_constraint( x + y > 0 ) >>> ph1.add_constraint( x - y < 1 ) >>> ph2 = NNC_Polyhedron(2) >>> ph2.add_constraint( y >= 0 ) >>> ph2.add_constraint( x > 0 ) >>> ph2.add_constraint( x < 1 ) >>> tp = ph1.BHRZ03_widening_assign( ph2 ) >>> known_result = NNC_Polyhedron(2) >>> known_result.add_constraint(y >= 0) >>> known_result == ph1 True
>>> from ppl import C_Polyhedron, Generator_System, point, ray >>> gs1 = Generator_System() >>> gs1.insert(point()) >>> gs1.insert(point( x + 2 * y )) >>> gs1.insert(ray( x )) >>> gs1.insert(ray( 2 * x + y )) >>> ph1 = C_Polyhedron(gs1) >>> gs2 = Generator_System() >>> gs2.insert(point()) >>> gs2.insert(point( x + 2 * y )) >>> gs2.insert(ray( x )) >>> gs2.insert(ray( x + y )) >>> ph2 = C_Polyhedron( gs2 ) >>> tp = ph2.BHRZ03_widening_assign( ph1 ) >>> known_result = C_Polyhedron(2) >>> known_result.add_constraint( y >= 0 ) >>> known_result.add_constraint( 2 * x - y >= 0 ) >>> ph2 == known_result True
if this method is going to be called too many times, the
tp
parameter allows one to reduce the computation cost by computing the widening only whentp
is equal to 0, otherwise the this method will decrement the value oftp
and return it.>>> from ppl import closure_point >>> gs1 = Generator_System() >>> gs1.insert(point( 2 * x )) >>> gs1.insert(closure_point( x + y )) >>> gs1.insert(closure_point( 3 * x + y )) >>> ph1 = NNC_Polyhedron(gs1) >>> gs2 = Generator_System() >>> gs2.insert(point( 2 * x )) >>> gs2.insert(closure_point( y )) >>> gs2.insert(closure_point( 4 * x + y )) >>> ph2 = NNC_Polyhedron(gs2) >>> ph2_copy = NNC_Polyhedron(ph2) >>> known_result = NNC_Polyhedron(2) >>> known_result.add_constraint(y >= 0) >>> known_result.add_constraint(y < 1) >>> tp = ph2.BHRZ03_widening_assign(ph1, 1) >>> tp == 0 True >>> ph2 == ph2_copy True >>> tp = ph2.BHRZ03_widening_assign(ph1, 0) >>> tp == 0 True >>> ph2 == known_result True
- H79_widening_assign(self, Polyhedron y, unsigned int tp=0)¶
Assigns to
self`
the result of computing the H79-widening betweenself
andy
.INPUT:
y
– aPolyhedron
that must be contained inself
tp
– an optional unsigned variable with the number of available tokens (to be used when applying the widening with tokens delay technique).
OUTPUT:
This method assigns to
self
the result of computing the BHRZ03-widening betweenself
andy
. And returns the new value oftp
.Raises a
ValueError
ifself
andy
are topology-incompatible.Examples: >>> from ppl import Variable, C_Polyhedron >>> x = Variable(0) >>> y = Variable(1) >>> ph1 = C_Polyhedron(2) >>> ph1.add_constraint( x >= 2 ) >>> ph1.add_constraint( y >= 0 ) >>> ph2 = C_Polyhedron(2) >>> ph2.add_constraint( x >= 0 ) >>> ph2.add_constraint( y >= 0 ) >>> ph2.add_constraint( x-y >= 2 ) >>> tp = ph1.H79_widening_assign(ph2) >>> known_result = C_Polyhedron(2) >>> known_result.add_constraint(y >= 0) >>> known_result == ph1 True
self
andy
must be dimension- and topology-compatible, or an exception is raised:>>> z = Variable(2) >>> ph1.H79_widening_assign( C_Polyhedron(z>=0) ) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::H79_widening_assign(y): this->space_dimension() == 2, y.space_dimension() == 3.
if this method is going to be called too many times, the
tp
parameter allows one to reduce the computation cost by computing the widening only whentp
is equal to 0, otherwise the this method will decrement the value oftp
and return it.>>> from ppl import point, ray, Generator_System >>> gs1 = Generator_System() >>> gs1.insert(point()) >>> gs1.insert(ray( x + y )) >>> gs1.insert(ray( x )) >>> ph1 = C_Polyhedron(gs1) >>> gs2 = Generator_System() >>> gs2.insert(point()) >>> gs2.insert(ray( x )) >>> gs2.insert(ray( x + 2 * y )) >>> ph2 = C_Polyhedron(gs2) >>> ph2_copy = C_Polyhedron(ph2) >>> known_result = C_Polyhedron(2) >>> known_result.add_constraint(y >= 0) >>> tp = ph2.H79_widening_assign(ph1, 1) >>> tp == 0 True >>> ph2 == ph2_copy True >>> tp = ph2.H79_widening_assign(ph1, 0) >>> tp == 0 True >>> ph2 == known_result True
- add_constraint(self, Constraint c)¶
Add a constraint to the polyhedron.
Adds a copy of constraint
c
to the system of constraints ofself
, without minimizing the result.See also
add_constraints()
.INPUT:
c
– theConstraint
that will be added to the system of constraints ofself
.
OUTPUT:
This method modifies the polyhedron
self
and does not return anything.Raises a
ValueError
ifself
and the constraintc
are topology-incompatible or dimension-incompatible.Examples:
>>> from ppl import Variable, C_Polyhedron >>> x = Variable(0) >>> y = Variable(1) >>> p = C_Polyhedron( y>=0 ) >>> p.add_constraint( x>=0 )
We just added a 1-d constraint to a 2-d polyhedron, this is fine. The other way is not:
>>> p = C_Polyhedron( x>=0 ) >>> p.add_constraint( y>=0 ) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::add_constraint(c): this->space_dimension() == 1, c.space_dimension() == 2.
The constraint must also be topology-compatible, that is,
C_Polyhedron
only allows non-strict inequalities:>>> p = C_Polyhedron( x>=0 ) >>> p.add_constraint( x< 1 ) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::add_constraint(c): c is a strict inequality.
- add_constraints(self, Constraint_System cs)¶
Add constraints to the polyhedron.
Adds a copy of constraints in
cs
to the system of constraints ofself
, without minimizing the result.See also
add_constraint()
.INPUT:
cs
– theConstraint_System
that will be added to the system of constraints ofself
.
OUTPUT:
This method modifies the polyhedron
self
and does not return anything.Raises a
ValueError
ifself
and the constraints incs
are topology-incompatible or dimension-incompatible.Examples:
>>> from ppl import Variable, C_Polyhedron, Constraint_System >>> x = Variable(0) >>> y = Variable(1) >>> cs = Constraint_System() >>> cs.insert(x>=0) >>> cs.insert(y>=0) >>> p = C_Polyhedron( y<=1 ) >>> p.add_constraints(cs)
We just added a 1-d constraint to a 2-d polyhedron, this is fine. The other way is not:
>>> p = C_Polyhedron( x<=1 ) >>> p.add_constraints(cs) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::add_recycled_constraints(cs): this->space_dimension() == 1, cs.space_dimension() == 2.
The constraints must also be topology-compatible, that is,
C_Polyhedron
only allows non-strict inequalities:>>> p = C_Polyhedron( x>=0 ) >>> p.add_constraints( Constraint_System(x<0) ) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::add_recycled_constraints(cs): cs contains strict inequalities.
- add_generator(self, Generator g)¶
Add a generator to the polyhedron.
Adds a copy of constraint
c
to the system of generators ofself
, without minimizing the result.INPUT:
g
– theGenerator
that will be added to the system of Generators ofself
.
OUTPUT:
This method modifies the polyhedron
self
and does not return anything.Raises a
ValueError
ifself
and the generatorg
are topology-incompatible or dimension-incompatible, or ifself
is an empty polyhedron andg
is not a point.Examples:
>>> from ppl import Variable, C_Polyhedron, point, closure_point, ray >>> x = Variable(0) >>> y = Variable(1) >>> p = C_Polyhedron(1, 'empty') >>> p.add_generator( point(0*x) )
We just added a 1-d generator to a 2-d polyhedron, this is fine. The other way is not:
>>> p = C_Polyhedron(1, 'empty') >>> p.add_generator( point(0*y) ) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::add_generator(g): this->space_dimension() == 1, g.space_dimension() == 2.
The constraint must also be topology-compatible, that is,
C_Polyhedron
does not allowclosure_point()
generators:>>> p = C_Polyhedron( point(0*x+0*y) ) >>> p.add_generator( closure_point(0*x) ) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::add_generator(g): g is a closure point.
Finally, ever non-empty polyhedron must have at least one point generator:
>>> p = C_Polyhedron(3, 'empty') >>> p.add_generator( ray(x) ) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::add_generator(g): *this is an empty polyhedron and g is not a point.
- add_generators(self, Generator_System gs)¶
Add generators to the polyhedron.
Adds a copy of the generators in
gs
to the system of generators ofself
, without minimizing the result.See also
add_generator()
.INPUT:
gs
– theGenerator_System
that will be added to the system of constraints ofself
.
OUTPUT:
This method modifies the polyhedron
self
and does not return anything.Raises a
ValueError
ifself
and one of the generators ings
are topology-incompatible or dimension-incompatible, or ifself
is an empty polyhedron andgs
does not contain a point.Examples:
>>> from ppl import Variable, C_Polyhedron, Generator_System, point, ray, closure_point >>> x = Variable(0) >>> y = Variable(1) >>> gs = Generator_System() >>> gs.insert(point(0*x+0*y)) >>> gs.insert(point(1*x+1*y)) >>> p = C_Polyhedron(2, 'empty') >>> p.add_generators(gs)
We just added a 1-d constraint to a 2-d polyhedron, this is fine. The other way is not:
>>> p = C_Polyhedron(1, 'empty') >>> p.add_generators(gs) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::add_recycled_generators(gs): this->space_dimension() == 1, gs.space_dimension() == 2.
The constraints must also be topology-compatible, that is,
C_Polyhedron
does not allowclosure_point()
generators:>>> p = C_Polyhedron( point(0*x+0*y) ) >>> p.add_generators( Generator_System(closure_point(x) )) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::add_recycled_generators(gs): gs contains closure points.
- add_space_dimensions_and_embed(self, m)¶
Add
m
new space dimensions and embedself
in the new vector space.The new space dimensions will be those having the highest indexes in the new polyhedron, which is characterized by a system of constraints in which the variables running through the new dimensions are not constrained. For instance, when starting from the polyhedron P and adding a third space dimension, the result will be the polyhedron
\[\Big\{ (x,y,z)^T \in \mathbb{R}^3 \Big| (x,y)^T \in P \Big\}\]INPUT:
m
– integer.
OUTPUT:
This method assigns the embedded polyhedron to
self
and does not return anything.Raises a
ValueError
if addingm
new space dimensions would cause the vector space to exceed dimensionself.max_space_dimension()
.Examples:
>>> from ppl import Variable, C_Polyhedron, point >>> x = Variable(0) >>> p = C_Polyhedron( point(3*x) ) >>> p.add_space_dimensions_and_embed(1) >>> p.minimized_generators() Generator_System {line(0, 1), point(3/1, 0/1)} >>> p.add_space_dimensions_and_embed( p.max_space_dimension() ) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::add_space_dimensions_and_embed(m): adding m new space dimensions exceeds the maximum allowed space dimension.
- add_space_dimensions_and_project(self, m)¶
Add
m
new space dimensions and embedself
in the new vector space.The new space dimensions will be those having the highest indexes in the new polyhedron, which is characterized by a system of constraints in which the variables running through the new dimensions are all constrained to be equal to 0. For instance, when starting from the polyhedron P and adding a third space dimension, the result will be the polyhedron
\[\Big\{ (x,y,0)^T \in \mathbb{R}^3 \Big| (x,y)^T \in P \Big\}\]INPUT:
m
– integer.
OUTPUT:
This method assigns the projected polyhedron to
self
and does not return anything.Raises a
ValueError
if addingm
new space dimensions would cause the vector space to exceed dimensionself.max_space_dimension()
.Examples:
>>> from ppl import Variable, C_Polyhedron, point >>> x = Variable(0) >>> p = C_Polyhedron( point(3*x) ) >>> p.add_space_dimensions_and_project(1) >>> p.minimized_generators() Generator_System {point(3/1, 0/1)} >>> p.add_space_dimensions_and_project( p.max_space_dimension() ) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::add_space_dimensions_and_project(m): adding m new space dimensions exceeds the maximum allowed space dimension.
- affine_dimension(self)¶
Return the affine dimension of
self
.OUTPUT:
An integer. Returns 0 if
self
is empty. Otherwise, returns the affine dimension ofself
.Examples:
>>> from ppl import Variable, C_Polyhedron >>> x = Variable(0) >>> y = Variable(1) >>> p = C_Polyhedron( 5*x-2*y == x+y-1 ) >>> p.affine_dimension() 1
- affine_image(self, Variable v, Linear_Expression le)¶
Set this polyhedron to the image of the map v -> le
INPUT:
v
– a variablele
– a linear expression
Examples:
>>> import ppl >>> x = ppl.Variable(0) >>> y = ppl.Variable(1) >>> gs0 = ppl.Generator_System() >>> gs0.insert(ppl.point()) >>> gs0.insert(ppl.point(x)) >>> gs0.insert(ppl.point(y)) >>> gs0.insert(ppl.point(x+y)) >>> p0 = ppl.C_Polyhedron(gs0) >>> gs1 = ppl.Generator_System() >>> gs1.insert(ppl.point()) >>> gs1.insert(ppl.point(x)) >>> gs1.insert(ppl.point(x+y)) >>> gs1.insert(ppl.point(2*x+y)) >>> p1 = ppl.C_Polyhedron(gs1)
>>> p0 == p1 False >>> p0.affine_image(x, x+y) >>> p0 == p1 True
- affine_preimage(self, Variable v, Linear_Expression le)¶
Set this polyhedron to the preimage of the map v -> le
INPUT:
v
– a variablele
– a linear expression
Examples:
>>> import ppl >>> x = ppl.Variable(0) >>> y = ppl.Variable(1) >>> gs0 = ppl.Generator_System() >>> gs0.insert(ppl.point()) >>> gs0.insert(ppl.point(x)) >>> gs0.insert(ppl.point(y)) >>> gs0.insert(ppl.point(x+y)) >>> p0 = ppl.C_Polyhedron(gs0) >>> gs1 = ppl.Generator_System() >>> gs1.insert(ppl.point()) >>> gs1.insert(ppl.point(x)) >>> gs1.insert(ppl.point(x+y)) >>> gs1.insert(ppl.point(2*x+y)) >>> p1 = ppl.C_Polyhedron(gs1)
>>> p0 == p1 False >>> p1.affine_preimage(x, x+y) >>> p0 == p1 True
- ascii_dump(self)¶
Write an ASCII dump to stderr.
Examples:
>>> cmd = 'from ppl import C_Polyhedron, Variable\n' >>> cmd += 'x = Variable(0)\n' >>> cmd += 'y = Variable(1)\n' >>> cmd += 'p = C_Polyhedron(3*x+2*y==1)\n' >>> cmd += 'p.minimized_generators()\n' >>> cmd += 'p.ascii_dump()\n' >>> from subprocess import Popen, PIPE >>> import sys >>> proc = Popen([sys.executable, '-c', cmd], stdout=PIPE, stderr=PIPE) >>> out, err = proc.communicate() >>> len(out) 0 >>> print(str(err.decode('ascii'))) space_dim 2 ... con_sys (up-to-date) topology NECESSARILY_CLOSED ... sat_c 0 x 0 sat_g 2 x 2 0 0 0 1
- bounded_BHRZ03_extrapolation_assign(self, Polyhedron y, Constraint_System cs, unsigned int tp=0)¶
Assigns to
self`
the result of computing the bounded extrapolation betweenself
andy
using the BHRZ03-widening operator.INPUT:
y
– aPolyhedron
that must be contained inself
cs
– aConstraint_System
used to improve the widened polyhedrontp
– an optional unsigned variable with the number of available tokens (to be used when applying the widening with tokens delay technique).
OUTPUT:
This method assigns to
self
the result of computing the bounded extrapolation betweenself
andy
using the BHRZ03-widening operator. And returns the new value oftp
.Raises a
ValueError
ifself
andy
are topology-incompatible or dimesion-incompatible.Examples:
>>> from ppl import Variable, Constraint_System, C_Polyhedron >>> x = Variable(0) >>> ph1 = C_Polyhedron(1) >>> ph1.add_constraint( 1 <= x ) >>> ph1.add_constraint( x <= 2 ) >>> ph2 = C_Polyhedron(1) >>> ph2.add_constraint( 0 <= x ) >>> ph2.add_constraint( x <= 3 ) >>> cs = Constraint_System() >>> tp = ph2.bounded_BHRZ03_extrapolation_assign(ph1, cs) >>> known_result = C_Polyhedron(1) >>> known_result.add_constraint(0 <= x) >>> known_result == ph2 True
- bounded_H79_extrapolation_assign(self, Polyhedron y, Constraint_System cs, unsigned int tp=0)¶
Assigns to
self`
the result of computing the bounded extrapolation betweenself
andy
using the H79-widening operator.INPUT:
y
– aPolyhedron
that must be contained inself
cs
– aConstraint_System
used to improve the widened polyhedrontp
– an optional unsigned variable with the number of available tokens (to be used when applying the widening with tokens delay technique).
OUTPUT:
This method assigns to
self
the result of computing the bounded extrapolation betweenself
andy
using the H79-widening operator. And returns the new value oftp
.Raises a
ValueError
ifself
andy
are topology-incompatible or dimesion-incompatible.Examples:
>>> from ppl import Variable, C_Polyhedron, Constraint_System >>> x = Variable(0) >>> y = Variable(1) >>> ph1 = C_Polyhedron(2) >>> ph1.add_constraint( x-3 >= 0 ) >>> ph1.add_constraint( x-3 <= 1 ) >>> ph1.add_constraint( y >= 0 ) >>> ph1.add_constraint( y <= 1 ) >>> ph2 = C_Polyhedron(2) >>> ph2.add_constraint( 2*x-5 >= 0 ) >>> ph2.add_constraint( x-3 <= 1 ) >>> ph2.add_constraint( 2*y+3 >= 0 ) >>> ph2.add_constraint( 2*y-5 <= 0 ) >>> cs = Constraint_System() >>> cs.insert( x >= y ) >>> tp = ph2.bounded_H79_extrapolation_assign(ph1, cs) >>> known_result = C_Polyhedron(2) >>> known_result.add_constraint( x >= 2 ) >>> known_result.add_constraint( x <= 4 ) >>> known_result.add_constraint( y >= -2 ) >>> known_result.add_constraint( x >= y ) >>> known_result == ph2 True
- bounds_from_above(self, Linear_Expression expr)¶
Test whether the
expr
is bounded from above.INPUT:
expr
– aLinear_Expression
OUTPUT:
Boolean. Returns
True
if and only ifexpr
is bounded from above inself
.Raises a
ValueError
ifexpr
andthis
are dimension-incompatible.Examples:
>>> from ppl import Variable, C_Polyhedron, Linear_Expression >>> x = Variable(0); y = Variable(1) >>> p = C_Polyhedron(y<=0) >>> p.bounds_from_above(x+1) False >>> p.bounds_from_above(Linear_Expression(y)) True >>> p = C_Polyhedron(x<=0) >>> p.bounds_from_above(y+1) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::bounds_from_above(e): this->space_dimension() == 1, e.space_dimension() == 2.
- bounds_from_below(self, Linear_Expression expr)¶
Test whether the
expr
is bounded from above.INPUT:
expr
– aLinear_Expression
OUTPUT:
Boolean. Returns
True
if and only ifexpr
is bounded from above inself
.Raises a
ValueError
ifexpr
andthis
are dimension-incompatible.Examples:
>>> from ppl import Variable, C_Polyhedron, Linear_Expression >>> x = Variable(0); y = Variable(1) >>> p = C_Polyhedron(y>=0) >>> p.bounds_from_below(x+1) False >>> p.bounds_from_below(Linear_Expression(y)) True >>> p = C_Polyhedron(x<=0) >>> p.bounds_from_below(y+1) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::bounds_from_below(e): this->space_dimension() == 1, e.space_dimension() == 2.
- concatenate_assign(self, Polyhedron y)¶
Assign to
self
the concatenation ofself
andy
.This functions returns the Cartesian product of
self
andy
.Viewing a polyhedron as a set of tuples (its points), it is sometimes useful to consider the set of tuples obtained by concatenating an ordered pair of polyhedra. Formally, the concatenation of the polyhedra P and Q (taken in this order) is the polyhedron such that
\[R = \Big\{ (x_0,\dots,x_{n-1},y_0,\dots,y_{m-1})^T \in \mathbb{R}^{n+m} \Big| (x_0,\dots,x_{n-1})^T \in P ,~ (y_0,\dots,y_{m-1})^T \in Q \Big\}\]Another way of seeing it is as follows: first embed polyhedron P into a vector space of dimension n+m and then add a suitably renamed-apart version of the constraints defining Q.
INPUT:
m
– integer.
OUTPUT:
This method assigns the concatenated polyhedron to
self
and does not return anything.Raises a
ValueError
ifself
andy
are topology-incompatible or if addingy.space_dimension()
new space dimensions would cause the vector space to exceed dimensionself.max_space_dimension()
.Examples:
>>> from ppl import Variable, C_Polyhedron, NNC_Polyhedron, point >>> x = Variable(0) >>> p1 = C_Polyhedron( point(1*x) ) >>> p2 = C_Polyhedron( point(2*x) ) >>> p1.concatenate_assign(p2) >>> p1.minimized_generators() Generator_System {point(1/1, 2/1)}
The polyhedra must be topology-compatible and not exceed the maximum space dimension:
>>> p1.concatenate_assign( NNC_Polyhedron(1, 'universe') ) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::concatenate_assign(y): y is a NNC_Polyhedron. >>> p1.concatenate_assign( C_Polyhedron(p1.max_space_dimension(), 'empty') ) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::concatenate_assign(y): concatenation exceeds the maximum allowed space dimension.
- constrains(self, Variable var)¶
Test whether
var
is constrained inself
.INPUT:
var
– aVariable
.
OUTPUT:
Boolean. Returns
True
if and only ifvar
is constrained inself
.Raises a
ValueError
ifvar
is not a space dimension ofself
.Examples:
>>> from ppl import Variable, C_Polyhedron >>> x = Variable(0) >>> p = C_Polyhedron(1, 'universe') >>> p.constrains(x) False >>> p = C_Polyhedron(x>=0) >>> p.constrains(x) True >>> y = Variable(1) >>> p.constrains(y) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::constrains(v): this->space_dimension() == 1, v.space_dimension() == 2.
- constraints(self)¶
Returns the system of constraints.
See also
minimized_constraints()
.OUTPUT:
A
Constraint_System
.Examples:
>>> from ppl import Variable, C_Polyhedron >>> x = Variable(0) >>> y = Variable(1) >>> p = C_Polyhedron(y >= 0) >>> p.add_constraint(x >= 0) >>> p.add_constraint(x+y >= 0) >>> p.constraints() Constraint_System {x1>=0, x0>=0, x0+x1>=0} >>> p.minimized_constraints() Constraint_System {x1>=0, x0>=0}
- contains(self, Polyhedron y)¶
Test whether
self
containsy
.INPUT:
y
– aPolyhedron
.
OUTPUT:
Boolean. Returns
True
if and only ifself
containsy
.Raises a
ValueError
ifself
andy
are topology-incompatible or dimension-incompatible.Examples:
>>> from ppl import Variable, C_Polyhedron, NNC_Polyhedron >>> x = Variable(0) >>> y = Variable(1) >>> p0 = C_Polyhedron( x>=0 ) >>> p1 = C_Polyhedron( x>=1 ) >>> p0.contains(p1) True >>> p1.contains(p0) False
Errors are raised if the dimension or topology is not compatible:
>>> p0.contains(C_Polyhedron(y>=0)) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::contains(y): this->space_dimension() == 1, y.space_dimension() == 2. >>> p0.contains(NNC_Polyhedron(x>0)) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::contains(y): y is a NNC_Polyhedron.
- contains_integer_point(self)¶
Test whether
self
contains an integer point.OUTPUT:
Boolean. Returns
True
if and only ifself
contains an integer point.Examples:
>>> from ppl import Variable, NNC_Polyhedron >>> x = Variable(0) >>> p = NNC_Polyhedron(x>0) >>> p.add_constraint(x<1) >>> p.contains_integer_point() False >>> p.topological_closure_assign() >>> p.contains_integer_point() True
- difference_assign(y)¶
Polyhedron.poly_difference_assign(self, Polyhedron y)
Assign to
self
the poly-difference ofself
andy
.For any pair of NNC polyhedra P_1 and P_2 the convex polyhedral difference (or poly-difference) of P_1 and P_2 is defined as the smallest convex polyhedron containing the set-theoretic difference P_1setminus P_2 of P_1 and P_2.
In general, even if P_1 and P_2 are topologically closed polyhedra, their poly-difference may be a convex polyhedron that is not topologically closed. For this reason, when computing the poly-difference of two
C_Polyhedron
, the library will enforce the topological closure of the result.INPUT:
y
– aPolyhedron
OUTPUT:
This method assigns the poly-difference to
self
and does not return anything.Raises a
ValueError
ifself
and andy
are topology-incompatible or dimension-incompatible.Examples:
>>> from ppl import Variable, C_Polyhedron, point, NNC_Polyhedron >>> x = Variable(0) >>> p = NNC_Polyhedron( point(0*x) ) >>> p.add_generator( point(1*x) ) >>> p.poly_difference_assign(NNC_Polyhedron( point(0*x) )) >>> p.minimized_constraints() Constraint_System {-x0+1>=0, x0>0}
The poly-difference of
C_polyhedron
is really its closure:>>> p = C_Polyhedron( point(0*x) ) >>> p.add_generator( point(1*x) ) >>> p.poly_difference_assign(C_Polyhedron( point(0*x) )) >>> p.minimized_constraints() Constraint_System {x0>=0, -x0+1>=0}
self
andy
must be dimension- and topology-compatible, or an exception is raised:>>> y = Variable(1) >>> p.poly_difference_assign( C_Polyhedron(y>=0) ) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::poly_difference_assign(y): this->space_dimension() == 1, y.space_dimension() == 2. >>> p.poly_difference_assign( NNC_Polyhedron(x+y<1) ) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::poly_difference_assign(y): y is a NNC_Polyhedron.
- drop_some_non_integer_points(self)¶
Possibly tighten
self
by dropping some points with non-integer coordinates.The modified polyhedron satisfies:
it is (not necessarily strictly) contained in the original polyhedron.
integral vertices (generating points with integer coordinates) of the original polyhedron are not removed.
Note
The modified polyhedron is not necessarily a lattice polyhedron; Some vertices will, in general, still be rational. Lattice points interior to the polyhedron may be lost in the process.
Examples:
>>> from ppl import Variable, NNC_Polyhedron, Constraint_System >>> x = Variable(0) >>> y = Variable(1) >>> cs = Constraint_System() >>> cs.insert( x>=0 ) >>> cs.insert( y>=0 ) >>> cs.insert( 3*x+2*y<5 ) >>> p = NNC_Polyhedron(cs) >>> p.minimized_generators() Generator_System {point(0/1, 0/1), closure_point(0/2, 5/2), closure_point(5/3, 0/3)} >>> p.drop_some_non_integer_points() >>> p.minimized_generators() Generator_System {point(0/1, 0/1), point(0/1, 2/1), point(4/3, 0/3)}
- generators(self)¶
Returns the system of generators.
See also
minimized_generators()
.OUTPUT:
A
Generator_System
.Examples:
>>> from ppl import Variable, C_Polyhedron, point >>> x = Variable(0) >>> y = Variable(1) >>> p = C_Polyhedron(3,'empty') >>> p.add_generator(point(-x-y)) >>> p.add_generator(point(0)) >>> p.add_generator(point(+x+y)) >>> p.generators() Generator_System {point(-1/1, -1/1, 0/1), point(0/1, 0/1, 0/1), point(1/1, 1/1, 0/1)} >>> p.minimized_generators() Generator_System {point(-1/1, -1/1, 0/1), point(1/1, 1/1, 0/1)}
- hash_code(self)¶
Return a hash code
Tests:
>>> from ppl import Constraint_System, Variable, C_Polyhedron >>> x = Variable(0) >>> p = C_Polyhedron( 5*x >= 3 ) >>> p.hash_code() 1
>>> y = Variable(1) >>> cs = Constraint_System() >>> cs.insert( x >= 0 ) >>> cs.insert( y >= 0 ) >>> p = C_Polyhedron(cs) >>> p.hash_code() 2
- intersection_assign(self, Polyhedron y)¶
Assign to
self
the intersection ofself
andy
.INPUT:
y
– aPolyhedron
OUTPUT:
This method assigns the intersection to
self
and does not return anything.Raises a
ValueError
ifself
and andy
are topology-incompatible or dimension-incompatible.Examples:
>>> from ppl import Variable, C_Polyhedron, NNC_Polyhedron >>> x = Variable(0) >>> y = Variable(1) >>> p = C_Polyhedron( 1*x+0*y >= 0 ) >>> p.intersection_assign( C_Polyhedron(y>=0) ) >>> p.constraints() Constraint_System {x0>=0, x1>=0} >>> z = Variable(2) >>> p.intersection_assign( C_Polyhedron(z>=0) ) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::intersection_assign(y): this->space_dimension() == 2, y.space_dimension() == 3. >>> p.intersection_assign( NNC_Polyhedron(x+y<1) ) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::intersection_assign(y): y is a NNC_Polyhedron.
- is_bounded(self)¶
Test whether
self
is bounded.OUTPUT:
Boolean. Returns
True
if and only ifself
is a bounded polyhedron.Examples:
>>> from ppl import Variable, NNC_Polyhedron, point, closure_point, ray >>> x = Variable(0) >>> p = NNC_Polyhedron( point(0*x) ) >>> p.add_generator( closure_point(1*x) ) >>> p.is_bounded() True >>> p.add_generator( ray(1*x) ) >>> p.is_bounded() False
- is_discrete(self)¶
Test whether
self
is discrete.OUTPUT:
Boolean. Returns
True
if and only ifself
is discrete.Examples:
>>> from ppl import Variable, C_Polyhedron, point >>> x = Variable(0); y = Variable(1) >>> p = C_Polyhedron( point(1*x+2*y) ) >>> p.is_discrete() True >>> p.add_generator( point(x) ) >>> p.is_discrete() False
- is_disjoint_from(self, Polyhedron y)¶
Tests whether
self
andy
are disjoint.INPUT:
y
– aPolyhedron
.
OUTPUT:
Boolean. Returns
True
if and only ifself
andy
are disjoint.Rayises a
ValueError
ifself
andy
are topology-incompatible or dimension-incompatible.Examples:
>>> from ppl import Variable, C_Polyhedron, NNC_Polyhedron >>> x = Variable(0); y = Variable(1) >>> C_Polyhedron(x<=0).is_disjoint_from( C_Polyhedron(x>=1) ) True
This is not allowed:
>>> x = Variable(0); y = Variable(1) >>> poly_1d = C_Polyhedron(x<=0) >>> poly_2d = C_Polyhedron(x+0*y>=1) >>> poly_1d.is_disjoint_from(poly_2d) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::intersection_assign(y): this->space_dimension() == 1, y.space_dimension() == 2.
Nor is this:
>>> x = Variable(0); y = Variable(1) >>> c_poly = C_Polyhedron( x<=0 ) >>> nnc_poly = NNC_Polyhedron( x >0 ) >>> c_poly.is_disjoint_from(nnc_poly) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::intersection_assign(y): y is a NNC_Polyhedron. >>> NNC_Polyhedron(c_poly).is_disjoint_from(nnc_poly) True
- is_empty(self)¶
Test if
self
is an empty polyhedron.OUTPUT:
Boolean.
Examples:
>>> from ppl import C_Polyhedron >>> C_Polyhedron(3, 'empty').is_empty() True >>> C_Polyhedron(3, 'universe').is_empty() False
- is_topologically_closed(self)¶
Tests if
self
is topologically closed.OUTPUT:
Returns
True
if and only ifself
is a topologically closed subset of the ambient vector space.Examples:
>>> from ppl import Variable, C_Polyhedron, NNC_Polyhedron >>> x = Variable(0); y = Variable(1) >>> C_Polyhedron(3, 'universe').is_topologically_closed() True >>> C_Polyhedron( x>=1 ).is_topologically_closed() True >>> NNC_Polyhedron( x>1 ).is_topologically_closed() False
- is_universe(self)¶
Test if
self
is a universe (space-filling) polyhedron.OUTPUT:
Boolean.
Examples:
>>> from ppl import C_Polyhedron >>> C_Polyhedron(3, 'empty').is_universe() False >>> C_Polyhedron(3, 'universe').is_universe() True
- limited_BHRZ03_extrapolation_assign(self, Polyhedron y, Constraint_System cs, unsigned int tp=0)¶
Assigns to
self`
the result of computing the limited extrapolation betweenself
andy
using the BHRZ03-widening operator.INPUT:
y
– aPolyhedron
that must be contained inself
cs
– aConstraint_System
used to improve the widened polyhedrontp
– an optional unsigned variable with the number of available tokens (to be used when applying the widening with tokens delay technique).
OUTPUT:
This method assigns to
self
the result of computing the limited extrapolation betweenself
andy
using the BHRZ03-widening operator. And returns the new value oftp
.Raises a
ValueError
ifself
andy
are topology-incompatible or dimesion-incompatible.Examples: >>> from ppl import C_Polyhedron, Generator_System, Variable, point, Constraint_System >>> x = Variable(0) >>> y = Variable(1) >>> gs1 = Generator_System() >>> gs1.insert(point()) >>> gs1.insert(point( x + y )) >>> gs1.insert(point( x )) >>> ph1 = C_Polyhedron( gs1 ) >>> gs2 = Generator_System() >>> gs2.insert(point()) >>> gs2.insert(point( 2 * x )) >>> gs2.insert(point( 2 * x + 2 * y )) >>> ph2 = C_Polyhedron( gs2 ) >>> cs = Constraint_System() >>> cs.insert( x <= 5 ) >>> cs.insert( y <= 4 ) >>> tp = ph2.limited_BHRZ03_extrapolation_assign(ph1, cs) >>> known_result = C_Polyhedron(2) >>> known_result.add_constraint(y >= 0) >>> known_result.add_constraint(x - y >= 0) >>> known_result.add_constraint(y <= 4) >>> known_result.add_constraint(x <= 5) >>> known_result == ph2 True
- limited_H79_extrapolation_assign(self, Polyhedron y, Constraint_System cs, unsigned int tp=0)¶
Assigns to
self`
the result of computing the limited extrapolation betweenself
andy
using the H79-widening operator.INPUT:
y
– aPolyhedron
that must be contained inself
cs
– aConstraint_System
used to improve the widened polyhedrontp
– an optional unsigned variable with the number of available tokens (to be used when applying the widening with tokens delay technique).
OUTPUT:
This method assigns to
self
the result of computing the limited extrapolation betweenself
andy
using the H79-widening operator. And returns the new value oftp
.Raises a
ValueError
ifself
andy
are topology-incompatible or dimesion-incompatible.Examples:
>>> from ppl import Variable, C_Polyhedron, Constraint_System, point >>> x = Variable(0) >>> y = Variable(1) >>> ph1 = C_Polyhedron(2) >>> ph1.add_constraint( x >= 0 ) >>> ph1.add_constraint( x <= 1 ) >>> ph1.add_constraint( y >= 0 ) >>> ph1.add_constraint( x - y >= 0 ) >>> ph2 = C_Polyhedron(2) >>> ph2.add_constraint( x >= 0 ) >>> ph2.add_constraint( x <= 2 ) >>> ph2.add_constraint( y >= 0 ) >>> ph2.add_constraint( x - y >= 0 ) >>> cs = Constraint_System() >>> cs.insert( x >= 0 ) >>> cs.insert( y >= 0 ) >>> cs.insert( x <= 5 ) >>> cs.insert( y <= 5 ) >>> tp = ph2.limited_H79_extrapolation_assign(ph1, cs) >>> known_result = C_Polyhedron(2) >>> known_result.add_constraint( x - y >= 0) >>> known_result.add_constraint(y >= 0) >>> known_result.add_constraint(x <= 5) >>> known_result == ph2 True
>>> ph1 = C_Polyhedron(2) >>> ph1.add_constraint( x >= 0 ) >>> ph1.add_constraint( x <= 1 ) >>> ph1.add_constraint( y == 0 ) >>> ph2 = C_Polyhedron(2) >>> ph2.add_constraint( x <= 2 ) >>> ph2.add_constraint( y >= 0 ) >>> ph2.add_constraint( y <= x ) >>> cs = Constraint_System() >>> cs.insert( x <= 5 ) >>> cs.insert( y <= -1 ) >>> known_result = C_Polyhedron(ph2) >>> known_result.add_generator(point(5*x)) >>> known_result.add_generator(point(5*x + 5*y)) >>> tp = ph2.limited_H79_extrapolation_assign(ph1, cs) >>> known_result == ph2 True
- max_space_dimension(self)¶
Return the maximum space dimension all kinds of Polyhedron can handle.
OUTPUT:
Integer.
Examples:
>>> from ppl import C_Polyhedron >>> C_Polyhedron(1, 'empty').max_space_dimension() > 2**20 True
- maximize(self, Linear_Expression expr)¶
Maximize
expr
.INPUT:
expr
– aLinear_Expression
.
OUTPUT:
A dictionary with the following keyword:value pair:
'bounded'
: Boolean. Whether the linear expressionexpr
is bounded from above onself
.
If
expr
is bounded from above, the following additional keyword:value pairs are set to provide information about the supremum:'sup_n'
: Integer. The numerator of the supremum value.'sup_d'
: Non-zero integer. The denominator of the supremum value.'maximum'
: Boolean.True
if and only if the supremum is also the maximum value.'generator'
: aGenerator
. A point or closure point where expr reaches its supremum value.
Examples:
>>> from ppl import Variable, C_Polyhedron, NNC_Polyhedron, Constraint_System >>> x = Variable(0); y = Variable(1) >>> cs = Constraint_System() >>> cs.insert(x >= 0) >>> cs.insert(y >= 0) >>> cs.insert(3*x+5*y <= 10) >>> p = C_Polyhedron(cs) >>> pm = p.maximize(x+y) >>> for key in sorted(pm): ... print("{} {}".format(key, pm[key])) bounded True generator point(10/3, 0/3) maximum True sup_d 3 sup_n 10
Unbounded case:
>>> cs = Constraint_System() >>> cs.insert(x > 0) >>> p = NNC_Polyhedron(cs) >>> p.maximize(+x) {'bounded': False} >>> pm = p.maximize(-x) >>> for key in sorted(pm): ... print("{} {}".format(key, pm[key])) bounded True generator closure_point(0/1) maximum False sup_d 1 sup_n 0
- minimize(self, Linear_Expression expr)¶
Minimize
expr
.INPUT:
expr
– aLinear_Expression
.
OUTPUT:
A dictionary with the following keyword:value pair:
'bounded'
: Boolean. Whether the linear expressionexpr
is bounded from below onself
.
If
expr
is bounded from below, the following additional keyword:value pairs are set to provide information about the infimum:'inf_n'
: Integer. The numerator of the infimum value.'inf_d'
: Non-zero integer. The denominator of the infimum value.'minimum'
: Boolean.True
if and only if the infimum is also the minimum value.'generator'
: aGenerator
. A point or closure point where expr reaches its infimum value.
Examples:
>>> from ppl import Variable, C_Polyhedron, NNC_Polyhedron, Constraint_System >>> x = Variable(0); y = Variable(1) >>> cs = Constraint_System() >>> cs.insert( x>=0 ) >>> cs.insert( y>=0 ) >>> cs.insert( 3*x+5*y<=10 ) >>> p = C_Polyhedron(cs) >>> pm = p.minimize( x+y ) >>> for key in sorted(pm): ... print("{} {}".format(key, pm[key])) bounded True generator point(0/1, 0/1) inf_d 1 inf_n 0 minimum True
Unbounded case:
>>> cs = Constraint_System() >>> cs.insert(x > 0) >>> p = NNC_Polyhedron(cs) >>> pm = p.minimize(+x) >>> for key in sorted(pm): ... print("{} {}".format(key, pm[key])) bounded True generator closure_point(0/1) inf_d 1 inf_n 0 minimum False >>> p.minimize( -x ) {'bounded': False}
- minimized_constraints(self)¶
Returns the minimized system of constraints.
See also
constraints()
.OUTPUT:
A
Constraint_System
.Examples:
>>> from ppl import Variable, C_Polyhedron >>> x = Variable(0) >>> y = Variable(1) >>> p = C_Polyhedron(y >= 0) >>> p.add_constraint(x >= 0) >>> p.add_constraint(x+y >= 0) >>> p.constraints() Constraint_System {x1>=0, x0>=0, x0+x1>=0} >>> p.minimized_constraints() Constraint_System {x1>=0, x0>=0}
- minimized_generators(self)¶
Returns the minimized system of generators.
See also
generators()
.OUTPUT:
A
Generator_System
.Examples:
>>> from ppl import Variable, C_Polyhedron, point >>> x = Variable(0) >>> y = Variable(1) >>> p = C_Polyhedron(3,'empty') >>> p.add_generator(point(-x-y)) >>> p.add_generator(point(0)) >>> p.add_generator(point(+x+y)) >>> p.generators() Generator_System {point(-1/1, -1/1, 0/1), point(0/1, 0/1, 0/1), point(1/1, 1/1, 0/1)} >>> p.minimized_generators() Generator_System {point(-1/1, -1/1, 0/1), point(1/1, 1/1, 0/1)}
- poly_difference_assign(self, Polyhedron y)¶
Assign to
self
the poly-difference ofself
andy
.For any pair of NNC polyhedra P_1 and P_2 the convex polyhedral difference (or poly-difference) of P_1 and P_2 is defined as the smallest convex polyhedron containing the set-theoretic difference P_1setminus P_2 of P_1 and P_2.
In general, even if P_1 and P_2 are topologically closed polyhedra, their poly-difference may be a convex polyhedron that is not topologically closed. For this reason, when computing the poly-difference of two
C_Polyhedron
, the library will enforce the topological closure of the result.INPUT:
y
– aPolyhedron
OUTPUT:
This method assigns the poly-difference to
self
and does not return anything.Raises a
ValueError
ifself
and andy
are topology-incompatible or dimension-incompatible.Examples:
>>> from ppl import Variable, C_Polyhedron, point, NNC_Polyhedron >>> x = Variable(0) >>> p = NNC_Polyhedron( point(0*x) ) >>> p.add_generator( point(1*x) ) >>> p.poly_difference_assign(NNC_Polyhedron( point(0*x) )) >>> p.minimized_constraints() Constraint_System {-x0+1>=0, x0>0}
The poly-difference of
C_polyhedron
is really its closure:>>> p = C_Polyhedron( point(0*x) ) >>> p.add_generator( point(1*x) ) >>> p.poly_difference_assign(C_Polyhedron( point(0*x) )) >>> p.minimized_constraints() Constraint_System {x0>=0, -x0+1>=0}
self
andy
must be dimension- and topology-compatible, or an exception is raised:>>> y = Variable(1) >>> p.poly_difference_assign( C_Polyhedron(y>=0) ) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::poly_difference_assign(y): this->space_dimension() == 1, y.space_dimension() == 2. >>> p.poly_difference_assign( NNC_Polyhedron(x+y<1) ) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::poly_difference_assign(y): y is a NNC_Polyhedron.
- poly_hull_assign(self, Polyhedron y)¶
Assign to
self
the poly-hull ofself
andy
.For any pair of NNC polyhedra P_1 and P_2, the convex polyhedral hull (or poly-hull) of is the smallest NNC polyhedron that includes both P_1 and P_2. The poly-hull of any pair of closed polyhedra in is also closed.
INPUT:
y
– aPolyhedron
OUTPUT:
This method assigns the poly-hull to
self
and does not return anything.Raises a
ValueError
ifself
and andy
are topology-incompatible or dimension-incompatible.Examples:
>>> from ppl import Variable, C_Polyhedron, point, NNC_Polyhedron >>> x = Variable(0) >>> y = Variable(1) >>> p = C_Polyhedron( point(1*x+0*y) ) >>> p.poly_hull_assign(C_Polyhedron( point(0*x+1*y) )) >>> p.generators() Generator_System {point(0/1, 1/1), point(1/1, 0/1)}
self
andy
must be dimension- and topology-compatible, or an exception is raised:>>> z = Variable(2) >>> p.poly_hull_assign( C_Polyhedron(z>=0) ) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::poly_hull_assign(y): this->space_dimension() == 2, y.space_dimension() == 3. >>> p.poly_hull_assign( NNC_Polyhedron(x+y<1) ) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::poly_hull_assign(y): y is a NNC_Polyhedron.
- relation_with(self, arg)¶
Return the relations holding between the polyhedron
self
and the generator or constraintarg
.INPUT:
arg
– aGenerator
or aConstraint
.
OUTPUT:
A
Poly_Gen_Relation
or aPoly_Con_Relation
according to the type of the input.Raises
ValueError
ifself
and the generator/constraintarg
are dimension-incompatible.Examples:
>>> from ppl import Variable, C_Polyhedron, point >>> x = Variable(0); y = Variable(1) >>> p = C_Polyhedron(2, 'empty') >>> p.add_generator( point(1*x+0*y) ) >>> p.add_generator( point(0*x+1*y) ) >>> p.minimized_constraints() Constraint_System {x0+x1-1==0, -x1+1>=0, x1>=0} >>> p.relation_with( point(1*x+1*y) ) nothing >>> p.relation_with( point(1*x+1*y, 2) ) subsumes >>> p.relation_with( x+y==-1 ) is_disjoint >>> p.relation_with( x==y ) strictly_intersects >>> p.relation_with( x+y<=1 ) is_included, saturates >>> p.relation_with( x+y<1 ) is_disjoint, saturates
In a Python program you will usually use
relation_with()
together withimplies()
orimplies()
, for example:>>> from ppl import Poly_Con_Relation >>> p.relation_with( x+y<1 ).implies(Poly_Con_Relation.saturates()) True
You can only get relations with dimension-compatible generators or constraints:
>>> z = Variable(2) >>> p.relation_with( point(x+y+z) ) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::relation_with(g): this->space_dimension() == 2, g.space_dimension() == 3. >>> p.relation_with( z>0 ) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::relation_with(c): this->space_dimension() == 2, c.space_dimension() == 3.
- remove_higher_space_dimensions(self, new_dimension)¶
Remove the higher dimensions of the vector space so that the resulting space will have dimension
new_dimension
.OUTPUT:
This method modifies
self
and does not return anything.Raises a
ValueError
ifnew_dimensions
is greater than the space dimension ofself
.Examples:
>>> from ppl import C_Polyhedron, Variable >>> x = Variable(0) >>> y = Variable(1) >>> p = C_Polyhedron(3*x+0*y==2) >>> p.remove_higher_space_dimensions(1) >>> p.minimized_constraints() Constraint_System {3*x0-2==0} >>> p.remove_higher_space_dimensions(2) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::remove_higher_space_dimensions(nd): this->space_dimension() == 1, required space dimension == 2.
- space_dimension(self)¶
Return the dimension of the vector space enclosing
self
.OUTPUT:
Integer.
Examples:
>>> from ppl import Variable, C_Polyhedron >>> x = Variable(0) >>> y = Variable(1) >>> p = C_Polyhedron( 5*x-2*y >= x+y-1 ) >>> p.space_dimension() 2
- strictly_contains(self, Polyhedron y)¶
Test whether
self
strictly containsy
.INPUT:
y
– aPolyhedron
.
OUTPUT:
Boolean. Returns
True
if and only ifself
containsy
andself
does not equaly
.Raises a
ValueError
ifself
andy
are topology-incompatible or dimension-incompatible.Examples:
>>> from ppl import Variable, C_Polyhedron, NNC_Polyhedron >>> x = Variable(0) >>> y = Variable(1) >>> p0 = C_Polyhedron( x>=0 ) >>> p1 = C_Polyhedron( x>=1 ) >>> p0.strictly_contains(p1) True >>> p1.strictly_contains(p0) False
Errors are raised if the dimension or topology is not compatible:
>>> p0.strictly_contains(C_Polyhedron(y>=0)) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::contains(y): this->space_dimension() == 1, y.space_dimension() == 2. >>> p0.strictly_contains(NNC_Polyhedron(x>0)) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::contains(y): y is a NNC_Polyhedron.
- topological_closure_assign(self)¶
Assign to
self
its topological closure.Examples:
>>> from ppl import Variable, NNC_Polyhedron >>> x = Variable(0) >>> p = NNC_Polyhedron(x>0) >>> p.is_topologically_closed() False >>> p.topological_closure_assign() >>> p.is_topologically_closed() True >>> p.minimized_constraints() Constraint_System {x0>=0}
- unconstrain(self, Variable var)¶
Compute the cylindrification of
self
with respect to space dimensionvar
.INPUT:
var
– aVariable
. The space dimension that will be unconstrained. Exceptions:
OUTPUT:
This method assigns the cylindrification to
self
and does not return anything.Raises a
ValueError
ifvar
is not a space dimension ofself
.Examples:
>>> from ppl import Variable, C_Polyhedron, point >>> x = Variable(0) >>> y = Variable(1) >>> p = C_Polyhedron( point(x+y) ); p A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point >>> p.unconstrain(x); p A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 1 point, 1 line >>> z = Variable(2) >>> p.unconstrain(z) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::unconstrain(var): this->space_dimension() == 2, required space dimension == 3.
- upper_bound_assign(y)¶
Polyhedron.poly_hull_assign(self, Polyhedron y)
Assign to
self
the poly-hull ofself
andy
.For any pair of NNC polyhedra P_1 and P_2, the convex polyhedral hull (or poly-hull) of is the smallest NNC polyhedron that includes both P_1 and P_2. The poly-hull of any pair of closed polyhedra in is also closed.
INPUT:
y
– aPolyhedron
OUTPUT:
This method assigns the poly-hull to
self
and does not return anything.Raises a
ValueError
ifself
and andy
are topology-incompatible or dimension-incompatible.Examples:
>>> from ppl import Variable, C_Polyhedron, point, NNC_Polyhedron >>> x = Variable(0) >>> y = Variable(1) >>> p = C_Polyhedron( point(1*x+0*y) ) >>> p.poly_hull_assign(C_Polyhedron( point(0*x+1*y) )) >>> p.generators() Generator_System {point(0/1, 1/1), point(1/1, 0/1)}
self
andy
must be dimension- and topology-compatible, or an exception is raised:>>> z = Variable(2) >>> p.poly_hull_assign( C_Polyhedron(z>=0) ) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::poly_hull_assign(y): this->space_dimension() == 2, y.space_dimension() == 3. >>> p.poly_hull_assign( NNC_Polyhedron(x+y<1) ) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::poly_hull_assign(y): y is a NNC_Polyhedron.
- widening_assign(y, tp=0)¶
Polyhedron.H79_widening_assign(self, Polyhedron y, unsigned int tp=0)
Assigns to
self`
the result of computing the H79-widening betweenself
andy
.INPUT:
y
– aPolyhedron
that must be contained inself
tp
– an optional unsigned variable with the number of available tokens (to be used when applying the widening with tokens delay technique).
OUTPUT:
This method assigns to
self
the result of computing the BHRZ03-widening betweenself
andy
. And returns the new value oftp
.Raises a
ValueError
ifself
andy
are topology-incompatible.Examples: >>> from ppl import Variable, C_Polyhedron >>> x = Variable(0) >>> y = Variable(1) >>> ph1 = C_Polyhedron(2) >>> ph1.add_constraint( x >= 2 ) >>> ph1.add_constraint( y >= 0 ) >>> ph2 = C_Polyhedron(2) >>> ph2.add_constraint( x >= 0 ) >>> ph2.add_constraint( y >= 0 ) >>> ph2.add_constraint( x-y >= 2 ) >>> tp = ph1.H79_widening_assign(ph2) >>> known_result = C_Polyhedron(2) >>> known_result.add_constraint(y >= 0) >>> known_result == ph1 True
self
andy
must be dimension- and topology-compatible, or an exception is raised:>>> z = Variable(2) >>> ph1.H79_widening_assign( C_Polyhedron(z>=0) ) Traceback (most recent call last): ... ValueError: PPL::C_Polyhedron::H79_widening_assign(y): this->space_dimension() == 2, y.space_dimension() == 3.
if this method is going to be called too many times, the
tp
parameter allows one to reduce the computation cost by computing the widening only whentp
is equal to 0, otherwise the this method will decrement the value oftp
and return it.>>> from ppl import point, ray, Generator_System >>> gs1 = Generator_System() >>> gs1.insert(point()) >>> gs1.insert(ray( x + y )) >>> gs1.insert(ray( x )) >>> ph1 = C_Polyhedron(gs1) >>> gs2 = Generator_System() >>> gs2.insert(point()) >>> gs2.insert(ray( x )) >>> gs2.insert(ray( x + 2 * y )) >>> ph2 = C_Polyhedron(gs2) >>> ph2_copy = C_Polyhedron(ph2) >>> known_result = C_Polyhedron(2) >>> known_result.add_constraint(y >= 0) >>> tp = ph2.H79_widening_assign(ph1, 1) >>> tp == 0 True >>> ph2 == ph2_copy True >>> tp = ph2.H79_widening_assign(ph1, 0) >>> tp == 0 True >>> ph2 == known_result True
Module ppl.mip_problem¶
- class ppl.mip_problem.MIP_Problem¶
Bases:
object
wrapper for PPL’s MIP_Problem class
An object of the class MIP_Problem represents a Mixed Integer (Linear) Program problem.
INPUT:
dim
– integerargs
– an array of the defining data of the MIP_Problem. For each element, any one of the following is accepted:A
Constraint_System
.A
Linear_Expression
.
OUTPUT:
A
MIP_Problem
.Examples:
>>> from ppl import Variable, Constraint_System, MIP_Problem >>> x = Variable(0) >>> y = Variable(1) >>> cs = Constraint_System() >>> cs.insert(x >= 0) >>> cs.insert(y >= 0) >>> cs.insert(3 * x + 5 * y <= 10) >>> m = MIP_Problem(2, cs, x + y) >>> m MIP Problem (maximization, 2 variables, 3 constraints) >>> m.optimal_value() mpq(10,3) >>> float(_) 3.333333333333333 >>> m.optimizing_point() point(10/3, 0/3)
- add_constraint(self, Constraint c)¶
Adds a copy of constraint c to the MIP problem.
Examples:
>>> from ppl import Variable, MIP_Problem >>> x = Variable(0) >>> y = Variable(1) >>> m = MIP_Problem() >>> m.add_space_dimensions_and_embed(2) >>> m.add_constraint(x >= 0) >>> m.add_constraint(y >= 0) >>> m.add_constraint(3 * x + 5 * y <= 10) >>> m.set_objective_function(x + y) >>> m.optimal_value() mpq(10,3)
Tests:
>>> z = Variable(2) >>> m.add_constraint(z >= -3) Traceback (most recent call last): ... ValueError: PPL::MIP_Problem::add_constraint(c): c.space_dimension() == 3 exceeds this->space_dimension == 2.
- add_constraints(self, Constraint_System cs)¶
Adds a copy of the constraints in cs to the MIP problem.
Examples:
>>> from ppl import Variable, Constraint_System, MIP_Problem >>> x = Variable(0) >>> y = Variable(1) >>> cs = Constraint_System() >>> cs.insert(x >= 0) >>> cs.insert(y >= 0) >>> cs.insert(3 * x + 5 * y <= 10) >>> m = MIP_Problem(2) >>> m.set_objective_function(x + y) >>> m.add_constraints(cs) >>> m.optimal_value() mpq(10,3)
Tests:
>>> p = Variable(9) >>> cs.insert(p >= -3) >>> m.add_constraints(cs) Traceback (most recent call last): ... ValueError: PPL::MIP_Problem::add_constraints(cs): cs.space_dimension() == 10 exceeds this->space_dimension() == 2.
- add_space_dimensions_and_embed(self, PPL_dimension_type m)¶
Adds m new space dimensions and embeds the old MIP problem in the new vector space.
Examples:
>>> from ppl import Variable, Constraint_System, MIP_Problem >>> x = Variable(0) >>> y = Variable(1) >>> cs = Constraint_System() >>> cs.insert( x >= 0) >>> cs.insert( y >= 0 ) >>> cs.insert( 3 * x + 5 * y <= 10 ) >>> m = MIP_Problem(2, cs, x + y) >>> m.add_space_dimensions_and_embed(5) >>> m.space_dimension() 7
- add_to_integer_space_dimensions(self, Variables_Set i_vars)¶
Sets the variables whose indexes are in set i_vars to be integer space dimensions.
Examples:
>>> from ppl import Variable, Variables_Set, Constraint_System, MIP_Problem >>> x = Variable(0) >>> y = Variable(1) >>> cs = Constraint_System() >>> cs.insert( x >= 0) >>> cs.insert( y >= 0 ) >>> cs.insert( 3 * x + 5 * y <= 10 ) >>> m = MIP_Problem(2) >>> m.set_objective_function(x + y) >>> m.add_constraints(cs) >>> i_vars = Variables_Set(x, y) >>> m.add_to_integer_space_dimensions(i_vars) >>> m.optimal_value() mpq(3,1)
- clear(self)¶
Reset the MIP_Problem to be equal to the trivial MIP_Problem.
Examples:
>>> from ppl import Variable, Constraint_System, MIP_Problem >>> x = Variable(0) >>> y = Variable(1) >>> cs = Constraint_System() >>> cs.insert( x >= 0) >>> cs.insert( y >= 0 ) >>> cs.insert( 3 * x + 5 * y <= 10 ) >>> m = MIP_Problem(2, cs, x + y) >>> m.objective_function() x0+x1 >>> m.clear() >>> m.objective_function() 0
- constraints(self)¶
Return the constraints of this MIP
The output is an instance of
Constraint_System
.Examples:
>>> from ppl import Variable, MIP_Problem >>> x = Variable(0) >>> y = Variable(1) >>> M = MIP_Problem(2) >>> M.add_constraint(x + y <= 5) >>> M.add_constraint(3*x - 18*y >= -2) >>> M.constraints() Constraint_System {-x0-x1+5>=0, 3*x0-18*x1+2>=0}
Note that modifying the output of this method will not modify the underlying MIP problem object:
>>> cs = M.constraints() >>> cs.insert(x <= 3) >>> cs Constraint_System {-x0-x1+5>=0, 3*x0-18*x1+2>=0, -x0+3>=0} >>> M.constraints() Constraint_System {-x0-x1+5>=0, 3*x0-18*x1+2>=0}
- evaluate_objective_function(self, Generator evaluating_point)¶
Return the result of evaluating the objective function on evaluating_point. ValueError thrown if self and evaluating_point are dimension-incompatible or if the generator evaluating_point is not a point.
Examples:
>>> from ppl import Variable, MIP_Problem, Generator >>> x = Variable(0) >>> y = Variable(1) >>> m = MIP_Problem() >>> m.add_space_dimensions_and_embed(2) >>> m.add_constraint(x >= 0) >>> m.add_constraint(y >= 0) >>> m.add_constraint(3 * x + 5 * y <= 10) >>> m.set_objective_function(x + y) >>> g = Generator.point(5 * x - 2 * y, 7) >>> m.evaluate_objective_function(g) mpq(3,7) >>> z = Variable(2) >>> g = Generator.point(5 * x - 2 * z, 7) >>> m.evaluate_objective_function(g) Traceback (most recent call last): ... ValueError: PPL::MIP_Problem::evaluate_objective_function(p, n, d): *this and p are dimension incompatible.
- is_satisfiable(self)¶
Check if the MIP_Problem is satisfiable
Examples:
>>> from ppl import Variable, MIP_Problem >>> x = Variable(0) >>> y = Variable(1) >>> m = MIP_Problem() >>> m.add_space_dimensions_and_embed(2) >>> m.add_constraint(x >= 0) >>> m.add_constraint(y >= 0) >>> m.add_constraint(3 * x + 5 * y <= 10) >>> m.is_satisfiable() True
- objective_function(self)¶
Return the optimal value of the MIP_Problem.
Examples:
>>> from ppl import Variable, Constraint_System, MIP_Problem >>> x = Variable(0) >>> y = Variable(1) >>> cs = Constraint_System() >>> cs.insert( x >= 0) >>> cs.insert( y >= 0 ) >>> cs.insert( 3 * x + 5 * y <= 10 ) >>> m = MIP_Problem(2, cs, x + y) >>> m.objective_function() x0+x1
- optimal_value(self)¶
Return the optimal value of the MIP_Problem. ValueError thrown if self does not have an optimizing point, i.e., if the MIP problem is unbounded or not satisfiable.
Examples:
>>> from ppl import Variable, Constraint_System, MIP_Problem >>> x = Variable(0) >>> y = Variable(1) >>> cs = Constraint_System() >>> cs.insert( x >= 0 ) >>> cs.insert( y >= 0 ) >>> cs.insert( 3 * x + 5 * y <= 10 ) >>> m = MIP_Problem(2, cs, x + y) >>> m.optimal_value() mpq(10,3) >>> cs = Constraint_System() >>> cs.insert( x >= 0 ) >>> m = MIP_Problem(1, cs, x + x ) >>> m.optimal_value() Traceback (most recent call last): ... ValueError: PPL::MIP_Problem::optimizing_point(): *this ... have an optimizing point.
- optimization_mode(self)¶
Return the optimization mode used in the MIP_Problem.
It will return “maximization” if the MIP_Problem was set to MAXIMIZATION mode, and “minimization” otherwise.
Examples:
>>> from ppl import MIP_Problem >>> m = MIP_Problem() >>> m.optimization_mode() 'maximization'
- optimizing_point(self)¶
Returns an optimal point for the MIP_Problem, if it exists.
Examples:
>>> from ppl import Variable, MIP_Problem >>> x = Variable(0) >>> y = Variable(1) >>> m = MIP_Problem() >>> m.add_space_dimensions_and_embed(2) >>> m.add_constraint(x >= 0) >>> m.add_constraint(y >= 0) >>> m.add_constraint(3 * x + 5 * y <= 10) >>> m.set_objective_function(x + y) >>> m.optimizing_point() point(10/3, 0/3)
- set_objective_function(self, obj)¶
Sets the objective function to obj.
Examples:
>>> from ppl import Variable, MIP_Problem >>> x = Variable(0) >>> y = Variable(1) >>> m = MIP_Problem() >>> m.add_space_dimensions_and_embed(2) >>> m.add_constraint(x >= 0) >>> m.add_constraint(y >= 0) >>> m.add_constraint(3 * x + 5 * y <= 10) >>> m.set_objective_function(x + y) >>> m.optimal_value() mpq(10,3)
Tests:
>>> z = Variable(2) >>> m.set_objective_function(x + y + z) Traceback (most recent call last): ... ValueError: PPL::MIP_Problem::set_objective_function(obj): obj.space_dimension() == 3 exceeds this->space_dimension == 2.
>>> M = MIP_Problem(1) >>> M.set_objective_function(Variable(0))
- set_optimization_mode(self, mode)¶
Sets the optimization mode to mode.
Examples:
>>> from ppl import MIP_Problem >>> m = MIP_Problem() >>> m.optimization_mode() 'maximization' >>> m.set_optimization_mode('minimization') >>> m.optimization_mode() 'minimization'
Tests:
>>> m.set_optimization_mode('max') Traceback (most recent call last): ... ValueError: Unknown value: mode=max.
- solve(self)¶
Optimizes the MIP_Problem
Examples:
>>> from ppl import Variable, MIP_Problem >>> x = Variable(0) >>> y = Variable(1) >>> m = MIP_Problem() >>> m.add_space_dimensions_and_embed(2) >>> m.add_constraint(x >= 0) >>> m.add_constraint(y >= 0) >>> m.add_constraint(3 * x + 5 * y <= 10) >>> m.set_objective_function(x + y) >>> m.solve() {'status': 'optimized'}
- space_dimension(self)¶
Return the space dimension of the MIP_Problem.
Examples:
>>> from ppl import Variable, Constraint_System, MIP_Problem >>> x = Variable(0) >>> y = Variable(1) >>> cs = Constraint_System() >>> cs.insert( x >= 0) >>> cs.insert( y >= 0 ) >>> cs.insert( 3 * x + 5 * y <= 10 ) >>> m = MIP_Problem(2, cs, x + y) >>> m.space_dimension() 2
Module ppl.congruence¶
- class ppl.congruence.Congruence(arg=None, mod=None)¶
Bases:
object
Wrapper for PPL’s
Congruence
class.>>> import ppl >>> x = ppl.Variable(0) >>> y = ppl.Variable(1) >>> ppl.Congruence(x + 2*y - 1, 7) x0+2*x1-1==0 (mod 7) >>> ppl.Congruence(x + y == 2, 5) x0+x1-2==0 (mod 5)
- coefficient(self, v)¶
Return the coefficient
v
of this congruence.Examples:
>>> import ppl >>> x = ppl.Variable(0) >>> y = ppl.Variable(1) >>> c = (2 * x + y == 1) % 12 >>> c.coefficient(0) mpz(2) >>> c.coefficient(x) mpz(2)
Note that contrarily to
Linear_Expression
the congruences raise an error when trying to access a coefficient beyond the dimension>>> c.coefficient(ppl.Variable(13)) Traceback (most recent call last): ... ValueError: PPL::Congruence::coefficient(v): this->space_dimension() == 2, v.space_dimension() == 14.
- coefficients(self)¶
Return the coefficients of this congruence as a tuple.
Examples:
>>> import ppl >>> x = ppl.Variable(0) >>> y = ppl.Variable(1) >>> t = ppl.Variable(3) >>> c = ppl.Congruence(x + 2*y + t - 1, 7) >>> c.coefficients() (mpz(1), mpz(2), mpz(0), mpz(1))
- inhomogeneous_term(self)¶
Return the inhomogeneous term of this congruence.
Examples:
>>> import ppl >>> x = ppl.Variable(0) >>> y = ppl.Variable(1) >>> c = ppl.Congruence(x + 2*y - 3, 7) >>> c.inhomogeneous_term() mpz(-3)
- is_equal(self, Congruence other)¶
Return whether
self
is equal toother
.Examples:
>>> import ppl >>> x = ppl.Variable(0) >>> Congruence(x + 1, 3).is_equal(Congruence(x + 1, 3)) True >>> Congruence(x, 3).is_equal(Congruence(x - 2, 3)) False >>> Congruence(x, 3).is_equal(Congruence(x , 2)) False
- modulus(self)¶
Return the modulus of this congruence.
Examples:
>>> import ppl >>> x = ppl.Variable(0) >>> y = ppl.Variable(1) >>> c = ppl.Congruence(x + 2*y - 3, 7) >>> c.modulus() mpz(7)
- space_dimension(self)¶
- class ppl.congruence.Congruence_System(arg=None)¶
Bases:
object
Wrapper for PPL’s
Congruence_System
class.>>> from ppl import Variable, Congruence, Congruence_System >>> x = Variable(0) >>> y = Variable(1) >>> z = Variable(2) >>> c1 = Congruence(2*x + 3*y - 5*z == 0, 12) >>> c2 = Congruence(4*x + y == 5, 18) >>> C = Congruence_System() >>> C.insert(c1) >>> C.insert(c2) >>> C Congruence_System {2*x0+3*x1-5*x2==0 (mod 12), 4*x0+x1+13==0 (mod 18)}
- ascii_dump(self)¶
Write an ASCII dump of this congruence to stderr.
Examples:
>>> cmd = 'from ppl import Variable, Congruence_System\n' >>> cmd += 'x = Variable(0)\n' >>> cmd += 'y = Variable(1)\n' >>> cmd += 'cs = Congruence_System( (3*x == 2*y+1) % 7 )\n' >>> cmd += 'cs.ascii_dump()\n' >>> import subprocess, sys >>> proc = subprocess.Popen([sys.executable, '-c', cmd], stderr=subprocess.PIPE) >>> out, err = proc.communicate() >>> print(str(err.decode('ascii'))) 1 x 2 SPARSE size 3 6 3 -2 m 7
- clear(self)¶
Remove all congruences from this congruence system.
>>> from ppl import Variable, Congruence_System >>> x = Variable(0) >>> y = Variable(1) >>> cs = Congruence_System([(3*x+2*y+1 == 3) % 15, (x+2*y + 7 == 0) % 22]) >>> len(cs) 2 >>> cs.clear() >>> len(cs) 0
- insert(self, Congruence c)¶
Insert the congruence
c
into the congruence system.Examples:
>>> from ppl import Variable, Congruence_System >>> x = Variable(0) >>> y = Variable(1) >>> cs = Congruence_System() >>> cs.insert((3 * x + 2 == 0) % 13) >>> cs Congruence_System {3*x0+2==0 (mod 13)}
- ppl.congruence.congruence(le, m)¶